
2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 1
www.aitp-edsig.org

Open Source Web Vulnerability Scanners:
The Cost Effective Choice?

Kinnaird McQuade

kinnaird_mcquade@marymount.edu
Information Technology Department

Marymount University
Arlington, VA 22207

Abstract

A plethora of tools are available to software testers so that software vulnerabilities can be mitigated
before product deployment. However, some of these tools are less effective than others. In particular,
open source dynamic web vulnerability scanners raise concerns including (1) total attack and input
vector support, (2) scan coverage of different application protocols, and (3) rate of required manual
detection versus automated detection. Additionally, what is often most attractive about proprietary

scanners is vendor support and frequent software maintenance bundled with a paid licensing
agreement. Indeed, the need for software support will ensure the longevity of proprietary dynamic
web vulnerability scanners on the market. However, a low-cost alternative is available and
recommended for web developers involved in agile development at small to medium sized
development firms; it is the finding of this research that when a combination of certain open source
tools are used in conjunction with a specific scanning strategy, there is a greater vulnerability

detection accuracy than solely using a single proprietary scanner.

Keywords: web vulnerability scanners, application security, dynamic tools, software development
lifecycle, quality assurance, open source

1. INTRODUCTION

Serious security vulnerabilities that an attacker
can exploit to take control over a website,
compromise user accounts, or access sensitive
data occur across every major industry in the
United States. During 2013, 96% of all web
applications tested by a major application

security firm had at least one serious security
vulnerability, and the medium number of

vulnerabilities per website was 14 (Cenzic, p. 3,
2014). Hackers are concentrating their efforts on
web applications where users enter sensitive
information such as forms, login pages, and
shopping carts to gain access into servers to find

personal and corporate information. Insecure
web applications jeopardize corporate and
government databases that are critical to the
financial health and economic stability of the
United States. The sooner a security

vulnerability is discovered and corrected, the

less likely that error will create more errors that
may result in significantly more effort to correct.

Application security specialists use a
combination of static, dynamic, and manual
testing techniques to perform security
assessments (OWASP, p.4, 2009). Reliance on

one technique for security testing before the
deployment phase in the software development

lifecycle would be a potentially disastrous
mistake. Therefore, application security firms
usually implement a holistic assessment using
these techniques as well as performing
architecture risk analysis (Stevens, 2011). In

order to understand the role of dynamic web
vulnerability scanners, it is important to
understand the difference between dynamic,
static, and manual testing.

mailto:kinnaird_mcquade@marymount.edu

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 2
www.aitp-edsig.org

To properly explain the difference between
dynamic and static testing: in the case example

of a “Hello World” Java application, static tools
would only analyze the Main.java class at the
program compile time, whereas dynamic tools
would not only scan the Main.java class, but
would also scan the entirety of the
accompanying Java Runtime Environment.
Gartner explains that dynamic scanners analyze

applications “in their running state during
operation or testing phases,” simulating
prepared attacks and analyzing the response to
determine the existence of vulnerabilities
(MacDonald & Feiman, 2014).

Burp Suite Professional is an excellent case

example of manual testing (Portswigger Web
Security, 2014). The web browser forwards all
incoming requests to Burp Proxy, which
intercepts the HTTPS traffic passing in either
direction and allows the user to analyze and
alter the GET and POST requests to profile or

tamper with the web application. Manual testing
requires a notable amount of training and
technical knowledge (Halfond, Choudhary, &
Orso, pg. 18, 2011).

There are certainly limitations to the usefulness
of dynamic web vulnerability scanners; they are

not the cure-all solution for vulnerability

detection. Cigital estimates that dynamic testing
only uncovers up to 12% of all discovered
software flaws, whereas Architecture Risk
Analysis can uncover up to 60% of discoveries
(Stevens, 2011). Amongst the assessment
techniques for detecting web application

vulnerabilities, dynamic scanning tools are much
less effective when large-scale security testing
occurs just prior to the deployment phase.
However, it has an indispensable role in the
security of the session, presentation, and
application layers of web applications and should

be used in conjunction with secure design
principles, static testing, and manual code
review. Brian W. Kernighan and Rob Pike explain
in The Practice of Programming (1999):

It’s tedious and unreliable to

do much testing by hand;

proper testing involves lots of
tests, lots of inputs, and lots
of comparisons of outputs.
Testing should therefore be
done by programs, which
don’t get tired or careless.

