
2017 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
Austin, Texas USA v10 n4518
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 1
http://iscap.info

Protecting IoT from Mirai botnets;

IoT device hardening

Charles Frank

Charles.frank@trojans.dsu.edu

Cory Nance

Cory.nance@trojans.dsu.edu

Sam Jarocki
Samuel.jarocki@trojans.dsu.edu

Dr. Wayne E Pauli

Wayne.pauli@dsu.edu

Dakota State University
Madison, SD

Abstract

This paper details Mirai botnet capabilities, technical components, and original research in realistic
hardening measures for protecting Internet of Things (IoT) devices. Mirai, and its various strains
embody the consummate actions of nefarious, wide-spreading botnets capable of proliferating to

hundreds of thousands of potentially vulnerable Internet of Things (IoT) devices to act as a delivery
mechanism for a Distributed Denial of Service (DDoS) attack towards one or more service providing
Internet applications. The authors present both a hardening and prevention script, executed on the
actual device, to protect devices from becoming malicious bots, as part of the Mirai botnet. In a
controlled test environment, the hardening script was shown to be successful in preventing the initial
Mirai infection on the device and the detection script was successful in recognizing and stopping an

already existing infection on the Mirai bot. The conclusion describes possible research directions.

Keywords: IoT, botnet, Mirai, OS hardening, OS security6

1. INTRODUCTION

Currently, there is an estimated 15 billion
Internet of Things (IoT) devices. By 2020, the
estimate is projected to be as high as 50 billion

connected IoT devices (Higginbotham S, 2016).
IoT is comprised of the internetworking of
physical devices, smart devices, smart buildings,
smart cars, medical device, etc.; embedded with
electronics, software, sensors, actuators, and
internet connectivity. These objects collect and
exchange data (Internet of Things, n.d.). Clearly,

there are many IoT devices and that number will
grow exponentially over time (Higginbotham S,

2016).

The value of IoT comes from the data it

generates. With real-time data analytics, IoT
provides insights and improvements (Gorlich, K.,
2016). There are many applications for IoT,
ranging from non-critical applications, such as
wearables (e.g. smart watches), to crucial
applications, such as in healthcare (e.g. IoT smart
medical device dispensing medicine to hospital

mailto:Charles.frank@trojans.dsu.edu
mailto:Cory.nance@trojans.dsu.edu
mailto:Samuel.jarocki@trojans.dsu.edu
mailto:Wayne.pauli@dsu.edu

2017 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
Austin, Texas USA v10 n4518
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 2
http://iscap.info

patients (IoT Applications with Examples, 2016),

to even military and battlefield applications
(Goldstein, P., n.d.). Evidentially, IoT applications
play an integrated role in people’s everyday lives.

Depending upon the IoT application, security
could be paramount.

2. BOTNET HISTORY

In 1999, Sub7 (Gamblin, J., 2017) and Prettypark
(Hariston K., Rozman, N., etal, n.d.) constructed

an IRC channel to gain control of victim machines
to issue malicious commands. In 2000, Global
Threat Bot (GTBot) was based on the mIRC client
(Fandom, n.d.). GTBot could run custom scripts
in response to IRC events and had access to TCP
and UDP sockets, allowing for Denial of Service

(DoS) attacks. Also, GTBot scanned for Sub7
infected hosts and updated them to GTbots
(Global Threat Bot, 2017).

In 2002 notable evolutions in botnet technology
was observed with SDBot and Agobot. SDBot’s
source code was released to the public via the

author; thus many subsequent bots include code
or ideas from SDBot (Trend Micro,
“Countermeasures..., n.d.). Agobot introduced
the concept of a modular, staged attack, as
payloads were delivered sequentially (Trend
Micro, “SDBOT”, n.d.). The initial attack installed
a back door and used stealth techniques to avoid

detection from antivirus. These early botnets
concentrated on remote control and information

theft (Global Threat Bot, 2017).

