
2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 1
www.aitp-edsig.org

Review of Web Service Specifications for

Long-running Conversations

Chirag N. Rana

chirag.for.portal@gmail.com
Florida Blue

Jacksonville, FL - 32256

Karthikeyan Umapathy
k.umapathy@unf.edu

School of Computing
University of North Florida

Jacksonville, FL - 32224

Abstract

Despite the growing number of standards and interest in web services, support for implementation of
long-running conversations is inadequate. Most real world business transactions typically consists of
series of business activities. Such transactions originate from different sources which have multiple

web services running to achieve a specific result. In this paper, we provide an overview of long-
running conversation properties, and a review of relevant web service specifications. Our analysis

indicates that WS-Coordination and WS-BusinessActivity specifications are the best option for
implementing long-running conversations using web services.

Keywords: Web Service, Long-running Conversations, Transactions, Standards, and Specification
Analysis.

1. INTRODUCTION

Business conversations are sequences of
message exchanges among software
components within a distributed system

(Papazoglou, 2003). Conversations are of two
types: short-lived and long-running. Short-lived
conversations contain atomic transaction with a
single unit of task or activity (Little, Maron, &
Pavlik, 2004, p. 32). Long-running conversations

can be a series of smaller transactions or
activities and can take minutes, hours or even

days to complete the transactions (Bowles &
Moschoyiannis, 2008). Conversations are
integral to system integration as they provide a
means to model and implement the interactions
between components to achieve interoperability.
Web service is an ideal technology for systems
integration including implementation of business

conversations.

Web service is primarily a technology to
integrate software systems and support
machine-to-machine interactions over a network
(Booth et al., 2004). It has emerged as a

leading technology for systems integration as it
is device-, language-, operating system-, and
platform-neutral. Web service builds upon
Service-oriented Architecture (SOA) to allow
applications developed by different providers to

be composed and coordinated in a loosely-
coupled fashion. Web service provides its

capability through a collection of standards. Web
service technology provides standards such as
WSDL (Web Services Description Language) for
describing how to interface with a service, SOAP
(Simple Object Access Protocol) for exchanging
messages between services, and WS-BPEL (Web
Services Business Process Execution Language)

mailto:chirag.for.portal@gmail.com
mailto:k.umapathy@unf.edu

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 2
www.aitp-edsig.org

for composing multiple individual services into a
single composite service.

Web services aide systems integration by
supporting conversations between software

components within and cross networks. Short-
lived conversations are supported through WS-
Atomic Transactions (WS-AT) standard
(Newcomer, Robinson, Little, & Wilkinson,
2009). However, long-running conversations are
supported by several competing standards such
as Web Service Choreography Description

Language (WS-CDL), Web Services Business
Activity (WS-BA), Business Transaction Protocol
(BTP), and Web Service Composite Application

Framework (WS-CAF). The existences of
competing standards cause difficulty for
developers with selecting appropriate

specification for supporting long-running
conversations. In this paper, we provide a
review and a comparison of support provided by
these standards for implementing long-running
conversations.

2. LONG-RUNNING CONVERSATIONS

Business conversation (a.k.a., business

transactions) involves ordered sequence of
interactions among multiple partners. Business
conversations comprise of multiple sub-
transactions or activities (Bowles &
Moschoyiannis, 2008). Each activity involves

execution of the underlying services and/or
software components. These activities would

need to share results with other services
participating in the transaction. Dependencies
between activities and corresponding services
need to be coordinated in order to successfully
complete a transaction. Thus, conversations can
take minutes, hours, or even days to complete.

Hence, they are known as long-running
conversations (Bowles & Moschoyiannis, 2008).
For example, Amazon’s product authentication
process could take a few minutes to days,
depending upon the response received from the
customer (Amazon-DevPay, 2014).

It is possible that sub-transactions within a long-

running conversation consists of several sub
activities that may be interdependent on each
other (Bowles & Moschoyiannis, 2008). It means
output of one sub activity may be the input of
another sub activity. If one or more of the sub
activities do not provide output to an activity
whose execution is dependent on previous

activity’s results, then the subsequent activity
may not execute and may result in failure of an
entire transaction. For a long-running

conversation to be considered as completely
successful it should result in an
acknowledgement or return code from the sub-
transactions from which it expects the output.

Let us consider a travel booking scenario as an
example of long-running conversations. In this
scenario, a customer wants to book a flight, a
hotel room, and a rental car. This scenario
consists of multiple sub-transactions, namely,
flight booking, hotel booking, rental car booking,
and payment processing. The travel booking

scenario involves following participants:
customer, travel agent service, flight service,
hotel service, rental car service, and payment

service. Interactions between these participants
must be orchestrated for successfully completing
the scenario and achieving the business

objective. It should be noted that travel agent
service can interact with multiple flight, hotel,
and rental car services. Figure 1 shows the
sequence of interactions that occur in a
successful completion of a travel booking
scenario.

Figure 1. Collaboration Diagram for Travel
Booking Scenario

3. LONG-RUNNING CONVERSATION
PROPERTIES

The Service-oriented Architecture (SOA)

provides an infrastructure to organize different
applications involved in a long-running
conversation and can be used, composed, and
coordinated in the form of loosely coupled
services. Each business transaction involves
interaction between multiple service providers

which needs to be structured and arranged in a
definite sequence. These services require
appropriate web service specifications that
support long-running conversations.

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 3
www.aitp-edsig.org

In order to review the ability of web service
standards to support long-running
conversations, we need to be aware of the
properties of long-running conversations. Below,

we have identified key properties of long-
running conversations in the context of web
services.

ACID Properties

Ensuring consistency of information shared
amongst services despite of concurrent accesses
and system failure is very important for long-

running conversations. Transaction systems
achieve this through well-known ACID properties
of Atomicity, Consistency, Isolation and

Durability (Little, 2003). Atomicity property
states that either all activities in a transaction
are completed successfully, or none succeeds.