Mark G Graff and Kenneth R. van Wyk advise
that performing static, dynamic, and manual

testing at every stage of the development cycle
is paramount to securing the session,
presentation, and application layers of a web
application (Graff & van Wyk, p. 157, 2003).
The automation of these scanners increases the
time efficiency – and consequently, the cost-
effectiveness – of vulnerability detection – while

offering the promise of allowing developers to
focus on coding and design rather than having to
become nearly full-time security testers. These
scanners can be used in a local environment
before deployment. They should be used in
conjunction with static scanners, which is not

included in the scope of this paper. With training

and an understanding of the underlying behavior
in Web Application Vulnerability Scanners,
software developers in agile development groups
can perform security testing between
development cycles so that software errors are
discovered earlier, without sacrificing detection

accuracy.

Although the liberty of choice when selecting a
web vulnerability scanner (or any software, for
that matter) upon budget flexibility, the
scanner’s vulnerability detection features,
accuracy, coverage, and stability should be

considered just as strongly as the reality of

financial pressures. Indeed, the persistence of
severe software bugs can prove to be a much
higher cost than commercial licenses – but
making the best decision for an organization
involves much more than just asking the
question – “to spend or not to spend.”

In any purchase, high cost can deceive the
consumer into assuming that the product is of
higher quality. There are high-quality
commercial scanners on the market, but the fact
is that there is no silver bullet solution in this

area of Information Technology or any other.
Black-box vulnerability scanners do not cover all
features identified for comparison purposes by
WAVSEP. Proprietary Web Vulnerability Scanners

such as IBM Appscan and HP WebInspect, when
used in conjunction, cover the most categories.
However, they can also cost the user $20,000

per year and $10,000 a year per installation,
respectively. To complicate the issue, their
detection accuracy on vulnerable applications in
the 6 main vulnerabilities evaluated by WAVSEP
does not always have the highest detection
accuracy.

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 3
www.aitp-edsig.org

After analyzing and confirming his findings, this
author of this paper confirmed that a low-cost

combination of vulnerability scanning tools can
be used to support the same attack vectors with
a detection accuracy that is greater than or
equal to proprietary scanners. The finding of this
paper is most highly recommended for agile
developers wishing to test their modules for
security vulnerabilities before entering another

iteration cycle.

2. LITERATURE REVIEW

The existing research that will be discussed in
this section examines the cost-effectiveness of

different Web Application Vulnerability Scanners,

the limitations of these dynamic scanners, and
perspective regarding the commercial methods
of providing product evaluation for potential
customers.

Analyzing the Accuracy and Time Costs of

Web Application Security Scanners
In Larry Suto’s follow-up to his 2007 paper, he
generalized the web application testing
community into two groups. He explains that
Group One uses scanners in a “point and shoot”
manner, relies on the scanner’s crawler and
automation to exercise the site’s functionality

within minimal or no human guidance, while

Group Two believes that scanners should be an
adjunct to human testing and only used to grab
the easy vulnerabilities, or “low hanging fruit”
(Suto, p. 13, 2010).

Why Johnny Can’t Pentest: An Analysis of

Black-box Web Vulnerability Scanners
In their 2010 work, Doupe, Cova, and Vigna
explain that web application scanners are
essentially comprised of three main modules: a
crawler, an attacker, and an analysis module
(Doupe et. al, p. 3, 2010). During their

research, they created the WackoPicko Web Site
– a purposefully vulnerable picture sharing site –
which is now distributed on OWASP’s Broken
Web Applications Virtual Machine. All of their

Web Application Vulnerability Scanners were
commercial tools, with the exception of Grendel-
Scan, w3af, and Paros. Their research generated

three strong conclusions:

(1) Support for well-known, pervasive
technology (such as JavaScript, Flash,
etc.) should be improved.

(2) More sophisticated algorithms are
needed to perform “deep” crawling and

track the state of the application under
test.

(3) More research is warranted to automate
the detection of application logic
vulnerabilities.

Similarly to Suto’s 2010 paper, they assert that
vulnerability scanner technology is “far from
being point-and-click tools to be used by

anybody” and that “web application black-box
security scanners require a sophisticated
understanding of the application under test and
of the limitations of the tool in order to be
effective” (Doupe et. al., p. 20, 2010). Their
final conclusion is that there is “no strong

correlation between the cost of the scanner and

functionality provided as some of the free or
very cost-effective scanners performed as well
as scanners that cost thousands of dollars”
(Doupe et. al., p. 20, 2010)

The most interesting part about their well-

earned conclusion is their perspective that an
intimate understanding of the target application
is mandatory in order to achieve useful results.
It is important that developers are involved in
the dynamic testing process for maximum
effectiveness.

