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Abstract  

 
The need to accurately predict the terminal ballistics of kinetic energy projectiles in 
Vulnerability/Lethality models is of paramount importance to the Department of Defense.  An artificial 

neural network was trained on a set of 1,625 data points to predict perforation, residual velocity, and 

residual mass of a kinetic energy projectile impacting a homogeneous-monolithic-metallic target.  The 
capability of that neural network is analyzed against a phenomenological model that is currently used 
by the Department of Defense for modeling the terminal ballistics of kinetic energy projectiles.  
Results show that the neural network model is superior in speed and accuracy to the current 
phenomenological model. 
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1. INTRODUCTION 
 
This paper presents research efforts related to 
the selection, development, and performance of 

an Artificial Neural Network (ANN) to predict the 
terminal ballistics of Kinetic Energy Projectiles 

(KEPs).  This work extends research previously 
published by Auten & Hammell (2014a, 2014b). 
 
When the Department of Defense (DoD) 
acquires weapon systems for use in the 

battlefield by U.S. soldiers, the systems need to 
be safe and effective.  In order to ensure that 
they are safe and effective, the DoD tests the 
system and uses modeling and simulation to 
augment the results from the tests.  The DoD 
requires that Acquisition Category (ACAT) I 

systems undergo Live-Fire Test & Evaluation 
(LFT&E) (U.S. Department of Defense, 2008) to 
determine the Vulnerability/Lethality (V/L) of 
that system.  Simulation models are validated to 

those live-fire tests and then accredited so that 
they can be used for future studies involving 

that system.  An important part of V/L 
simulation models is the terminal ballistics 
models that are used to determine if a threat 
has perforated a particular target and what the 
residual capability of that threat is after 

perforation. 
 
The purpose of this paper is to present 
preliminary results from the training of an 
Artificial Neural Network (ANN) for the prediction 
of perforation of a monolithic metallic target 
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plate.  These results are the first part of a two-
step model that is being developed to predict the 
terminal ballistics of Kinetic Energy Projectiles 
(KEPs).  After prediction perforation has been 

achieved, the next step will be to develop an 
ANN that can predict the residual capabilities of 
a KEP after perforation of a target plate. 
 
Two important factors in the current work 
include issues with finding data to train the ANN 
with and choosing a model to which the ANN’s 

performance can be compared. Those two topics 
will now be briefly discussed in this introduction. 
 
Data Issues 
During previous research towards constructing 

better models, it became very apparent that 

more data was needed to ensure a better fit for 
the neural network (Auten & Hammell, 2014a).  
The task of collecting more data has been 
hampered by missing data points, a lack of 
publically available data, poor data recording 
practices, and a lack of funding to generate new 
test data. 

 
Recently a database of over 7000 test data 
records was acquired.  The database will require 
a large effort to make all of the data usable, but 
it was possible to clean over 1500 of the records 
and add them to the database for this research.  
The total count of records available went from 

530 to 2125.  The additional data provided a 

better spread over the problem space and for 
the case of perforation outcome it also provided 
a better distribution of outcomes. 
 
In the early database of 530 data points the 

percent of outcomes that were perforation was 
82%.  With the current database the percent of 
outcomes that were perforation is lowered to 
57%.  This all resulted in a more robust training 
set to use for training the ANN. 
 
Segletes Hybrid Rod Model 

A study was performed by the U.S. Army 
Research Laboratory (ARL) to evaluate the 
performance of algorithms that are used to 
model the terminal ballistics of kinetic energy 

projectiles in Vulnerability/Lethality models.  The 
Segletes hybrid rod model (Segletes, 2000) was 
selected as performing the best across all of the 

possible scenarios that would likely be 
encountered in a Vulnerability/Lethality (V/L) 
model (Auten, 2012). 
 
Given the performance of the Segletes hybrid 
rod model in the U.S. ARL study, it was chosen 

as the model to compare against the artificial 

neural network that was developed as part of 
this research effort. 
 
The remainder of the paper is organized as 

follows:  Section 2 describes the process used to 
develop the ANN for this research.  Section 3 
describes an analysis of the simulation results of 
both models run on a test data set.  Section 4 
presents conclusions, followed by a discussion 
related to future research. 

 

2.  MODEL DEVELOPMENT PROCESS 
 
This section will provide an overview of the 
process used to develop the ANN model.  The 
first section will provide an overview of the data 

used by the model, the second section will 

outline the process used to select the topology 
of the ANN, and the final section will outline the 
process used to train the chosen topology. 
 