More advanced bot functionality began to set the
stage for greater data exfiltration and service

disruption and circumvention techniques. In 2003
Spybot (aka Rbot) included keylogging,
information stealing, spam, and DDoS capabilities
(Argobot, n.d.). The command and control (CNC)
was conducted over IRC. Sinit was the first peer-
to-peer botnet (Dark Reading, n.d.). Polybot
employed polymorphism to avoid detection by

changing its appearance as often as possible
(Global Threat Bot, 2017). Later in 2005, Bagle
and Bobax were the first spamming botnets, and
the malware Mytob was a mailing worm based

upon MyDoom and SDbot (Trendmicro,
WORM_SPYBOT.A, n.d.); enabling large botnets
distributed across many infected PCs. Soon after,

in 2006, another invasive spamming botnet
RuStock (Trendmicro, CounterMeasures Security,
Privacy & Trust, n.d.) appeared, utilizing self-
propagation. Undoubtedly, in a short period of
time, botnets started to become more
sophisticated in attacking, evading detection, and

multiplying.

ZeuS is an information stealing tool that first

appeared in 2010. ZeuS quickly became the most
widely used information stealing botnet. Part of
its appeal is that it includes simple point and click

interfaces for managing infected machines. Zeus
is regularly updated and new versions have been
offered for sale, while older versions have been
distributed online free of charge (Trendmicro,
WORM_SPYBOT.A, n.d.). At this point, not only
have botnets gotten more sophisticated in their
method of infection via email spamming but they

are now concerned with ease of use via point and
click interfaces.

2014 witnessed many high-profile attacks; from
an internet-connected refrigerator participating in
a botnet sending over 750,000 spam emails

(Rapid7, IOT Seeker, n.d.) to a DDoS attack of
IoT devices successfully affecting availability of
Sony and Microsoft's gaming networks
Constantin, L., 2017). In December 2016,

researchers from Imperva detected a colossal
650 Gbps DDoS attack generated by a new IoT
botnet, named Leet (Simonroses.com, n.d.).

In April of 2017, Unit 42 researchers have
identified a new variant of the IoT Linux botnet

Tsunami, coined Amnesia (Jia, Y., Xiao, C., &
Zheng, C., 2017). Amnesia targets an unpatched
remote code execution vulnerability that was
publicly disclosed in March 2016 in DVR (digital
video recorder) devices made by TVT Digital. It
is believed Amnesia is the first Linux malware to

adopt virtual machine evasion techniques to

defeat malware analysis sandboxes. Currently,
Amnesia has not been used to mount large scale
attacks.

Shown in Fig. 1, Wikipedia (Zeus, n.d.) presents
a historical list of botnets, with many of the
botnets described in the previous paragraphs.

Currently, there are thousands of botnets that the
Shadowserver Foundation is tracking (Botnet,
n.d.). Typically, Trend Micro tracks tens of
millions of infected PCs that are being used to
send spam; and that does not include all the other
infected PCs that are being used for information

theft, DDoS or other botnet crimes

(Trendmicro.eu, 2017).

3. MIRAI BOTNET

The Mirai botnet wreaked havoc on the internet in
2016. The botnet takes advantage of unsecured

IoT devices that leave administrative channels
(e.g. telnet/SSH) open and use well known,
factory default, usernames and passwords. Mirai
scans the internet looking for new systems to

2017 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
Austin, Texas USA v10 n4518
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 3
http://iscap.info

infest, such as those manufactured by XiongMai

Technologies that had default passwords set in
their firmware (prior to September 2015) which
cannot be changed unless upgraded. These

devices are especially vulnerable to the Mirai
botnet, as well as other exploit payloads due to
their insecure default firmware (Buntinx J.P.,
2016). Mirai’s size makes it a very powerful
botnet capable of producing massive throughput.
For example, in September of 2016, the Mirai
botnet is reported to have generated 620 Gbps in

its DDoS attack on “Kreb’s on Security” (Mirai,
n.d.).

In October 2016, the source code for Mirai was

leaked on HackForums (ShadowServer, n.d.).
This release has helped security researchers to

better understand Mirai capabilities and how it
works. Mirai performs wide-ranging scans of IP
addresses with the intentions of locating IoT
devices that can be remotely accessed via easily
guessable login credentials, usually factory

default usernames and passwords (e.g.,
admin/admin) (ShadowServer, n.d.).

Mirai is using several functions from the Linux
kernel API related to network operations. For
example, in killer.c there is a function named
killer_init that kills several services: telnet (port

23), ssh (port 22) and http (port 80) to prevent
others from accessing the compromised IoT
device. (Femerling, 2016).