Avoiding the Test Site Fallacy

Veracode, a Massachusetts-based application
security company known for their static code
analysis engine, produced a white paper in 2012
that sought to explain why purchasers of
proprietary web vulnerability scanners “should
not gauge the abilities and effectiveness of a

particular scanner by only looking at the results
from scanning public test sites” (Dawson, 2012).
In their evaluation, they addressed five sites for
analysis, produced by a few prominent scanner
vendors. The test sites for IBM Appscan,
NTOSpider, HP WebInspect, and Acunetix were

included in their evaluation. Veracode criticized
these closed-source sites for possessing
unrealistic or fake vulnerabilities, unrealistic
form validation or checks, missing vulnerability

coverage, and for hiding these issues from the
user. From their own testing of the site, they
provide convincing evidence of these

shortcomings from each individual site.

Although Veracode’s alarming attack on the
vendors of proprietary scanners raises many
questions about the true capabilities of these
scanners, it does not lessen the industry-wide
attraction to proprietary scanners. It does,

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 4
www.aitp-edsig.org

however, indicate the need for third-party
evaluations providing comparative analysis on

the scanners in question.

3. EXISTING EVALUATION METHODS

One of the most popular technologies regarding
Web Application Vulnerabilities is the Broken
Web Apps Project, produced by the OWASP

Foundation and distributed as a Linux Virtual
Machine. It is a collection of training
applications, intentionally vulnerable
applications, outdated versions of real
vulnerable applications, applications for testing
tools only (including WAVSEP), and vulnerability

demonstration pages. The most well-known of

these web apps is WebGoat, an application
security training web app that offers over 30
lessons dealing with various vulnerabilities.

Gartner’s Magic Quadrant for Application
Security Testing offers a qualitative evaluation of

the commercial vendors in the Web Application
Security Market. Their evaluation criteria focuses
on the support structure between the scanner’s
vendor and their customer, drawing their
evidence from the collection of surveys from
customers, responses from vendors, and
hundreds of inquiries regarding the scanners

throughout 2013-2014. Customer experience,

marketing strategy, and completeness of
company vision were among the comparison
points. This report is especially helpful for
companies who intend on purchasing a license
and expect to use this software frequently.

The Web Application Vulnerability Scanner
Evaluation Project (WAVSEP) is a yearly
benchmark produced by Shay Chen, a widely
respected application security researcher, which
tests the vulnerability detection accuracy of 63
Black Box Web Application Vulnerability

Scanners and discusses their capabilities. In
addition to the benchmark, Shay Chen has also
published a feature comparison between all the
scanners, the numbers and types of Vulnerability

Detection Features, and the detection accuracy
of 6 software weakness types (5 of which are in
the OWASP Top 10). One of the most helpful

work products from WAVSEP for consumers is
the visual, understandable comparison of all the
scanners so that the consumer can use the data
for their own analysis.

Web Application Security Consortium produced a
set of evaluation criteria in 2008 (WASSEC) that

grades web application scanners on their ability
to effectively test web applications and identify

vulnerabilities. It covers areas such as crawling,
parsing, session handling, testing, and reporting.
The goal, similar to Shay Chen’s WAVSEP
project, is a vendor-neutral document produced
to:

(1) Provide scanner users with the tools

they need for conducting a detailed
evaluation and making an informed
decision about which web application
scanner(s) to choose;

(2) Provide scanner developers with a list of
capabilities to compare their tools

against to help them create a roadmap

of future enhancements.

4. MAPPING THE SUBSTITUTIONS

The first requirement for determining the proper
combination of scanners is that the maximum

amount of input vectors and attack vectors
should be covered so that most of the target
application can be scanned. The recommended
combination of open source substitutions has
been mapped in Appendix 2.

The following tools are recommended as a result

of this evaluation:

1. Burp Suite Professional - $300 per year;

low-cost proprietary.
2. IRONWASP – Open Source
3. Zed Attack Proxy (ZAP) – Open Source
4. Arachni – Open Source

5. W3af – Open Source.

It should be noted that w3af was not included
for evaluation in this study. Its detection
accuracy in the WAVSEP evaluation was equal to
or less than the detection accuracy of the

highest-performing open source scanners in
each vulnerability category. It is, however, a
highly regarded web vulnerability scanner in the
open source penetration testing community. Its

exploitation features after vulnerability scanning
are more extensible than some of the
recommended tools in this study. However, this

study focused on vulnerability detection, not
exploitation. It was decided for this reason to
not include w3af in the results of this paper.
IRONWASP is a powerful open source web
vulnerability scanner that offers plugin
compatibility with both Python and Ruby,
making it an attractive open source scanner for

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 5
www.aitp-edsig.org

those wishing to make their own scanners or
customize the tool with their own plugins

(Kuppan, 2014). It is very easy to use and offers
some interactive scan capabilities that are
similar to Burp Suite.