Consistency property states that a transaction
works on a consistent set of data and leaves a
consistent state after the transaction is
completed. Isolation property states that
transactions should have concurrent access to
the same data while maintaining integrity and
correctness of data. Isolation also requires

keeping a transaction hidden from other
concurrently running transactions. Durability
property states that when a transaction
completes all changes made becomes persistent
even if the system subsequently fails.

Relaxed ACID

It should be noted that not all long-running

conversations need to maintain rigid ACID
properties. Most long-running conversations may
not be able to possess full atomicity and
isolation properties (Dalal, Temel, Little, Potts, &
Webber, 2003). Long-running conversations
require an extended period of time to complete

all sub-transactions. A participant might be
inactive for an extended time period as often
waiting to receive messages from other
participants. Data used within conversations
might also be shared among participants, thus,
it cannot be locked by a participant (Razavi,
Moschoyiannis, & Krause, 2007). For those

scenarios, isolation of data is not required.
Participants might be required to share partial
results before sub-transactions being committed,
thus, not all transactions will be atomic
transactions (Little, 2003). Therefore, long-
running specifications should provide support for
relaxed ACID properties.

Fault Handling

Standard specification should provide ability to
handle faults that arise from execution of
business conversations. A business transaction

needs to handle exceptions or errors that are
thrown at any stage during the execution. A
long-running conversation should successfully
complete (commit) each of the sub-transactions
or none at all (Bowles & Moschoyiannis, 2008).
A long-running transactions may be atomic i.e.
either complete successfully (commit) or not

take place at all (roll back) or may not be
atomic. But in either case, if there is a point of
failure, there should be some mechanism which

can revert back all the previous sub-transactions
which are successful till the point of failure.

Therefore, in case of failure within a transaction,

there must be an ability to undo portions of
transactions that may have been completed so
far. The Long-running transaction is an
aggregation of sub-transactions, thus, there is
likelihood that at some point a sub-transaction
might fail. Failure can occur within a transaction
for several reasons such as service

unavailability, network disconnection, and
application errors. Thus, support for
compensating failure is a necessity.

Coordination Support

Long-running conversations, typically, consists

of a series of sub-transactions. Executions of
sub-transactions need to be coordinated to

ensure interactions among participants follow
expected logical sequence (Razavi, et al., 2007).
Standards for long-running conversations should
provide a centralized controller to manage
distributed transactions in a loosely coupled
manner. Specifications should also provide

relevant protocols to ensure that the controller
and the participating services are working
together to complete transactions or cancel
when it fails.

2PC Protocol

Two-phase commit protocol is a necessity for

complex transactions with ACID like behaviors.

The first phase is called the prepare phase which
involves participants preparing for the
transaction (declaring dependencies, setting up
the relationships, and indicating scope and side
effects of updates) (Razavi, et al., 2007). The
second phase is called the commit phase, in
which participants finalizes or aborts the

transaction. Long-running specifications should
provide support for two-phase commit protocol

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 4
www.aitp-edsig.org

to ensure a group of distributed transactions
succeed or fail as if they were a single
transaction.

Arbitrary Transaction Models and

Semantics

Transaction models and semantics supported
within the specification should not be catered to
a specific set of business domains. Transaction
processing policies vary from one business
domain to another (Hrastnik & Winiwarter,
2004). If a specification focuses on few domains,

it cannot be used by other domains. Thus,
specifications should support arbitrary
transaction models and semantics.

Series of Message Exchanges

A business conversation is a series of message
exchanges that occurs between participating

entities involved in a business process
(Papazoglou, 2003). Participating entities share
information with each other through message
exchanges. Transactional operations are also
performed via message exchanges. Thus,
support for series of message exchanges is a
critical requirement for long-running

specifications.

Multi-Participant Support

A typical long-running conversation not only
includes a series of message exchanges but also

two or more participants. Thus, the long-running
specification supporting multiple participants is
equally important.

State Information

Maintaining the current state of interactions is
essential for monitoring progress of the
transactions. State information of transactions,
typically include transactional operation status
such as pre-prepare, preparing, committing,

aborting, and done. State information can also
contain information about the interaction and
message exchange between participants.
Without state information, transaction systems
could not track and report on the progress made

within long-running conversations. Thus, long-
running specifications should provide the ability

to maintain state information.

Complements WS-BPEL specification

WS-BPEL specification provides ability to create
a composite service from a set of individual
services (Jordan & Evdemon, 2007). WS-BPEL
specification can be used to define which service
accomplishes a specific task within a business

process. Identified services can be assembled in
the order specified in the business process to
function as a single composite service. WS-BPEL
specifies and manages order of invocations of

participating services, but it does not manage
business conversations and transactional
operations between participating services. For
some simple business processes, WS-BPEL
might be sufficient to achieve the business
objectives. However, for scenarios involving
long-running conversations, there is a need of

complementing specifications. Any long-running
specification should complement WS-BPEL
without which its purposes might be
meaningless for users.

Tool Support

Availability of tool support is critical for adoption

of any standard specifications, without which a
specification is just an abstract entity. Thus,
availability of tool support is important for
adoption of long-running conversation
specifications as well. Tool support is required
for modeling (to design) conversations and
mechanisms that act as transactional systems to

execute conversations.

4. SPECIFICATIONS THAT SUPPORT LONG
RUNNING CONVERSATIONS

In this section, we provide an overview of web

service specifications designed to support long-
running conversations. We also provide a review
of support provided to long-running conversation

properties identified in the previous section.