Mirai comes with a list of default/weak passwords
to perform brute force attacks on IoT devices

[29]. Mirai’s attack function enables it to launch
HTTP floods and various network (OSI layer 3-4)
DDoS attacks. For network layer assaults, Mirai
is capable of launching GRE IP and GRE ETH
floods, SYN and ACK floods, STOMP (Simple Text
Oriented Message Protocol) floods, DNS floods
and UDP flood attacks (ShadowServer, n.d.).

There is even a “don’t mess with” list for IP
addresses (e.g. the United States Post Office,
Dept. of Defense, and private IP space) and
several killer scripts meant to eradicate other
worms and trojans [29]. Since the Mirai source

code has been leaked, many variants have been

detected. A few interesting variants include: the
use of a DGA (Domain Generation Algorithm)
Incapsula.com, n.d.) and trojanized Windows
payloads that incorporate Mirai scanning
(cfengine.com, n.d.).

To conclude, each bot scans for new bots to infect
using the default list of usernames and
passwords. Once a bot finds a new vulnerable

device it forwards the IP, port, credentials, and

device architecture to the ScanListener.

Figure 2 Mirai Architecture

The ScanListener does the part of actually

infecting the device. Once the IoT device has
been infected with the Mirai malware via telnet

and has become a bot, the CNC will communicate
with the bot to execute DDOS attacks.

4. BOTNET DETECTION AND PREVENTION

Recent studies from the INSuRE (Information

Security Research and Education) research group
have focused on IoT botnets (INSuRE, Online). In
Kovacoc and Vargas (n.d.), an analysis of current
botnets and botnet operations, command and
control infrastructure, and detection approaches
were presented. Rudesh (n.d.) determines the
characteristics of Thingbots, identifies IoT devices

that can participate in the botnet and determines

a detection, isolation, and mitigation technique
for Thingbots by reviewing existing techniques.
Another project detected IoT botnets through the
spreading of the hosts which have the botnet
detection tool installed on them. Baki presents
peer-to-peer botnet detection through Machine

Learning (ML) (n.d.) (Abay, C., Hagel, L., &
Williams, K., n.d.) isolates and analyzes a Zeus
botnet node, and (Freeman, L., Hickey, R., etal,

2017 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
Austin, Texas USA v10 n4518
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 4
http://iscap.info

n.d.) develops a testbed for botnet

countermeasures.

There are also efforts to secure IoT devices. One

novel approach is using blockchain technology
where security software on the kernel of the IoT
device could receive a blacklist of IP addresses
over the blockchain. (Faife, C., n.d.). Another
study found a stack buffer overflow vulnerability
in the Mirai malware that allows the malware to
be crashed on the bot (Leyden, J., 2016). Lastly,

an anti-worm "nematode" has been developed
that could help to patch vulnerable devices and to
help prevent Mirai bots (Pauli, D., 2016).

Fig. 3 illustrates international research conducted
by a team from Japan and Germany. The team,

led by Yin Minn Pa Pa, and Shogo Suzuki authored
an article on analyzing the rise of IoT
compromises. The increasing threats against IoT
devices show that telnet-based attacks that
target IoT devices have skyrocketed since 2014
(Pa Pa, Y, Suzuki, S, etal, n.d.). With analysis
from IotPOT, a honeypot for IoT, Fig. 3 indicates

that there are at least four distinct DDoS malware
families targeting telnet-enabled IoT devices.

Many of the patterns have common command
sequences such as checking for the victim’s shell
and then eventually downloading the malicious
binary. Compared to the other patterns, ZORRO

3 contained many more command sequences per

day.

ShadowServer (Botnet, n.d.) suggests the best
way to mitigate botnets is to keep them from
forming. Botnets would not be a threat if they

could not propagate and infect vast numbers of
systems. IoT Seeker (Seals, T., n.d.) scans for
IoT devices which could easily be hijacked by
botnets. Methods of preventing IoT botnets from
spreading are suggested by stopping the use of
default/generic passwords and disabling all
remote (WAN) access to your devices

(ShadowServer, n.d.). CFEngine (Arghire, I.,
n.d.) significantly reduces end-point attack
surface by: (1) closing any unnecessary services,
especially remote access services, (2) changing

factory default user accounts, (3) removing
unnecessary software, and (4) avoiding legacy
protocols and password logins. With the recent

advent of trojanized Windows payloads that
incorporate Mirai scanning and reporting within
an intranet environment (cfengine.com, n.d.), the
security offered by rejecting and blocking publicly
accessible ports/services is diminished.