Zed Attack Proxy (ZAP) is noticeably similar to
Burp Suite Professional and doubles as a
scanner with the help of the Plug-n-Hack Mozilla

Firefox plugin (OWASP Zed Attack Proxy Project,
2014). The design is clean, the tool is
lightweight, and it is strong in its detection
accuracy. It is not as automated as the Arachni
web user interface and does not have the
cleanest reporting tool, but it is clearly a

powerful open source scanner

Arachni is a very high-performing, easy-to-use,
modular web vulnerability scanner written in
Ruby (Laskos, 2014). It offers a web user
interface that permits multiple users to manage
scans and collaborate afterwards. It is very

quick and its HTML report presentation is very
clean. The web user interface is very
customizable but unfortunately the interactive
capabilities for manual testing are reserved for
the command line version only. However, the
available scan options are so customizable that
it would be ideal for a software developer

wishing for a “point and click” dynamic scanning

experience.

There are multiple attack vectors not supported
by the recommended combination of tools in this
study. However, these attack vectors are either
rarely implemented issues or are so vendor-

specific that manual and static testing is the only
reliable or realistic way to find a vulnerability. As
indicated by the visually significant gap in input
vector support (see Appendix 1), most
proprietary scanners do not even support these
areas.

The data below highlights his findings in six
areas:

(1) Old, Backup, and Unreferenced Files
(BACKUP)

(2) Path traversal/Local File Inclusion (LFI)

(3) Unvalidated Redirects (REDIRECT)
(4) Reflected Cross Site Scripting (RXSS)
(5) SQL Injection (SQLi)
(6) Remote File Inclusion (RFI)

These first three are the areas where open
source stands out above the proprietary

software in detection accuracy; in the last group
of three, open source programs are equal in

detection accuracy.

Figure 1. Results adapted from WAVSEP.
A visual representation of the vulnerability
detection from the WAVSEP 2014 benchmark
can be seen in Figure 1 above.

Figure 2. Results adapted from WAVSEP.

The recommended open source combination

performs well in each one of these vulnerability
detection results. In the last four vulnerability
groups, open source tools have the same
detection accuracy as their proprietary
counterparts – 100%. Surprisingly, open source

A
ra

ch
n

i IR
O

N
W

A
SP

IR
O

N
W

A
SP

A
ra

ch
n

i

IR
O

N
W

A
SP

ZA
P

A
p

p
Sc

an

B
u

rp
 S

u
it

e
P

ro

A
cu

n
et

ix

A
p

p
Sc

an

W
eb

In
sp

ec
t

A
cu

n
et

ix

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Detection Accuracy

Open Source WVS
High-cost Proprietary WVS

WAVSEP Detection Accuracy by tool

 Open
Source or
Low-cost

scanner

High-cost
Proprietary
scanner

Remote File
Inclusion

100%

Arachni

100%

IBM
Appscan

SQL
Detection

100%

SQLMap,
Burp Suite

100%

Acunetix
WebInspect

Reflected
XSS

100%

IRONWASP

100%

Acunetix,
AppScan,
Netsparker

Path
Traversal/LFI

100%

Arachni

100%

AppScan

Unvalidated
Redirect

73.33%

IRONWASP

50%

WebInspect

Old, Backup,
and
Unreferenced
Files

38.04%

ZAP

32.61%

Acunetix

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 6
www.aitp-edsig.org

outperforms the highest performing proprietary
scanners in the first two categories –

Unreferenced Backup files and Unvalidated
Redirects.

The detection accuracy for these vulnerabilities
can be seen above in Figure 2. The detection
accuracy is listed in the same cell as the scanner
name, subdivided by a dashed line. The

recommended open source tools are indicated
by the grey column.

The WAVSEP v1.5 evaluation “emulates different
common test case scenarios for generic
technologies.” Shay Chen explains his reasoning

for the WAVSEP evaluation structure further in

his 2014 evaluation:

A scanner that is not accurate enough
will not be able to identify many
exposures, and might classify non-
vulnerable entry points as vulnerable.

These tests aim to assess how good is
each tool at detecting the vulnerabilities
it claims to support, in a supported input
vector, which is located in a known entry
point, without any restrictions that can
prevent the tool from operating properly
(Chen, 2014).