Web Services Choreography Description
Language (WS-CDL)

The WS-CDL specification is a set of rules and
regulations defined at a global level which
consists of common ordering conditions and

restrictions for the participants exchanging
messages (collaborate) with each other
(Kavantzas et al., 2005). The primary goal of
the WS-CDL specification is to specify a
declarative, XML based language that defines
from a global viewpoint the common and

complementary observable behavior specifically,

the information exchanges that occur and the
jointly agreed ordering rules that need to be
satisfied. Some of the goals of this specification
are re-usability, cooperation, multi-party
collaboration, semantics, composability,
modularity, information driven collaboration,
information alignment, exception handling, and

transactionality (Kavantzas, et al., 2005). The
participants develop their solutions which

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 5
www.aitp-edsig.org

comply with these global definitions of rules in
order to achieve successful messaging within or
across their domains.

WS-CDL is not an “executable business process

description language” or an implementation
language (Fredlund, 2006). The implementation
is handled by the participants who are involved
in the conversation. WS-CDL specification is
developed by W3C. The current version is 1.0
with candidate recommendation status.

Below, we provide a list of the main elements in

the WS-CDL specification (Kavantzas, et al.,
2005):

Choreography: Choreography is the root
element of the specification. It defines rules
regulating the ordering of message exchanges
and pattern of collaborative behaviors agreed

upon between interacting participants.

Collaborating participant: This element defines
how a participant is capable of engaging in
collaborations with different participants.
RoleType, RelationshipType, ParticipantType,
and ChannelType are the elements that define
collaborating participants and their coupling. All

interactions specified occur between roleTypes
being exhibited by participantTypes and
constrained by relationshipTypes.

Information driven collaborations: Observable

collaborating behaviors of participants can be
defined within a choreography element via
variable, token, and informationType elements.

Variable captures information regarding
message exchanges, state changes of a
roleType, channel information, and exceptions.
Tokens can be used to refer a part of a variable.
InformationType defines the type of information
contained within a variable or referenced by a

token.

Activities: Activities describe actions performed
within the choreography via basic activity,
ordering structure, and workunit elements. A
basic activity is the lowest level of actions
performed within choreography. The Ordering

structure combines basic activities in a nested

way to describe ordering rules within
choreography. Workunit allows defining
conditions and repetition of a group of activities.

Table 1 provides an overview of long-running
conversation properties supported by WS-CDL
specification. From the table, it can be noted
that WS-CDL provides full support for 6 out of

11 identified properties and provides partial
support for 3 other properties.

Web Service Coordination (WS-
Coordination) and Web Service Business
Activity (WS-BusinessActivity)

WS-Coordination and WS-BusinessActivity

specifications collectively are designed to
support long-running conversations. WS-
Coordination is a building block that is used in
conjunction with other specifications and
application-specific protocols to accommodate a
wide variety of protocols related to the operation
of distributed web services. Web services can be

used to bind together a large number of
participants to form a large distributed
computational unit. WS-Coordination defines a

coordinator and a set of coordination protocols
for coordinating activities performed by
participating web services (Newcomer,

Robinson, Feingold, & Jeyaraman, 2009). WS-
Coordination should be used when
interoperability is needed across vendor
implementations and trusted domains. Thus, the
protocols defined in this specification can be
combined with proprietary protocols within the
same application (Newcomer, Robinson,

Feingold, et al., 2009).

WS-Coordination specification became an
industry standard in 2009 and the current
version is 1.2. WS-Coordination is developed by
and recommended by OASIS. Below, we provide
a list of the main elements in the WS-

Coordination specification (Newcomer, Robinson,

Feingold, et al., 2009):

CoordinationContext: The CoordinationContext
element is used by applications to pass
coordination information such as registration
service and coordination type to participants
involved in an activity.

CoordinationService: CoordinationService
represents coordinator, which is essentially an
aggregation of activation service, registration
service, and coordination type. Activation service
defines a CreateCoordinationContext operation
which creates a new activity and returns a
CoordinationContext. Registration service

defines a Register operation which allows a web
service to register for an activity using
CoordinationContext. Coordination type defines
coordination behaviors such as accepted service
contexts, protocol registrations, and protocols
associated within an activity.

Fault: The coordination fault allows defining

endpoints that can be used when preset fault
conditions are met.

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 6
www.aitp-edsig.org

Security Model: WS-Coordination specification
works in conjunction with WS-Security and WS-
Trust specifications to secure message
exchanges and other communications between

participants.

WS-Business Activity defines protocols that
enable existing business process and workflow
systems to wrap their proprietary mechanisms
and interoperate across trusted boundaries and
different vendor implementations (Newcomer,
Robinson, Freund, & Little, 2007). WS-

BusinessActivity builds its protocols based on the
extensible coordination framework from WS-
Coordination specification. Business activities

can be partitioned into hierarchical nested
scopes. Results of completed tasks (e.g.,
transactions) within business activities are

visible prior to the completion of the business
activity, thereby relaxing isolation. These tasks
are in fact tentative, thus, the business logic for
compensation relies on the outcome
(Newcomer, Robinson, et al., 2007).

To undo completed child tasks, compensating
actions are registered with the parent activity.

Exceptions are handled by exception handlers
(which may be compensating actions) using
application logic in such a way that the overall
business activity can continue (i.e., forward
recovery) (Newcomer, Robinson, et al., 2007).
Business activities are allowed to query multiple

participants (i.e., child tasks) in order to finally

select the most appropriate one and cancel
others. The participants of a business activity
also could be coordinated in an all or nothing
fashion by the coordinator. The coordinator in a
business activity is not as restricted as the
coordinator in an atomic transaction. The

behavior of the coordinator will be determined
by the application. Participants are allowed to
exit activities autonomously thereby, depending
on the position of the protocol, delegating
processing to other scopes or exiting without
knowing the outcome of the protocol.

WS-BuinessActivity specification became an

industry standard on 2007 and the current

version is 1.1. WS-BusinessActivity is developed
by and recommended by OASIS. Below, we
provide a list of the main elements in the WS-
BusinessActivity specification (Newcomer,
Robinson, et al., 2007):

Coordination Types: WS-BusinessActivity

supports two coordination types, which are
AtomicOutcome and MixedOutcome. For
AtomicOutcome, the coordinator must direct all
participants to either close or compensate. For

MixedOutcome, the coordinator can direct
individual participants to either close or
compensate.