Data Metrics and Preparation 
The neural network has 11 inputs that consist of 
striking velocity, total yaw, rod density, rod 

length, rod diameter, rod hardness, target 
density, target hardness, target thickness, 
target obliquity, and target Young’s modulus.  
The outputs consist of perforation (-0.9 = non-
perforation and 0.9 = perforation), residual 
velocity, and residual mass.  Information 
regarding the inputs and outputs can be found in 

Table 1. 

 

 
Table 1. Database statistics 

 

Prior to being used by the neural network, all of 
the data were normalized to fall between the 
values of -0.9 and 0.9.  Those values were 
chosen because the activation function used in 

the neural network is the hyperbolic tangent 
function.  If the chosen target values “were set 

to the asymptotes of the sigmoid it can drive the 
weights to infinity, cause outlier data to produce 
very large gradients due to the large weights, 
and produce binary outputs even when 
incorrect” (Lawrence, Giles, & Fong, 2000). 
 
The 2125 data points in the database were 

divided into 3 subsets of data:  The training set 
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consisted of 1625 data points, the validation set 
consisted of 181 data points, and the test set 
consisted of 319 data points. 
 

The training set was used to train the ANN, the 
validation set was used to determine when 
training needed to stop, and the test set was 
used to determine the performance of the ANN 
against “new” data. 
 
Model Selection 

To provide a good estimate of the generalized 
validation error of the topologies tested during 
the model selection phase, k-fold cross 
validation was used.  In k-fold cross validation 
the data is partitioned into k nearly equal sized 

folds.  There are k ANNs that are trained on k - 

1 folds of the data; for each ANN a different fold 
is left out.  The fold that was left out during 
training is used to calculate the error of that 
ANN.  The approximate generalized error of that 
ANN topology is the average of all k ANNs 
(Refaeilzadeh, Tang, and Liu, 2009).  Using k-
fold cross validation to determine the 

generalized error gives a better prediction of 
how well a given topology will perform against 
new information (Zhang, Hu, Patuwo, and Indro, 
1999).  Since k-fold cross validation was used 
during this phase, the training and validation 
sets were combined prior to being split into k 
folds.  For this research a value of 10 was used 

for k based on the research of Gonzalex-

Carrasco, Garcia-Crespo, Ruiz-Mezcua, and 
Lopez-Cuadrado (2011). 
 
In an effort to test a broad range of possible 
topologies and ensure a good sampling for each 

one, 90 different topologies were run with 10 
samples each to determine the best generalized 
topology. 
 
The topology that was selected with the lowest 
generalized validation error consisted of two 
hidden layers having 8 neurons in the first 

hidden layer and 10 neurons in the second 
hidden layer (see figure 1).  
 
Model Training 

Before starting the training process with the 
selected topology, a genetic algorithm was used 
to provide good starting weights for the 

network. 
 
During the model training process, the selected 
topology was trained on the training data set 
and the validation set was used for early 
stopping. 

 

 
Figure 1. Neural network topology 

 
Three strategies were used to stop the training 
of the ANN: Maximum iterations, minimum 
improvement, and generalization loss. 

 

The first strategy used was a maximum 
iterations threshold. This strategy was used to 
limit the total number of training epochs to at 
most 100,000 epochs. 
 

The second strategy used was a minimum 
improvement threshold with a count of epochs. 
This strategy considered any epoch that did not 
provide an improvement to the error greater 
than 0.00000001 as a bad epoch.  The number 
of bad epochs allowed was set to 1000.  If 1000 
bad epochs occurred then training of the ANN 

was halted and the optimal ANN up until that 
point was used.  If at any point prior to the bad 
epochs limit an improvement better than the 
threshold occurred, than the number of bad 

epochs was reset to 0. 
 
The final strategy used was a generalization loss 

threshold.  Generalization loss is the percent 
difference between the validation error (Eva) and 
the optimal error (Eopt) at epoch t (see equation 
1).  The optimal error is the best validation error 
up to epoch t (Prechelt, 2012). 
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 𝐺𝐿(𝑡) = 100 ∗ (
𝐸𝑣𝑎(𝑡)

𝐸𝑜𝑝𝑡(𝑡)
− 1) (1) 

A value of 7% was used for the threshold of 
generalization loss. While training the ANN, 
weights that resulted in the optimal error are 
saved.  Upon reaching the 7% threshold training 

of the ANN would halt and the optimal ANN up to 
that point was used. 
 