To put it simply – while each of these scanners
can detect more flaws than the vulnerabilities
that were evaluated, the test results speak to
the overall accuracy of the tool itself when the
tests are put on an equal playing field. To
support this point, this paper includes an

independent evaluation of the recommended
combination of tools below using the Java
Enterprise Edition 7 evaluation.

5. EXPERIMENTAL EVALUATION

This research used Duke’s Forest, a Web
Application provided by Oracle as part of their
Java EE 7 tutorial, to evaluate the effectiveness
of the recommended combination of free or low-

cost web vulnerability scanners. Duke’s Forest is
an e-commerce application provided by Oracle
as a case study for understanding the full

capabilities of Java Enterprise Edition 7
(Jendrock, et. al, 2014). This final example in
the Java EE 7 Tutorial acts as a store that
provides gardening supplies to online shoppers.
The complete web application includes a product
catalog, customer self-registration, and a
shopping cart; it also offers shipment and

payment functionalities that can be managed
through a separate administrative portal.

Design
Duke’s Forest is a simple e-commerce
application that interacts with the user through
the Duke’s Store interface. A non-administrative
user of Duke’s Store is able to browse the
product catalog for foresting supplies, add items

to their shopping cart, specify the shipment
process, and manage their basic account
information.

Authentication and Security
Duke’s Forest uses HTTP Basic Authentication

and JAAS (Java Authentication and Authorization

Service) to authenticate the user. Security
constraints are built in to differentiate between
customers and administrators. Single Sign-On
(SSO) is used to simplify the administrator’s
browsing experience in navigating between the
Duke’s Store and Duke’s Shipment portals.

Browsing the product catalog
The foresting product categories include Plants,
Food, Services, and Tools. Users can browse the
product catalog, filter their searches according
to product categories, and view product details.

Signing up as a new customer

While the product catalog can be browsed
without user registration, Duke’s Store requires
user registration in order to add items to the
shopping cart and make purchases. The
password value must be at least 7 characters in
length. There are already two user names

included in the database upon website
deployment – jack@example.com and
robert@example.com – and they both have the
password, 1234.

Shopping Cart and Checking Out

A registered user on Duke’s Store can purchase
foresting supplies. The purchase follows a
process in which a shopping cart is filled with the
foresting items to be purchased. After the

foresting supplies are added to the cart, the sum
price is calculated, and the order is placed.
Orders exceeding $1,000 are not permitted

because the Payment web service denies orders
over that limit. Once the order is placed, the
user must wait for the administrative user to
approve the shipping process.

Viewing order status

mailto:jack@example.com
mailto:robert@example.com

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 7
www.aitp-edsig.org

After the checkout process is complete, a
message appears to the user: “Your order is

being processed. Check the Orders page to see
the status of your order.”

Administrative Interface
Duke’s Forest allocates a portion of the website
for administrators only. The Administrator page
is used to perform back office operations, such

as the creation, editing, updating, and deletion
of products, categories, customers, and user
groups.

Vulnerabilities
Cross-Site Scripting: The ImageServlet.java

class in the /com/forest/web/util package is

vulnerable to Cross-Site Scripting (OWASP,
2014c). Almost every other java class in the
program utilizes the data validation method
provided by Java Enterprise Edition, but this
particular class simply does not include the
mechanism. This could be due to an error by the

programmer.

SQL Injection: the JSESSIONID cookie, which is
displayed in cleartext in the URL, is vulnerable to
SQL Injection attacks (OWASP, 2014a). By
appending a basic blind SQL injection statement
such as 1’ OR ‘1’=’1 as encoded URL into the

cookie, different responses are returned,

indicating that the input is being incorporated
into the SQL query incorrectly. Upon further
manual testing, this can be exploited to gain
access to more database information.

Cleartext Credentials: The store page, login

page, customer registration page, and
index.html page contain a login form which is
submitted over clear-text HTTP headers.
Manipulating the GET and POST requests with an
intercepting proxy such as Zed Attack Proxy or
Burp Suite Proxy can disclose passwords to a

hacker performing a man-in-the-middle attack
such as ARP poisoning (OWASP, 2014b).

Insecure Cookies: Forms with sensitive content,

like passwords, must be sent over HTTPS. The
login page, strangely, has enabled the HTTP-
only flag for the web cookie – exposing any

legitimate user to credential theft, man-in-the-
middle attacks, and cross-site request forgery
(OWASP, 2014b).