Coordination Protocols: WS-BusinessActivity

supports two coordination protocols, which are
BusinessAgreementWithParticipantCompletion (A
participant knows when it has completed a
business activity) and
BusinessAgreementWithCoordinatorCompletion
(A participant relies on coordinator to know
when it has completed a business activity).

Table 2 provides an overview of long-running
conversation properties supported by WS-
Coordination and WS-BusinessActivity

specifications. From the table, it can be noted
that WS-Coordination and WS-BusinessActivity
specifications provide full support for 8 out of 11

identified properties and provides partial support
for one other property.

Business Transaction Protocol (BTP)

BTP specification defines possible roles within a
transaction, message exchanges between roles,
meanings of messages and their permitted
ordering sequences. Its purpose is to provide the

interactions (or signaling) required to coordinate
the effects of application protocols to achieve a
business transaction (Ceponkus et al., 2002).

In a real world business-to-business (B2B)

paradigm, maintaining the ACID property in a
loosely coupled, distributed web services are
practically not possible. We cannot satisfy the

ACID property 100% because in case of complex
failures, it requires to use compensating
transactions. Typical locking techniques
introduce problems in long running transactions,
so there is a need to design complex lock
management algorithms or new interaction

techniques (Dalal, et al., 2003).

BTP is designed to allow coordination of web
services using a two-phase coordination protocol
to ensure that consistent results are achieved.
BTP also provides the participants’ ability to
record before or after images of a transaction

operation. It also provides flexibility for

participants to compensate with rollfoward-
rollbackward capability.

BTP specification is developed by OASIS and it is
currently a committee specification as of June
2002. Below, we provide a list of main concepts
in the BTP specification (Ceponkus, et al.,

2002):

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 7
www.aitp-edsig.org

Elements: Each participant in BTP has two
elements, application element and BTP element.
Application element holds the order of message
exchange information and associated business

functions to be performed. BTP elements assist
application to get work done by sending and
receiving messages.

Actors and Roles: BTP establishes bilateral
relationships between two applications using
actors and role concepts. The role concept refers
to the role played by a participating application

within a transaction. Participating application is
called as an actor. An actor can perform
different roles within or in different transactions.

There are two key roles in BTP - superiors
(nodes that coordinate a transaction) and
inferiors (nodes that participate in a transaction

coordinated by another node) (Dalal, et al.,
2003). There is also a possibility that the roles
can be interchanged during a transaction. A BTP
element can also implement both roles, which
allows the creation of tree structures.

Atoms and Cohesions: There are two kinds of
transaction behaviors supported by BTP: atoms

and cohesive. In transactions with atomic
behavior (also called atoms) all elements
contributing to a transaction must eventually
reach the same conclusion about a transaction
(confirm or cancel) (Schmit & Dustdar, 2005).
Atoms behavior supports all or nothing

transactions, i.e., either the transaction is 100%

successful or it does not take place at all.
Isolation is relaxed in atom transactions to
support long-lived transactions. Transaction with
cohesive behavior (also called Cohesions) allows
some sub elements to cancel while others
confirm, which is useful in the case of different

providers offering similar services (Schmit &
Dustdar, 2005). Cohesions relax the atomicity of
the transactions. The behavior can be different
for different nodes within a BTP transaction tree,
which allows for the construction of complex
transaction patterns. The set of participants with
“confirm” actions are the ones who successfully

complete the business transactions and are
known as confirm-set. Complex long running

business transactions are modeled using
cohesions.

Table 3 provides an overview of long-running
conversation properties supported by BTP
specification. From the table, it can be noted

that BTP provides full support for 10 out of 11
identified properties and provides partial support
for one other property.

Web Service Composite Application
Framework (WS-CAF)

WS-CAF defines a framework for composite
services that needs to specify boundaries for

activities, manage context information, and
inform participants of changes to an activity
(WS-CAF, 2005). The purpose of WS-CAF is to
enable development of composite services
encompassing range of transaction models,
coordination of activities, and recoverable long-
running activities.

WS-CAF consists of three specifications (WSCAF-
XML, 2003): Web Service Context (WS-Context)
- a framework for managing contextual

information such as IDs, tokens, channels, and
address (Newcomer et al., 2007); Web Service
Coordination Framework (WS-CF) - a sharable

mechanism to manage context augmentation
and lifecycle, and guarantee message delivery
(WS-CF, 2004); and Web Service Transaction
Management (WS-TXM) - comprising protocols
for interoperability across multiple transaction
managers and supporting two phase commit,
long running actions, and business process flows

transaction models (Bunting et al., 2003b).

An implementation of WS-CAF can start with a
simple context management using WS-Context.
Subsequently, additional context management
features and message delivery guarantees can

be added using WS-CF, and finally, transactional
recovery mechanisms can added using WS-TXM

(WSCAF-XML, 2003). Under WS-CAF umbrella,
multiple web service specifications can be
combined in various ways to achieve a common
goal. Hence, the minimum requirement is to
share a common context, and the maximum
requirement is to coordinate results in a

potentially long-running unit of work with
predictable results including failure conditions
(WSCAF-XML, 2003).

WS-CAF is developed by OASIS. WS-CF and WS-
TXM were proposed but were not developed into
standard specifications. Only, WS-Context was
recommended as an OASIS standard. Below, we

provide a list of main concepts in the WS-
Context specification (Newcomer, Chapman, et
al., 2007):

Context structure: Context structure defines
nested structured models for organizing context
information.

Context service: Context service defines scope

of an activity and how context information can
be referenced and broadcasted.

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 8
www.aitp-edsig.org

Context manager: Context manager defines how
applications can retrieve and set associated data
with a context.