5. PROPOSED IOT HARDENING SCRIPTS

Two scripts are proposed for hardening IoT
devices from Mirai: (1) antimirai.py and (2)

secure.sh [69]. antimirai.py is a python script
that makes various changes on the IoT device,
such as: (1) changing the default password (2)
creating a busybox wrapper to filter out applets
used by Mirai (3) changing the logon banner and
(4) implementing /etc/host.deny. These changes
attempt to prevent the infection of Mirai on the

IoT device.

Shown in Fig. 4, replace_busybox() will copy the
existing busybox binary, on the IoT device, to
tmp_busybox. Then, a busybox wrapper is
created and the commands that are executed by

the Mirai loader to upload the malware are
detected [words="telnet wget tftp"]. In an
attempt to prevent Mirai infection, these
commands will return a success [0], even though
the commands are prevented from being
executed on the actual IoT device.

Shown in Fig. 5, the change_passwd_telnet()
method will generate a new random password for
the administrator of the IoT device. Lastly,
upload_run_script() will upload and run the
secure.sh script. secure.sh is a script that
detects Mirai infections and reacts by stopping the
Mirai malware from running.

Fig. 6 shows secure.sh, a busybox ash (Almquist

shell) script. Once a bot is infected with Mirai, it
opens a connection back to the CNC server on
port 23 and also runs 3 processes with the same
randomly generated name. This script works by

checking /proc/net/tcp for a socket that has a
remote connection to port 23 (0x17). It then
locates the PID of the socket. With the socket’s
PID, the script locates the process’s name and
then sends the SIGKILL signal to each process
with the same name, effectively stopping the
infection and any communication with the CNC

server.

In conclusion, antimiarai.py is a python script to
harden the IoT device from Mirai infections. Not

only will antimaria.py make configuration
changes that prevent Mirai infections but it will
also upload secure.sh. The script secure.sh is an

ash script that will continuously check for an
indication of the Mirai malware running. Once
Mirai is found to be running, it is immediately
killed. This combination of scripts should prevent
an IoT device from becoming a part of the Mirai
botnet.

2017 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
Austin, Texas USA v10 n4518
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 5
http://iscap.info

6. TESTING ENVIRONMENT

The testing environment runs in virtual machines
(VMs) on an isolated private network. It consists

of two VMs. One houses the CNC and loader,
while the other represents a vulnerable Linux-
based IoT device. The vulnerable VM is running
Ubuntu 14.04 with busybox, is configured with a
default username and password, and is running
busybox’s telnetd on port 23. For each test, the
loader was manually executed to attempt Mirai

infections against the vulnerable VM.

Figure 7 Testing Server Equipment

As shown above, the Mirai server and the
simulated IoT Device contain private IP
addresses. These private IP addresses isolate the

testing environment from the publically routable
internet. A Vagrant file (http://vagrantup.com)
was used to orchestrate the creation of the VMs
and private network (Nance, C., n.d.).

7. TESTING RESULTS

The hardening script (antimirai.py) was tested to
determine the feasibility and outcome from basic
protection (changing default password),
obfuscation (modifying banner and changing
server port), and redirection (wrapping busybox
applets used for malicious functions). Not all
functionality was incorporated due to platform

and time limitations. Platform limitations such as
telnet and/or ssh services not being compiled
with the tcp wrapper library (libwrap) lack the
host-based access control lists system to
leverage additions to /etc/hosts.allow and
/etc/hosts.deny, thereby rendering that specific

hardening action ineffectual. Inability to
disable/modify the superuser account (e.g. root),
while not hindering device functionality,

constituted a time limitation. Additional
obfuscation techniques would provide
demonstrations of change without furthering a
proof-of-concept.