Session token in URL: The session ID is
transmitted in the URL when the user logs in to
the website in certain cases. In the case of a

man-in-the-middle attack, an attacker could use
the session ID to create a fake browser cookie in

order to gain administrator or user access to the
system (OWASP, 2014b).

Password Auto-enabled: Disabling the
autocomplete function in the login form will limit
the user’s browser from remembering user
credentials that are entered into HTML forms.

The stored credentials can be captured by an
attacker who gains physical or remote access to
the computer. If the administrator’s computer
were hacked, for example, the security of the
company’s website would be jeopardized
(OWASP, 2014b).

Missing anti-Cross-Site Request Forgery token:
There is no synchronized token mechanism in
the user form data validation mechanisms for
guaranteeing the freshness of the submitted
data. This unique anti-CSRF token is the
suggested standard for all secure J2EE

applications and should exist in all web
application elements that can affect business
logic (Alur, p. 77, 2013). An attacker could
impersonate a legitimate user of the web
application by exploiting this vulnerability with
the help of the aforementioned HTTP-only flag-
enabled cookies (OWASP, 2014f).

Results
SQL Injection: Burp Suite was the only scanner
to detect the SQL Injection vulnerabilities by
appending an encoded injection to the
JSESSIONID cookie and inside the form
submissions. It detected 4 of these cases.

Cross-Site Scripting: None of the scanners were
able to detect this vulnerability. This
vulnerability was only discovered by the
researcher after inspecting the code line-by-line
for instances of any code missing proper data

validation mechanisms. Indeed, there is only so
much that an automated black-box vulnerability
scanner can do to discover vulnerabilities. As
Suto mentioned – these dynamic scanners are

meant to discover the “low hanging fruit” (Suto,
p. 13, 2010.) White-box code inspection, manual
black-box testing, and architecture analysis

must all play a part in discovering these
vulnerabilities.

Cleartext Credentials: This was peculiar.
Acunetix was not able to detect an instance of
broken authentication in this case, even when
the HTTP Sniffer function (separate from the

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 8
www.aitp-edsig.org

overall scanner module) was configured to look
for this vulnerability. Burp Suite and IRONWASP

were able to detect all 19 instances of this
vulnerability.

Insecure Cookies: Burp Suite outperformed all
scanners in this case, producing 20 unique
cases; Acunetix discovered only one instance,
and none of the other scanners were able to

detect the insecure cookies.

Session token in URL: Surprisingly, Acunetix,
ZAP, and Arachni did not find this vulnerability
that was so easy to spot with the human eye.
Burp Suite and IRONWASP were able to see that

the JESSESSIONID was transmitted in the URL

bar and found all 3 instances.

Password auto-enabled: This simple security
misconfiguration was detected in full by Burp
Suite and ZAP – 12 instances; Acunetix and
Arachni discovered 8 apiece and IRONWASP

found none.

Missing anti-Cross-Site Request Forgery token:
Acunetix, ZAP, and Arachni all tied for maximum
detection on this vulnerability, finding 8
instances of HTML forms without Cross-Site
Request Forgery protection. Burp Suite

discovered one instance, and IRONWASP found

none.

Java EE 7 applications rely primarily on security
policy files for configuring authentication,
authorization, and encryption. Java EE was
designed with the intention of “shielding

application developers from the complexity of
implementing security features” (Jendrock, p.
48, 2014). It also “provides standard login
mechanisms so that application developers do
not have to implement these mechanisms in
their applications” (Jendrock, p. 48, 2014).

Security restraints must be defined to specify
authorization and authentication controls. Duke’s
Forest was implemented with default security
settings provided by Java EE 7 mechanisms,

which ignores the 5th item on the OWASP Top 10
list of 2013 Vulnerabilities – Security
Misconfiguration (OWASP, 2014). The methods

provided by Java EE might not be sufficient for
each individual web application. For instance,
data validation for ZIP codes should be different
than forum-like text boxes that are meant to
accept HTML input. In this case, dynamic
scanners are helpful to developers that might
not have extensive experience implementing the

data validation methods provided by Java EE for
custom applications.

The vulnerability detection rate of these
recommended web vulnerability scanners on
other realistic web applications may be different,
depending on the application. This is apparent
when comparing the results of the web
vulnerability scanners in the context of Duke’s

Forest, and Chen’s WAVSEP test cases.
However, the scan results on the Duke’s Forest
application signify that open source scanners not
only present a cost-effective option to
developers and testers – they are a viable option
instead of proprietary scanners in the cases

mentioned above.