We have also provided an overview of WS-TXM

and WS-CF specifications even though they were
proposed but were never recommended as
standards. WS-TXM supports three kinds of
transactional models (Bunting, et al., 2003b):

ACID transactions: ACID transaction model
supports short-running transactions that require
ACID properties. It supports two-phase protocols

and fault handling for recovering from
exceptions.

Long-running action transactions: Long-running
action (LRA) transactions are designed for
transactions with long duration. It does not
support ACID transactions but supports all or

nothing properties. It provides compensation
support for faults, but does not support two-
phase protocol.

Business process transactions: Business process
transaction model allows an activity or a group
of activities that is responsible for performing
tasks pertaining towards a specific business

domain. A business process transaction can be
structured as a collection of ACID or LRA
transactions depending upon the business
domains and process requirements.

WS-CF specification consists of four main
components (WS-CF, 2004): registration service
(that allows a participant to register with a

specific protocol), participant service (allows
defining operations performed by a participant
as a part of the protocol), registration context
(allows a participant to join an activity group),
and recovery service (provides capability for
transaction systems recover from failures).

Table 4 provides an overview of long-running
conversation properties supported by WS-CAF
specification. From the table, it can be noted
that WS-CAF provides full support for 6 out of 11
identified properties and provides partial support
for 3 other properties.

5. SPECIFICATION ANALYSIS DISCUSSION

The analysis presented in tables 1 to 4 indicates
that none of web service long-running
conversation specifications provide full support
for all 11 properties identified in section 3.

In regards to WS-CDL, service interactions are
represented in a peer-to-peer structure and not
at the individual participant level. WS-CDL

specification does not include a coordination
mechanism to coordinate interactions between
services. The purpose of WS-CDL specification is
to provide the ability to specify message

exchange sequences but not as an actual
implementations of long-running conversations.
The actual implementation is handled by the
participants involved in the conversation. WS-
CDL does not provide support for ACID and 2PC
protocol transactions. Thus, industry adopters
did not find WS-CDL specification to be useful.

WS-CDL specification stagnated at the candidate
recommendation stage and never progressed to
become a full W3C recommended standard.
Development of tools implementing WS-CDL was

a necessity. Due to lack of industry adoption and
tool development, WS-CDL standardization

process stagnated (Umapathy, Purao, & Bagby,
2012).

Pi4SOA is an eclipse based tool which provides a
graphical editor to write choreographies and
generate BPEL from those choreographies. The
tool can validate whether a developed
specification document conforms to WS-CDL

rules. However, it doesn’t identify any design
errors. Pi4SOA does not provide any tools to
verify whether the document is fault free (Caliz,
Umapathy, Sánchez-Ruíz, & Elfayoumy, 2011).
Given the lack of adequate tool support,
coordination mechanism, and transaction

protocol support, we can conclude that WS-CDL

specification is not a good fit for web service
long-running conversations.

WS-Coordination and WS-BusinessActivity
specifications are designed for handling business
transactions. Thus, they support many of the
identified properties. They do not provide full

support for ACID transactions and 2PC protocol,
as they have developed WS-AtomicTransaction
specification for that purpose. Thus, one can use
WS-Coordination with WS-AtomicTransaction for
those contexts. Depending upon the
requirements, multiple short-lived transactions
might have to be created to satisfy the long-

running conversation requirements.

WS-Coordination and WS-BusinessActivity does
not provide any support for managing and
monitoring peer-to-peer service interactions. For
long-running conversations in the context of
integrating disparate systems, having an ability

to model and monitor peer-to-peer service
interactions are important (Umapathy, 2009).
WS-CDL specification is designed for specifying
peer-to-peer service interactions, so far, we

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 9
www.aitp-edsig.org

have not identified any work that brings
together WS-CDL, WS-BusinessActivity, and WS-
Coordination. Despite lack of peer-to-peer
message exchange support, WS-Coordination

and WS-BusinessActivity is the best option for
developers as these specifications are OASIS
standards and some tool supports are available
for technical implementation.

BTP specifications provide more coverage than
other three specifications considered. Similar to
WS-BusinessActivity, BTP does not provide

support for managing and monitoring peer-to-
peer service interactions. However, the major
problem with BTP specification is that it never

became an OASIS standard. It remains as a
committee draft and the business transaction
committee which was responsible for developing

BTP was closed in 2006 due to the lack of
progress and inactivity with specification
development (BTPMailArchive, 2006). BTP does
not have enough activities in tools development
arena either. Java Open Transaction Manager
(JOTM)-BTP was last updated on 2004. Given
that BTP is not an OASIS standard and lack of

updated tool support, we can conclude that BTP
is not a viable option. It should be noted that
the combination of WS-Coordination, WS-
AtomicTransaction, and WS-BusinessActivity
provides coverage similar to BTP.

WS-CAF provides a layered implementation that

supports long running conversations and is

compatible with any transaction protocol
(Bunting et al., 2003a). The benefit of layered
implementation is that development can be
started with basic and move towards complex
implementation based on the requirements. This
framework breaks down the problem into layers

and hence the implementation is modularized
into three specifications. WS-Context provides
the basic context sharing mechanism and
defines the context as a web service. WS-TXM
defines semantics of each business transaction
which does not try to define everything globally
but makes model for each problem domain. WS-

CF defines coordinator for transaction models.
WS-CAF is designed to support both short-lived

and long-running conversations. However, many
of the properties made available for short-lived
transactions are not made available for long-
running conversations.

Major problem with WS-CAF is lack of progress

with the standardization process. Only WS-
Context was declared as an OASIS standard.
Both WS-TXM and WS-CF was not declared as
standards. Similarly, the lack of standardization

led to a lack of industry adoption and tool
development. Thus, there is no tool support for
WS-CAF, which makes it the least viable
specification for long-running conversations.