Execution of antimirai.py hardening script
produced predictable results based on the testing
environment and conditions. Issuing a change of
default password to a random alphanumeric
string is an effectual method for thwarting Mirai’s

scanner, and subsequent infection. Changing

banner (via /etc/motd, /etc/issue, /etc/issue.net)
was not successful in preventing infection. Mirai
inspects login prompt, such as $, :, #, etc.

provided by telnetd/sshd. There are multiple

Action Expected
Outcome

Actual
 Outcome

Harden:
change
password Not infected Not infected

Harden:
change banner Not infected Infected

Harden:

change
service port Not infected Not infected

Harden:
change user Not infected

Not
implemented

Harden:
wrap busybox
applets Not infected Not infected

Harden:
Upload
secure.sh
script

Infected
then
removed

Infected
then
removed

Figure 8 antimirai.py test results

methods to changing login prompt based on
platform; and available commands and
configurations on host, thereby not feasible for
implementation within time constraints.
Modification of default service port prevented

infection, however this method does not prevent
a port scan from discovering new listening port.

Service detection paired with banner return may
offer additional obfuscation (not tested). On-the-
fly creation and deployment of a busybox wrapper

script to intercept applets Mirai requires to
download it’s binary to a target device (e.g. wget,
telnet, ftp) was successful in preventing infection.

Finally, deployment and execution of the
secure.sh script, barring any other hardening
techniques, successfully terminated repeated

Mirai bot infections on target host. The secure.sh
script was successful in detecting and
subsequently terminating all infection attempts

based on defined parameters of time and service
port detection. Logically, any combination of
multiple hardening techniques deployed to a
viable host would offer increased protection

within their individual limitations to provide a
multi-faceted strategy of defense.

2017 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
Austin, Texas USA v10 n4518
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 6
http://iscap.info

8. CONCLUSION

While this paper has explored multiple methods
of stopping or detecting a Mirai infection, there is

still more work that needs to be done. New
strains of Mirai could drastically change the way
the botnet malware is delivered or behaves,
which could in turn render many of the methods
used here, useless. The scripts, antimarai.py and
secure.sh, need to be tested on the public
internet to see how they perform against new

strains of Mirai.

Additionally, more indicators of compromise need
to be found and developed for Mirai to help
identify an infection. The current method used
can generate a false positive an IoT device

legitimately needs to communicate over port 23
to a remote server. New strains of Mirai could
avoid detection by changing the port it uses for
bot communication or change the name of its
processes.

This research proposed methods to harden IoT

devices from becoming bots controlled by the
Mirai botnet. Two hardening scripts have been
proposed: (1) antimirai.py and (2) secure.sh.
antimirai.py is a python script that makes
configuration changes to prevent Mirai infections.
secure.sh is an ash script, uploaded via
antimirai.py, that is constantly searching for and

closing processes that are identified as being part
of Mirai. Testing in a controlled laboratory

environment, with a simulated IoT device, has
shown that antimirai.py is successful in
preventing Mirai infections and secure.sh is
successful in detecting and stopping an infection.

9. REFERENCES

Abay, C., Hagel, L., & Williams, K. (n.d.). Peer-

to-Peer Botnet Detection, Retrieved 29-Jan-
2017 from
https://purr.purdue.edu/projects/insurefall2

016/files/browse?subdir=Projects/Botnet%2
0Study.

Arghire, I., (n.d.) New Mirai Variants Have Built-

in Domain Generation Algorithm, Retrieved
from http://www.securityweek.com/new-
mirai-variants-have-built-domain-

generation-algorithm

Argobot, (n.d.). Wikipedia. Retrieved 07-Feb-

2017 from
https://en.wikipedia.org/wiki/Agobot.

Baki, S., (n.d.). Network Under Control: Optimal

Node Selection for Installing Botnet Detection
Software Retrieved 29-Jan-2017
from https://purr.purdue.edu/projects/insur

efall2016/files/browse?subdir=Projects/Botn
et%20Study.

Botnet, (n.d.). Wikipedia Retrieved 07-Feb-2017

from https://en.wikipedia.org/wiki/Botnet.

Buntinx, J.P., (2016, Oct. 24). XiongMai

Technologies Admits Their Devices Are
Susceptible To Mirai Malware. The Merkle.
Retrieved 30-Jan-2017 from
https://themerkle.com/xiongmai-
technologies-admits-their-devices-are-
susceptible-to-Mirai-malware/.