In any software development company, the cost
of these scanners must be considered along with
the detection accuracy. Burp Suite offers a low-
cost solution to companies that are more
unwilling to purchase the expensive software

license that proprietary scanners require for one
computer. Acunetix’s licensing options range
between approximately $3,000-12,000 per year.
HP WebInspect offers rates starting at $1,500
for one IP address and one computer, with rising
licensing costs thereafter. IBM Appscan’s pricing
ranges between approximately $10,000-38,000

per year (Chen, 2014).

Dynamic web vulnerability scanners should
never be the only solution for discovering
software security flaws, but using open source
web vulnerability scanners earlier in the
software development lifecycle will increase

early detection rates, lower security assessment
workloads by using automated tools, and
decrease total cost over the product’s lifecycle
by limiting expensive licensing costs.

6. CONCLUSION

Dynamic web vulnerability scanners should
never be the only solution for discovering
software security flaws, but using open source

web vulnerability scanners earlier in the
software development lifecycle will increase
early detection rates, lower security assessment

workloads performed before application
deployment, and decrease total cost over the
product’s lifecycle by limiting expensive licensing
costs.

This paper presented a low-cost alternative
based on open source tools to high-cost

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 9
www.aitp-edsig.org

proprietary black-box web vulnerability scanners
and supported this alternative combination of

tools with the results of scans on the Duke’s
Forest application and scans performed by Shay
Chen’s WAVSEP yearly benchmark. The results
of this paper’s evaluation clearly show:

 The detection accuracy with these tools
is more accurate than the detection

accuracy with proprietary web
vulnerability scanners in the test case
provided by this evaluation.

 The input vector and attack vector
support from these scanners can cover
nearly every area of support by

proprietary web vulnerability scanners

We also hope that future research and
development will create an aggregate tool for
integrating select functions from these
recommended web vulnerability scanners using
the APIs provided by the application developers.

An aggregate tool utilizing the strongest
capabilities of these open source products will
create a web vulnerability scanner that is truly
more powerful than the sum of its parts.

7. ACKNOWLEDGEMENTS

The research for this paper was financially

supported by the National Science Foundation,
under grant no. 1241440. In developing the
ideas presented here, I have received helpful
input from Neil Bahadur, Ashley Corbett, and
Lavelle Perry. I also thank my three faculty
mentors – Dr. Diane Murphy, Dr. Ali Bicak, and

Dr. Michelle Liu – for guiding me in this process.

8. REFERENCES

Bennetts, S. (2014, May 21). Zed Attack Proxy

(Version 2.3.1) [Computer software].

Retrieved July 1, 2014, from
https://www.owasp.org/index.php/OWASP_
Zed_Attack_Proxy_Project

Cenzic, Inc. (2014). Cenzic Application
Vulnerability Trends Report [White Paper].

Chen, S. (2014). Security Tools Benchmarking:
WAVSEP Web Application Scanner
Benchmark 2014.

Dawson, I. (2012). Broken Logic: Avoiding the

Test Site Fallacy. [White paper].

Doupe, A., Cova, M., & Vigna, G. (2010). Why
Johnny Can't Pentest: An Analysis of Black-

box Web Vulnerability Scanners. 7th
International Conference on Detection of
Intrusions and Malware, and Vulnerability
Assessment, 1-21. Retrieved June 31, 2014.

Graff, M., & van Wyk, K.R. (2003). Secure

coding: Principles and practices. San

Francisco, CA: O'Reilly.

Halfond, W. G., Choudhary, S. R., & Orso, A.

(2011). Improving Penetration Testing
through Static and Dynamic Analysis.
Software Testing, Verification and Reliability.

doi: 10.1002/stvr.450

Kernighan, B. W., & Pike, R. (1999). The

practice of programming. Reading, MA:
Addison-Wesley.

Kuppan, L. (2014, April 15). IRONWASP (Version

0.9.8.4) [Computer software]. Retrieved
September 15, 2014, from
https://ironwasp.org/about.html

Laskos, T. (2014, September 7). Arachni Web

Application Security Scanner Framework
(Version 1.0.1) [Computer software].

Retrieved September 20, 2014, from

http://www.arachni-scanner.com/

Jendrock, E., Cervera-Navarro, R., Evans, I.,

Haase, K., Markito, W., & Oracle Corp.
(2014, January 1). Java EE 7 Tutorial.

MacDonald, N., & Feiman, J. (2014). Magic
Quadrant for Application Security Testing
(Rep.). Stamford, CT: Gartner.