6. CONCLUSION

Long-running conversations are required in
cases where transactions are complex and
consist of a series of sub-transactions. Most of
the established companies rely upon long-
running conversations to provide their services.
A typical real world business process involves

dozens of activities with multiple participants
and several interactions between them.

Standards developed specifically for long-
running conversations should provide
infrastructure for interconnecting services and
orchestrating dependencies and interactions

between services.

A comprehensive review of web service
standards that support long-running
conversations is possible only when properties of
long-running conversations are known. We have
identified 11 properties related to long-running
conversations. We reviewed four relevant web

service specifications that support long-running
conversations. Our analysis reveals that two
specifications – WS-Coordination & WS-
BusinessActivity and BTP – have more coverage
for long-running conversations in comparison to

other specifications.

WS-Coordination & WS-BusinessActivity is a

better option than BTP as it is an OASIS
standard, and has adequate and up-to-date tool
support. Another limitation of BTP in comparison
to WS-Coordination & WS-BusinessActivity is
that BTP does not have an ability to provide
partial results. It is the responsibility of business

process designers to implement such
mechanism. This results in introducing new
transactions to get around the problem in case
of failure conditions. However, WS-
BusinessActivity provides the ability to see
results of completed tasks within business
transactions prior to the completion of the

transaction. In long-running conversations, a
transaction can span a long period of time
involving multiple participants and rely on the
outcomes of the task that is to be compensated.
Thus, partial results of tasks within a business
transaction prior to completion can be helpful in
determining appropriate business logic to

compensate and recover from a failure.

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 10
www.aitp-edsig.org

We conclude with a recommendation to use WS-
Coordination and WS-BusinessActivity for
implementing long-running conversations in the
context of web service based solutions. WS-

Coordination and WS-BusinessActivity does have
potential for further improvement. It does not
provide support for managing and monitoring
peer-to-peer interactions. Additional research
work is necessary for addressing this
requirement.

7. REFERENCES

Amazon-DevPay. (2014). Amazon DevPay

Desktop Product Authentication Process
Retrieved September 3, 2014, from
http://docs.aws.amazon.com/AmazonDevPa
y/latest/DevPayDeveloperGuide/DesktopOve

rallProcess.html

Booth, D., Haas, H., McCabe, F., Newcomer, E.,
Champion, M., Ferris, C., & Orchard, D.
(2004, 11 February 2004). Web Services
Architecture - W3C Working Group Note
Retrieved March 25, 2014, from
http://www.w3.org/TR/ws-arch/

Bowles, J., & Moschoyiannis, S. (2008). When
Things Go Wrong: Interrupting
Conversations. In J. L. Fiadeiro & P.

Inverardi (Eds.), Fundamental Approaches to
Software Engineering (Vol. 4961, pp. 131-
145). Berlin Heidelberg: Springer

BTPMailArchive. (2006, February 01). Plan to

close OASIS Business Transaction committee
Retrieved July 12, 2014, from
https://lists.oasis-
open.org/archives/business-
transaction/200602/msg00000.html

Bunting, D., Chapman, M., Hurley, O., Little, M.,

Mischkinsky, J., Newcomer, E., . . .
Swenson, K. (2003a, July 28). Web Services
Composite Application Framework (WS-CAF)
Primer Retrieved July 12, 2014, from

https://www.oasis-
open.org/committees/download.php/4343/W
S%EE%93%93CAF%20Primer.pdf

Bunting, D., Chapman, M., Hurley, O., Little, M.,
Mischkinsky, J., Newcomer, E., . . .
Swenson, K. (2003b, July 28). Web Services
Transaction Management (WS-TXM)
Retrieved July 11, 2014, from

http://xml.coverpages.org/WS-TXM-
200310.pdf

Caliz, E., Umapathy, K., Sánchez-Ruíz, A. J., &
Elfayoumy, S. A. (2011). Analyzing Web

Service Choreography Specifications Using
Colored Petri Nets. In H. Jain, A. Sinha & P.
Vitharana (Eds.), Service-Oriented
Perspectives in Design Science Research
(Vol. 6629, pp. 412-426). Berlin Heidelberg:
Springer

Ceponkus, A., Dalal, S., Fletcher, T., Furniss, P.,

Green, A., & Pope, B. (2002, 3 June).
Business Transaction Protocol Retrieved July

9, 2014, from https://www.oasis-
open.org/committees/download.php/1184/2
002-06-03.BTP_cttee_spec_1.0.pdf

Dalal, S., Temel, S., Little, M., Potts, M., &

Webber, J. (2003). Coordinating business
transactions on the Web. IEEE Internet
Computing, 7(1), 30-39. doi:
10.1109/mic.2003.1167337

Fredlund, L.-Å. (2006). Implementing WS-CDL.
Paper presented at the Spanish workshop on
Web Technologies, University of Santiago de

Compostela.

Hrastnik, P., & Winiwarter, W. (2004). An
Advanced Transaction Meta-Model for Web
Services Environments. Paper presented at
the Information Integration and Web-based
Applications & Services, Jakarta, Indonesia.