Buntinx, J.P., (n.d.), Updated Mirai Botnet

Malware Executes 54-hour DDoS Attack
Retrieved 09-April-2017 from
https://themerkle.com/updated-mirai-
botnet-malware-executes-54-hour-ddos-
attack/.

CFEngine, (n.d.), Industrial Internet of Things –

Systems Hardening, Retrieved from
https://cfengine.com/solutions/industrial-
iot-systems-hardening/

Constantin, L., (n.d.) Windows Trojan hacks into

embedded devices to install Mirai, PCWorld,
09-Feb-2017

DarkReading, (n.d.). The World’s Biggest

Botnets, Retrieved 07-Feb-2017 from
http://www.darkreading.com/the-worlds-

biggest-botnets-/d/d-id/1129117?

Faife, C., (n.d.). This Bitcoin Botnet is Vying to Be

Future of Secure IoT Retrieved 09-April-2017
from http://www.coindesk.com/this-bitcoin-
botnet-is-vying-to-be-future-of-secure-iot/

Fandom, (n.d.). Virus Information. Prettypark,
Retrieved 06-Feb-2017 from
http://virus.wikia.com/wiki/Prettypark.

Femerling, S.R., (n.d.), “Mirai DDoS Botnet:
Source Code & Binary Analysis,” Retrieved
from

http://www.simonroses.com/2016/10/mirai-
ddos-botnet-source-code-binary-analysis/

Freeman, R., Hickey, R., Robertson, J., & Yeske,

J., (n.d.).Botnet Study Retrieved 29-Jan-
2017 from

https://purr.purdue.edu/projects/insurefall2

http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/

2017 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
Austin, Texas USA v10 n4518
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 7
http://iscap.info

016/files/browse?subdir=Projects/Botnet%2

0Study.

Gamblin, J., (2017, Jan.07). Mirai-Source-Code.

GitHub. Retrieved 30-Jan-2017 from
https://github.com/jgamblin/Mirai-Source-
Code.

Global Threat Bot (GTBot). (2017, Feb. 8).

Technopedia Retrieved 08-Feb-2017 from
https://www.techopedia.com/definition/59/g

lobal-threat-bot-gtbot.

Goldstein, P., (2016, May). The Internet of Things

for the Battlefield Needs to Be Flexible, Army
Official Says Retrieved 09-APR-2017 from
http://www.fedtechmagazine.com/article/20

16/05/internet-things-battlefield-needs-be-
flexible-army-official-says.

Görlich, K., (2016, Jun. 20). Live Business: The

Importance of the Internet of Things.
Digitalist Magazine

Hariston, J., Rozman, K., Sissom, N., & Wright,
D., (n.d.). Botnet Counterstrike:
Implementation of Botnet Enclave Testbed
Retrieved 29-Jan-2017 from
https://purr.purdue.edu/projects/insurefall2
016/files/browse?subdir=Projects/Botnet%2
0Study.

Hertig, A., (n.d.), Mirai, The Infamous Internet of

Things Army, Can Now Mine Bitcoin Retrieved
10-April-2017 from
http://www.coindesk.com/mirai-infamous-
internet-things-army-can-now-mine-bitcoin/

Higginbotham, S. (2016, Mar. 18). Prediction:

there won't be 50B connected IoT devices by
2020. Structure Connect. Retrieved 28-Jan-
2017 from
http://www.structureconnect.com/prediction
-there-wont-be-50b-connected-iot-devices-

by-2020/.

Imperva Incapsula (n.d.), Breaking Down Mirai:

An IoT DDoS Botnet Analysis, Retrieved 29-

Jan-2017 from
https://www.incapsula.com/blog/malware-
analysis-mirai-ddos-botnet.html

INSuRE, Information Security Research and

Education. (n.d.). Retrieved 29-Jan-2017
from
https://purr.purdue.edu/projects/insurefall2
016/files/browse?subdir=Projects/Botnet%2

0Study.

IoT Applications with Examples. (2016, Oct, 24).