For completeness 10 samples of the chosen 
network topology were trained and the best one 
was selected to go forward to the comparison 
phase.  Even with the use of a genetic algorithm 

for seeding the network weights, the subsample 
runs varied in their final errors from 0.226115 to 
0.249743 and varied in number of epochs from 
11,711 to 22,956.  The generalization loss 

threshold strategy was used for early stopping 
for 6 of the 10 subsamples and the minimum 
improvement threshold strategy was used for 

the remaining 4. 
 

3.  RESULTS 
 

For both models if the prediction of perforation 
would result in a non-perforation, the residual 

mass and residual velocity are assumed to be 
equal to 0.  This assumption is used due to the 
way that most residual data are recorded.  In a 
test event, if the projectile does not perforate 
the target and is embedded in the target plate, 
typically the velocity and mass will be recorded 

as a 0. 

 
Perforation Prediction 
The first output to be compared is the prediction 
of perforation.  Figures 2 and 3 show the 
breakdown of perforation predictions for the 
ANN and the Segletes model.  Out of 319 data 
points in the test dataset, the ANN correctly 

predicted the perforation outcome for 246 of the 
data points (77%).  The Segletes model 
correctly predicted the perforation outcome for 
199 of the data points (62%). 
 
   

 
Figure 2.  Perforation prediction of the ANN 

 

 
Figure 3.  Perforation prediction of Segletes model 

 
For cases where the test resulted in a non-
perforation, but the model predicted perforation, 
the outcome is recorded as an incorrect 

prediction of perforation.  The ANN had this 

occur 37 times (12%) and the Segletes model 
had it occur 86 times (27%). 
 
For cases where the test resulted in a 
perforation, but the model predicted non-

perforation, the outcome is recorded as an 
incorrect prediction of non-perforation.  The ANN 
had this occur 36 times (11%) and the Segletes 
model had it occur 34 times (11%). 
 
The perforation prediction statistics for all three 
data sets are provided in Table 2. Analyzing the 

results for the test set of data shows that the 
ANN model outperforms the Segletes model in 
every category except the false negative rate; 
the Segletes model was only about 3% better 

for that case. 
 

Table 2. Statistics for perforation prediction 

 
Earlier versions of ANNs trained on the smaller 

data set of 530 data points suffered from a 
higher false positive rate than false negative 
rate. This is due to the previously mentioned 

            ANN          Segletes 
Training  

MSE 0.531356 1.202289 
Accuracy 75.1% 62.9% 
Precision 77.7% 63.9% 

False Positive 29.9% 60.1% 
False Negative 21.2% 19.8% 

Validation  
MSE 0.46554 1.020331 

Accuracy 78.5% 68.5% 
Precision 84.1% 71.3% 

False Positive 24.6% 53.6% 
False Negative 19.6% 17.9% 

Test  
MSE 0.972121 1.289906 

Accuracy 71.5% 60.2% 
Precision 75.7% 62.4% 

False Positive 32.6% 63.7% 
False Negative 25.5% 22.3% 
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high ratio of perforation to non-perforation 
outcomes (82%) in the old database.  
 
With the new database ratio of perforation to 

non-perforation outcomes equal to 57% the ANN 
is able to train on a more balanced data set 
which leads to better overall results. 
 
The accuracy, precision, false positive, and false 
negative rates for the current ANN trained on 
the new database, which we will call ANNnew and 

a previous ANN trained on the old database, 
which we will call ANNold (Auten & Hammell, 
2014b) are shown in table 3. 
 
ANNold was trained strictly as a classification ANN 

to determine perforation outcome and was 

trained only on the old database of 530 data 
points.  It also had 1 less input than ANNnew, 
because the Young’s modulus of the target plate 
material was not included in ANNold. 
 

           ANNold          ANNnew 
Training  

Accuracy 95.1% 75.1% 
Precision 95.2% 77.7% 

False Positive 25.4% 29.9% 
False Negative 0.9% 21.2% 

Validation  
Accuracy 91.1% 78.5% 
Precision 90.0% 84.1% 

False Positive 44.4% 24.6% 
False Negative 0.0% 19.6% 

Test  
Accuracy 92.5% 71.5% 
Precision 91.0% 75.7% 

False Positive 31.6% 32.6% 
False Negative 0.0% 25.5% 

Table 3.  Comparison of ANN trained on old database 

and ANN trained on new database 

 
At first glance it would seem that ANNold 
performed very well at predicting perforation 
compared to ANNnew.  The main problem with 
ANNold was that it had trained to “learn” the bias 
in the perforation outcomes in the data.  ANNold 
was accurate 90% of time when predicting an 

outcome, but that was because it was mostly 
predicting perforation which occurred in the data 

82% of the time.  This can be seen by the 
extremely low false negative rates and the fairly 
significant false positive rates for ANNold.  
Although the accuracy for ANNnew is less than 
ANNold, the false positive and false negative 

rates are much more balanced and are 
manageable. 
 