Jordan, D., & Evdemon, J. (2007, April 11). Web

Services Business Process Execution
Language (WS-BPEL) Version 2. Retrieved
July 5, 2014, from http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html

Kavantzas, N., Burdett, D., Ritzinger, G.,
Fletcher, T., Lafon, Y., & Barreto, C. (2005,

9 November). Web Services Choreography
Description Language (WS-CDL) Version 1.0

Candidate Recommendation. Retrieved July
5, 2014, from http://www.w3.org/TR/ws-
cdl-10/

Little, M. (2003). Transactions and Web
services. Communications of the ACM,

46(10), 49-54. doi:
10.1145/944217.944237

http://docs.aws.amazon.com/AmazonDevPay/latest/DevPayDeveloperGuide/DesktopOverallProcess.html
http://docs.aws.amazon.com/AmazonDevPay/latest/DevPayDeveloperGuide/DesktopOverallProcess.html
http://docs.aws.amazon.com/AmazonDevPay/latest/DevPayDeveloperGuide/DesktopOverallProcess.html
http://www.w3.org/TR/ws-arch/
http://www.oasis-open.org/committees/download.php/4343/WS%EE%93%93CAF%20Primer.pdf
http://www.oasis-open.org/committees/download.php/4343/WS%EE%93%93CAF%20Primer.pdf
http://www.oasis-open.org/committees/download.php/4343/WS%EE%93%93CAF%20Primer.pdf
http://xml.coverpages.org/WS-TXM-200310.pdf
http://xml.coverpages.org/WS-TXM-200310.pdf
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 11
www.aitp-edsig.org

Little, M., Maron, J., & Pavlik, G. (2004). Java
Transaction Processing: Design and
Implementation (1st ed.). Upper Saddle
River, NJ, USA: Prentice Hall.

Newcomer, E., Chapman, M., Little, M., Little,
M., Newcomer, E., & Pavlik, G. (2007, 2
April). Web Services Context Specification
(WS-Context) Retrieved July 11, 2014, from
http://docs.oasis-open.org/ws-caf/ws-
context/v1.0/OS/wsctx.html

Newcomer, E., Robinson, I., Feingold, M., &

Jeyaraman, R. (2009, 2 February 2009).
Web Services Coordination (WS-

Coordination) Version 1.2 Retrieved July 8,
2014, from http://docs.oasis-open.org/ws-
tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-
1.2-spec-os.html

Newcomer, E., Robinson, I., Freund, T., & Little,
M. (2007, 12 July). Web Services Business
Activity (WS-BusinessActivity) Version 1.1
Retrieved July 8, 2014, from
http://docs.oasis-open.org/ws-tx/wstx-
wsba-1.1-spec/wstx-wsba-1.1-spec.html

Newcomer, E., Robinson, I., Little, M., &

Wilkinson, A. (2009, 2 February). Web
Services Atomic Transaction (WS-

AtomicTransaction) Version 1.2 Retrieved
March 25, 2014, from http://docs.oasis-
open.org/ws-tx/wstx-wsat-1.2-spec-
os/wstx-wsat-1.2-spec-os.html

Papazoglou, M. P. (2003). Web Services and

Business Transactions. World Wide Web,
6(1), 49-91.

Razavi, A. R., Moschoyiannis, S. K., & Krause, P.
J. (2007, 21-23 Feb. 2007). A Coordination
Model for Distributed Transactions in Digital

Business EcoSystems. Paper presented at
the IEEE-IES Digital EcoSystems and
Technologies Conference, Cairns, Australia.

Schmit, B. A., & Dustdar, S. (2005, 19 July

2005). Towards transactional Web services.
Paper presented at the IEEE International
Conference on E-Commerce Technology
Workshops, Munich, Germany.

Umapathy, K. (2009). From Service
Conversation Models to WS-CDL. Paper
presented at the Americas Conference on

Information Systems (AMCIS), San
Francisco, California, USA.

Umapathy, K., Purao, S., & Bagby, J. (2012).
Empirical analysis of anticipatory
standardization processes: a case study.
Information Systems and E-Business

Management, 10(3), 325-350. doi:
10.1007/s10257-011-0169-1

WS-CAF. (2005). Web Services Composite
Application Framework (WS-CAF) Retrieved
March 25, 2014, from http://www.oasis-
open.org/committees/tc_home.php?wg_abbr
ev=ws-caf

WS-CF. (2004, December 22). Web Services

Coordination Framework Specification (WS-
CF) Retrieved July 11, 2014, from
https://www.oasis-
open.org/committees/download.php/10889/
WSCF-Working-12-22.pdf

WSCAF-XML. (2003). Web Services Composite

Applications Framework (WS-CAF)
Retrieved July 11, 2014, from
http://xml.coverpages.org/WSCAF-
Announce.html

http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec/wstx-wsba-1.1-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec/wstx-wsba-1.1-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os/wstx-wsat-1.2-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os/wstx-wsat-1.2-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os/wstx-wsat-1.2-spec-os.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
http://www.oasis-open.org/committees/download.php/10889/WSCF-Working-12-22.pdf
http://www.oasis-open.org/committees/download.php/10889/WSCF-Working-12-22.pdf
http://www.oasis-open.org/committees/download.php/10889/WSCF-Working-12-22.pdf
http://xml.coverpages.org/WSCAF-Announce.html
http://xml.coverpages.org/WSCAF-Announce.html

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 12
www.aitp-edsig.org

Appendices

Table 1. WS-CDL support for long-running conversations

Properties Support WS-CDL Elements Remarks

ACID
Properties

Partial
support

Consistency supported by workunit
element and isolation supported by
choreography element, but no support for
atomicity and durability

It should be noted that
WSCDL is not designed

for supporting
transactional systems.
Support for isolation and
consistency from a
message exchange
perspective not from the
transactional data

perspective.

Relaxed ACID
No
support

None

Fault Handling
Full
support

Workunit and Choreography

Faults can be handled by

creating exception
workunit within the
exceptionblock of a
choreography.

Coordination
Support

Partial
support

Choreography and coordination protocol

WS-CDL does define a
coordination protocol.

Participating applications
would have to come up
agreed upon coordination
protocol.

2PC Protocol
No
support

None

Arbitrary
Transaction
Models and
Semantics

Full
support

Not applicable

WS-CDL is domain and

transactional model
independent.

Series of
Message
Exchanges

Full
support

Activities

Ordering structure within
activities allows arranging
different basic activities in
a nested structure to
achieve an objective.

Multi-
Participant
Support

Full
support

Roletype, relationshipType, and
participantType.

Specified elements can be

collectively used to define
engagement among
multiple participants.

State

Information

Full

support
Variables

Variables can be used to
capture the state

information such as
observable changes of a
roleType.