Internet of Things Wiki. Retrieved 28-Jan-
2017 from
http://internetofthingswiki.com/iot-

applications-examples/541/

Internet of Things. (n.d.). Retrieved 28-Jan-2017

from
https://en.wikipedia.org/wiki/Internet_of_thi
ngs

Jia, Y., Xiao C., & Zheng, C., (April 2017) New
IoT/Linux Malware Targets DVRs, Forms
Botnet. Retrieved April 9, 2017 from
http://researchcenter.paloaltonetworks.com/
2017/04/unit42-new-iotlinux-malware-
targets-dvrs-forms-

botnet/?utm_source=hs_email&utm_mediu
m=email&utm_content=50167168&_hsenc=
p2ANqtz-
9HGnfET3w5_BRVaC_tp_iEiHppZRK2tQPfem
4dhiM3iP-
7N6HvbaHLQBBKeebc_OFkSk_mw_1A7uzGl
XIIUIt8HaASWw&_hsmi=50167168

Kovacoc, T., & Vargas, J., Botnet Study Retrieved

29-Jan-2017 from
https://purr.purdue.edu/projects/insurefall2
016/files/browse?subdir=Projects/Bo

Leyden, J., (2016, Oct) Researchers expose Mirai

vulnerabilities that could be used to hack back
against botnet Retrieved 09-April-2017 from

http://www.theregister.co.uk/2016/10/28/m
irai_botnet_hack_back/botnet%20Study.

Mirai. (n.d.). Wikipedia. Retrieved 26-Jan-2017

from https://en.wikipedia.org/wiki/Mirai.

Nance, C. (n.d.). miai. GitHub Retrieved 10-APR-

2017. from
https://github.com/canance/mirai?files=1

Pa Pa, Y.M., Suzuki, S., Yoshioka, K., Matsumoto,

T., Kasama, T., & Rossow, C., (n.d.) IoTPOT:
analyzing the rise of IoT compromises
Retrieved 26-Feb-2017 from
https://www.usenix.org/system/files/confere

nce/woot15/woot15-paper-pa.pdf

Pauli, D., (2016, Oct). Boffin's anti-worm bot

could silence epic Mirai DDoS attack army
Retrieved 09-April-2017 from
https://www.theregister.co.uk/2016/10/31/t
his_antiworm_patch_bot_could_silence_epic
_mirai_ddos_attack_army/

http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/

2017 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
Austin, Texas USA v10 n4518
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 8
http://iscap.info

Rapid7, (n.d.). IOT Seeker, Retrieved from

https://information.rapid7.com/iotseeker

Rudesh, V., (n.d.). Thing bot Analysis and

Detection Retrieved 29-Jan-2017 from
https://purr.purdue.edu/projects/insurefall2
016/files/browse?subdir=Projects/Botnet%2
0Study.

Seals, T., (n.d.). Leet IoT Botnet Bursts on the

Scene with Massive DDoS Attack, Retrieved

from https://www.infosecurity-
magazine.com/news/leet-iot-botnet-bursts-
on-the-scene/

ShadowServer, (n.d.). Retrieved 7-Feb-2017
from https://www.shadowserver.org/wiki/.

Trend Micro, (n.d.). CounterMeasures Security,
Privacy & Trust. The history of the botnet –
Part I Retrieved 06-Feb-2017 from
http://countermeasures.trendmicro.eu/the-
history-of-the-botnet-part-i/.

Trend Micro, (n.d.). CounterMeasures Security,

Privacy & Trust. The history of the botnet –
Part II Retrieved 08-Feb-2017 from
http://countermeasures.trendmicro.eu/the-

history-of-the-botnet-part-ii/.

Trend Micro, (n.d.). SDBOT, Retrieved 06-Feb-

2017 from
http://countermeasures.trendmicro.
.com/vinfo/us/threat-
encyclopedia/malware/sdbot

Trend Micro, (n.d.). WORM_SPYBOT.A Retrieved

07-Feb-2017 from
https://www.trendmicro.com/vinfo/us/threat
-encyclopedia/malware/WORM_SPYBOT.A

Zeus, (n.d.). Wikipedia. Retrieved 07-Feb-2017
from https://en.wikipedia.org/wiki/Zeus.

http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/
http://internetofthingswiki.com/iot-applications-examples/541/

2017 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
Austin, Texas USA v10 n4518
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 9
http://iscap.info