Malks, D., & Crupi, J. (2013). Synchronizer or

Deja vu Token. In D. Alur (Author), Core

J2EE Patterns: Best Practices and Design
Strategies (pp. 77-87). Upper Saddle River,
NJ: Prentice Hall.

OWASP Foundation. (2009). Code Review Guide
(Vol. 1.1). Bel Air, MD: OWASP Foundation.

OWASP Foundation. (2014a). A1 - Injection.
Retrieved September 3, 2014, from
https://www.owasp.org/index.php/Top_10_
2013-A1-Injection

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 10
www.aitp-edsig.org

OWASP Foundation. (2014b). A2 – Broken
Authentication and Session Management.

Retrieved September 3, 2014, from
https://www.owasp.org/index.php/Top_10_
2013- A2-
Broken_Authentication_and_Session_Manag
ement

OWASP Foundation. (2014c). A3 – Cross Site

Scripting. Retrieved September 3, 2014,
from
https://www.owasp.org/index.php/Top_10_
2013-A3-Cross-Site_Scripting_(XSS)

OWASP Foundation. (2014d). A6 – Sensitive

Data Exposure. Retrieved September 3,

2014, from
https://www.owasp.org/index.php/Top_10_
2013-A6-Sensitive_Data_Exposure

OWASP Foundation. (2014e). A7 – Missing

Function Level Access Control. Retrieved

September 3, 2014, from
https://www.owasp.org/index.php/Top_10_
2013-A7-
Missing_Function_Level_Access_Control

OWASP Foundation. (2014f). A8 – Cross Site

Request Forgery. Retrieved September 3,

2014, from

https://www.owasp.org/index.php/Top_10_
2013-A8-Cross-
Site_Request_Forgery_(CSRF)

OWASP Foundation. (2014g). WebGoat Project
(Version 6.0) [Computer software].

Retrieved September 24, 2014, from
https://www.owasp.org/index.php/Category
%3AOWASP_WebGoat_Project

Open Web Application Security Project. (2013).
OWASP Top Ten Project. Retrieved from
https://www.owasp.org/index.php/Category
%3AOWASP_Top_Ten_Project

Portswigger Web Security. (2014, July 22). Burp

Suite Professional (Version 1.6.03)
[Computer software].

Stevens, J., & Cigital. (2011). When All You

Have is a Hammer. [White paper].

Suto, L. (2010). Analyzing the Accuracy and

Time Costs of Web Application Security
Scanners. Analyzing the Accuracy and Time
Costs of Web Application Security Scanners,
1-20. [White paper].

Tung, Y., Tseng, S., Shih, J., & Shan, S. (2013).

A cost-effective approach to evaluating
security vulnerability scanner. Paper
presented at the Network Operations and
Management Symposium (APNOMS), 2013
15th Asia-Pacific.

Web Application Security Scanner Evaluation
Criteria. (2009). Web Application Security
Consortium, 1-26.

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 11
www.aitp-edsig.org

APPENDIX 1

Duke’s Forest Scan Results

Vulnerability Acunetix
Burp
Suite IRONWASP ZAP W3AF Arachni

1 Application Error Message 13
 2 HTML Form w/o CSRF

Protection 8 1

8

8

3 User Credentials in Clear text 3 19 19
 4 Clickjacking 1 14 14 14

14

5 OPTIONS method is enabled 1
 6 Possible sensitive files 22
 7 Session cookie without

secure flag reset 1 20
 8 Content type is not specified 7

 9 GHDB: Outlook PST File 1
 10 GHDB: Outlook Postscript

File 1
 11 Password input: auto-

complete enabled 8 12

12

8

12 SQL Injection 0 4
 13 Session token in URL

3 3

 14 Cross Domain Referrer
Leakage

1 1

 15 Email Addresses disclosed

1
 16 Web Browser XSS Protection

not enabled

1

 Key:

Burp Suite (low cost)

Open Source

Highest Detection Count

False Positive Vulnerabilities

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 12
www.aitp-edsig.org

APPENDIX 2

Attack Vector Support. Adapted from WAVSEP.

Key:

 = supported by Burp Suite

 = supported by recommended open source

scanner

 = supported by proprietary

 = not supported

2014 Proceedings of the Conference for Information Systems Applied Research ISSN: 2167-1508
Baltimore, Maryland USA v7 n3319

©2014 EDSIG (Education Special Interest Group of the AITP) Page 13
www.aitp-edsig.org

APPENDIX 3

 Input Vector Support. Adapted from WAVSEP.

Key:

 = supported by Burp Suite

 = supported by recommended open source

scanner

 = supported by proprietary

 = not supported