Velocity and Mass Prediction 
In U.S. Army V/L simulation models velocity and 
mass are important for determining damage to a 

component that is hit by a projectile, so 
accurately predicting residual velocity and mass 
is crucial.  They are also important for future 
applications of this ANN where those residual 

values will be fed back into the ANN to predict 
new residual values for the next armor with 
which the projectile interacts. 
 

 
Figure 4. Correlation plot of residual velocity, 

observed and predicted outcomes for ANN 

 

 
Figure 5. Correlation plot of residual velocity, actual 

and predicted outcomes for Segletes 

 

Figures 4 and 5 show correlation plots of actual 
test outcomes against model predictions for 
residual velocity by the ANN and Segletes 
models.  Figures 6 and 7 show correlation plots 
of actual test outcomes against model 
predictions for residual mass by the ANN and 
Segletes models.  Cases of incorrect perforation 

predictions can be seen on the axes of the plots 
(where either actual or predicted equal 0).  In a 

perfect fit scenario, all of the plotted data points 
would fall on a line with slope equal to 1 and y-
intercept equal to 0. 
 

Careful review of figures 4 and 5 reveal what we 
have already determined in the perforation 
prediction section of this paper.  The ANN is 
better at predicting perforation than the 
Segletes model; this can be seen by the number 
of plotted points that fall on the axes in figure 5 



2015 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508 
Wilmington, North Carolina USA  v8 n3667 
__________________________________________________________________________________________________________________________ 

_________________________________________________ 
©2015 ISCAP (Information Systems & Computing Academic Professionals) Page 6 
http://iscap.info 

compared to figure 4.  There is also a better 
trend in figure 4 when compared to figure 5; the 
black line in the figures is a linear fit to the 
plotted points and the black line in figure 4 is 

much closer to the ideal red line than the one in 
figure 5.  This demonstrates that the ANN 
predicts residual velocity better than the 
Segletes model. 
 

 
Figure 6. Correlation plot of residual mass, actual 

and predicted outcomes for ANN 

 

 
Figure 7.  Correlation plot of residual mass, actual 

and predicted outcomes for Segletes 

 
As with the residual velocity plots, careful review 
of figures 6 and 7 reveals again that the ANN is 
better at predicting residual mass than the 
Segletes model.  The trend for the residual mass 
predictions is not as clear as it was with the 
residual velocity plots.  The ANN has a better 

trend in figure 6 when compared to figure 7, but 
only up to about 30g on the x-axis.  For values 

greater than 30g on the x-axis it appears that 
the ANN under-predicts residual mass and that 
Segletes over-predicts residual mass.  The ANN 
model still has an overall better trend than the 

Segletes model even with the slight under-
prediction after 30g. 
 
The following plots (figures 8-11) make use of 
percent error, which is defined in equation 2.  
Percent error is undefined for any cases where 

the observed value is 0.  That includes cases 
where predicted is 0 or some other value.  For 
the cases where both predicted and observed 
equal 0, the percent error is recorded as 0%.  

For those cases where observed is 0 and 
predicted is greater than 0, they are not 
included in the graphs displaying %error.  In 
order to ensure that the distribution of %error is 
not skewed, cases where predicted is 0 and 
observed is greater than 0 are also not included.  
Both of those two definitions coincide with 

incorrect prediction of perforation and incorrect 
prediction of non-perforation. 
 

 %𝐸𝑟𝑟𝑜𝑟 = 100 ∗ (
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
) (2) 

 

The %Error distributions for the ANN and 
Segletes for velocity can be seen in figures 8 
and 9 respectively and mass can be seen in 
figures 10 and 11 respectively. 

 

 
Figure 8. Distribution of %Error for ANN prediction of 

velocity 
 

 
Figure 9.  Distribution of %Error for Segletes 

prediction of velocity 
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Comparing the velocity plots of both models 
shows that although both models are fairly well 
centered on the 0% error bin, the Segletes 
model has a significant amount of predictions 

that had an error greater than 100%. 
 