Complements
WS-BPEL
specification

Full
support

Not applicable
WS-CDL functions on a
layer top of WS-BPEL.

Tool Support
Partial
support

Pi4SOA

(http://sourceforge.net/projects/pi4soa/),
last updated on April 25, 2013.

Supports only
development of WS-CDL
specification but not
executing it.

http://sourceforge.net/projects/pi4soa/

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 13
www.aitp-edsig.org

Table 2. WS-Coordination and WS-BusinessActivity support for long-running conversations

Long-Running Properties Support

WS-Coordination & WS-

BusinessActivity
Concept/Elements

Remarks

ACID Properties
Partial
support

Coordination types and
protocol from WS-
BusinessActivity

Provides weaker
support for isolation
and durability. It is

possible to use a
combination of shorter
WS-AtomicTransactions
to achieve full ACID
properties.

Relaxed ACID
Full

support

Coordination types and

protocol from WS-

BusinessActivity

Offers flexibility for

atomicity, isolation,

and durability.

Fault Handling
Full
support

Faults from WS-Coordination
Provides five different
preset fault message

Coordination Support
Full
support

Coordination service from
WS-Coordination

Supports coordination
between participants
via activation,
registration, and
coordination protocol
services.

2PC Protocol
No
support

Coordination service from
WS-Coordination

Participants can commit
immediately after an
activity

Arbitrary Transaction Models

and Semantics

Full

support
Not applicable

WS-BusinessActivity is
domain and

transactional model

independent.

Series of Message Exchanges
No
support

None

Only support pre-
defined messages for
coordination service
purposes, but does not

provide support for
application specific
message exchanges.

Multi-Participant Support
Full
support

Coordination service from
WS-Coordination

Allows multiple
participants to register
for a

coordinationcontext.

State Information
Full
support

Coordination protocol from
WS-BusinessActivity

Provides accepted
states for coordinator
and participant.

Complements WS-BPEL
specification

Full
support

Not applicable

Both specifications can

function independently
and along with WS-
BPEL

Tool Support
Full
support

JBoss Transactions –
Narayana

(http://narayana.jboss.org/),
last updated on June 2,
2014.

Provides full
implementation of WS-

Coordination, WS-
BusinessActivity, and
WS-AtomicTransaction

http://narayana.jboss.org/

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 14
www.aitp-edsig.org

Table 3. BTP support for long-running conversations

Long-Running

Properties
Support BTP Concept/Elements Remarks

ACID Properties
Full
support

Atoms

Supported via business
transactions consisting of
superior and inferior
nodes, with a superior

being atom coordinator.

Relaxed ACID
Full
support

Cohesions

Supported via business
transactions consisting of
superior and inferior
nodes, with superior
being cohesion

composer.

Fault Handling
Full

support
Recovery and failure handling

Handles communication,
network, and system
failures.

Coordination Support
Full
support

Business transaction (superior)

Superior nodes in
business transaction
trees act as a
coordinator.

2PC Protocol
Full
support

Business transaction

Two-phase outcome is
managed by

transitioning events
between superior and
inferior nodes.

Arbitrary Transaction
Models and Semantics

Full
support

Not applicable
BTP is domain and
transactional model

independent.

Series of Message
Exchanges

Partial
support

Message sequence

Provides guidance on
message exchange
sequence for transaction
coordination but not for
coordinating

conversations to achieve
an objective.

Multi-Participant
Support

Full
support

Business transaction trees

Superior and inferior
relationships allows
multiple participants to
take part in a

transaction.

State Information
Full
support

State tables

Provides state tables for
superior and inferior
roles along transitions
between states.

Complements WS-BPEL
specification

Full
support

Not applicable
BTP can function
independently and along
with WS-BPEL

Tool Support
Full

support

JOTM-BTP
(http://jotm.objectweb.org/jotm-

btp.html)
Last updated: July 1, 2004

BTP extension
implemented on top of

Java Open Transactions
Manager.

http://jotm.objectweb.org/jotm-btp.html
http://jotm.objectweb.org/jotm-btp.html

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3318

©2014 EDSIG (Education Special Interest Group of the AITP) Page 15
www.aitp-edsig.org

Table 4. WS-CAF support for long-running conversations

Long-Running Properties Support
WS-CAF

Concept/Elements
Remarks

ACID Properties
Full
support

ACID transaction model
from WS-TXM

Provides full
functionality of ACID
transactions.

Relaxed ACID
Full
support

Long running action (LRA)
from WS-TXM

Considers each activity
to be a LRA. Multiple
LRA’s are nested to
create a long-running
conversations.

Fault Handling
Full
support

Recovery and
compensator from WS-

TXM

Recovery is used for

ACID transactions and
compensator is used for

LRA.

Coordination Support
Full
support

Coordinator from WS-TXM
Provides separate
coordinator for ACID

and LRA transactions.

2PC Protocol
Partial
support

ACID transaction model
from WS-TXM

Supports 2PC protocol
only for ACID
transactions but not for
LRA.

Arbitrary Transaction Models
and Semantics

Partial
support

Business process
transactions from WS-

TXM

While ACID and LRA are
domain independent,
business process
transactions allows
creation of transaction
model for a domain.

Series of Message Exchanges
No
support

None

Provides accepted

coordinator exchanges
for ACID transactions,
but none for application
oriented coordinated
message exchanges.

Multi-Participant Support
Full
support

Not applicable
All three transaction
model supports multiple
participants.

State Information
Partial
support

LRA WS-TXM

Provides expected state

transitions but does not
provide ability to
manage state
information.

Complements WS-BPEL
specification

Full
support

Not applicable
WS-CAF can function
independently and

along with WS-BPEL

Tool Support
No
support

None

As key specifications
such as WS-TXM and
WS-CF were only
proposal that did not
become standards,

there was no tool
support for WS-CAF.