Comparing the mass plots of both models shows 
a similar result as that of the velocity plot, both 
models are fairly well centered on the 0% error 
bin, but the Segletes model has a significant 
amount of predictions that had an error greater 

than 100%. 
 

 
Figure 10. Distribution of %Error for ANN prediction of 

mass 
 

 
Figure 11. Distribution of %Error for Segletes 

prediction of mass 

 

The previous probability distribution functions 
can be plotted as cumulative distribution 
functions with the addition of another bin that 
accounts for previously left out incorrect 
perforation predictions.  That bin is placed at the 
far right because of the importance of correct 
prediction of perforation (i.e. an incorrect 

prediction for perforation is being treated as 

worse than a %error greater than 100%).  The 
cumulative distribution function of both models 
for velocity is shown in figure 12 and mass is 
shown in figure 13. 

 
The cumulative distribution functions of %error 
show a much clearer picture of the improved 
performance of the ANN over the Segletes 
model.  A perfect model would jump to 100% in 
the first bin of <10% error, meaning that 100% 
of the data analyzed had an error less than 

10%.  So a model with a cumulative percentage 
rate that is always higher than another model 
can be thought of as always having a higher 
percent of data analyzed that fall in a lower 
percent error bin. 

 

For both the velocity and mass distributions in 
figures 12 and 13, the ANN model always has a 
higher percentage of data analyzed with less 
than the given %error for that bin than the 
Segletes model.  This shows that the ANN model 
is superior at predicting residual velocity and 
mass when compared to the Segletes model. 

 

 
Figure 12. Cumulative distribution of %error of ANN 

and Segletes for velocity 

 

 
Figure 13. Cumulative distribution of %error of ANN 

and Segletes for mass  

 
Model Run-Time 
An analysis using a U.S. Army VL simulation can 
require the running of well over 1 million 

shotlines and on each shotline a terminal 
ballistics model such as Segletes or this ANN 
would need to be called multiple times.  Given 
the number of times that either of these models 
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would need to be called for an analysis, run-time 
is of extreme importance. 
After training of the ANN is completed the 
calculation of its predictions is a simple 

mathematical equation, but the Segletes model 
is a numerical integration model and therefore 
requires more time to run. 
 
All of the ANN runs took less than 0.1 ms to run 
where the Segletes model took anywhere from 
0.2ms to 2.3ms (see figure 14).  The average 

run-time (over the entire database of test data 
consisting of 2125 data points) for the ANN was 
0.017ms and the average run-time for the 
Segletes model was 1.042ms.  This can also be 
thought of as the ANN processes 58 data points 

per millisecond and the Segletes model can 

process roughly 1 data point per millisecond. 
  

 
Figure 14. Distribution of run-times for both models 

 

4.  CONCLUSIONS 
 
The results outlined above demonstrate that: 
 
1) The ANN is superior to the Segletes model at 
predicting perforation of kinetic energy 

projectiles against homogeneous metallic armor 
plates. 
 
2) The ANN is also superior at predicting the 
residual velocity and mass of the kinetic energy 
projectile after it perforates the armor plate. 
 

3) With an average run-time that is roughly 60 
times faster than the Segletes model, the ANN is 

far superior at processing data. 
 
Given the three conclusions listed above, the 
ANN model developed as part of this research 
would provide the Department of Defense a 

model that is faster and more accurate than the 
best current model.  This type of model would 
be very effective in use in larger models such as 
Vulnerability/Lethality simulation models and in 
agent-based force-on-force models where speed 
and accuracy are both important. 

 
Although the ANN outperformed the Segletes 
model against this dataset, the Segletes model 
still has value for use in analyses where 

modeling the phenomenological processes can 
provide the analyst increased awareness of what 
is occurring during the ballistic interaction.  
However, if accuracy and speed is important, 
and increased fidelity is not required, the ANN is 
the better choice for the analysis. 
 

More research is required to see how well the 
ANN can predict ballistic outcomes for targets 
that consist of more than one plate of armor.  
For those types of targets the ANN can be run 
iteratively against the plates of the target.  The 

predicted residual values from one plate would 

be fed into the ANN for the next plate of armor. 
The final predicted residual velocity and mass 
coming out of the rear plate would be compared 
to the test results to determine overall 
prediction performance of the ANN. 
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