APPENDIX

Date created Name
Estimated no. of

bots Aliases

2004 (Early) Bagle 230,000 Beagle, Mitglieder, Lodeight

 Marina Botnet 6,215,000
Damon Briant, BOB.dc, Cotmonger,

Hacktool.Spammer, Kraken

 Torpig 180,000 Sinowal, Anserin

 Storm 160,000 Nuwar, Peacomm, Zhelatin

2006 (around) Rustock 150,000 RKRustok, Costrat

 Donbot 125,000 Buzus, Bachsoy

2007 (around) Cutwail 1,500,000 Pandex, Mutant (related to: Wigon, Pushdo)

2007 Akbot 1,300,000

2007 (March) Srizbi 450,000 Cbeplay, Exchanger

 Lethic 260,000 none

2007 (September) dBot 10,000+ (Europe) dentaoBot, d-net, SDBOT

 Xarvester 10,000 Rlsloup, Pixoliz

2008 (around) Sality 1,000,000 Sector, Kuku

2008 (around) Mariposa 12,000,000

2008 (November) Conficker 10,500,000+ DownUp, DownAndUp, DownAdUp, Kido

2008 (November) Waledac 80,000 Waled, Waledpak

 Maazben 50,000 None

 Onewordsub 40,000

 Gheg 30,000 Tofsee, Mondera

 Nucrypt 20,000 Loosky, Locksky

 Wopla 20,000 Pokier, Slogger, Cryptic

2008 (around) Asprox 15,000 Danmec, Hydraflux

 Spamthru 12,000 Spam-DComServ, Covesmer, Xmiler

2008 (around) Gumblar

2009 (May) BredoLab 30,000,000 Oficla

2009 (Around) Grum 560,000 Tedroo

 Mega-D 509,000 Ozdok

 Kraken 495,000 Kracken

2009 (August) Festi 250,000 Spamnost

2010 (January) LowSec 11,000+ LowSecurity, FreeMoney, Ring0.Tools

2010 (around) TDL4 4,500,000 TDSS, Alureon

 Zeus 3,600,000 (US only) Zbot, PRG, Wsnpoem, Gorhax, Kneber

2010 Kelihos 300,000+ Hlux

2011 or earlier Ramnit 3,000,000

2012 (Around) Chameleon 120,000 None

2016 (August) Mirai (malware) 380,000 None

Figure 1 Wikipedia Historical Timeline of Botnets

2017 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
Austin, Texas USA v10 n4518
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 10
http://iscap.info

Pattern
Name

Pattern of Command Sequence

Set of
Command
Sequence

Day - Avg

ZORRO 1

1. Check type of victim shell with command "sh"
2. Check error reply of victim by running non-existing command-- ZORRO.

3. Check whether wget command is usable or not.
4. Check whether busybox shell can be used or not by echoing ZORRO.

5. Remove various command and files under /usr/bin/, /bin, var/run/, /dev.

6. Copy /bin/sh to random file name
7. Append series of binaries to random file name of step 6 and make attacker’s own shell
8. Using attacker’s own shell, download binary . IP Address and port number of malware
download server can be seen in the command.
9. Run binary

ZORRO 2

1. Check type of victim shell with command "sh"
2. Check error reply of victim by running non-existing command - ZORRO.
3. Check whether wget command is usable or not.
4. Check whether busybox shell can be used or not by echoing ZORRO.

6. Copy /bin/sh to random file name
7. Append series of binaries to random file name of step 6 and make attacker’s own shell

8. Using attacker’s own shell, download binary . IP Address and port number of malware
download server cannot be seen in the command because it is hard coded in the attacker’s
own shell.
9. Run binary

ZORRO 3

1. Check type of victim shell with command "sh"
2. Check error reply of victim by running non-existing command - ZORRO.
3. Check whether wget command is usable or not.

4. Check whether busybox shell can be used or not by echoing.

174

5. Remove all under /var/run, /dev, /tmp, /var/tmp
6. Copy /bin/sh to random file name
7. Append series of binaries to random file name of step 6 and make attacker’s own shell
8. Using attacker’s own shell, download binary. IP Address of malware download server

can be seen in the command and port number cannot be seen in the command
9. Run binary

1,353

Bashlite

1. Check whether shell can be used or not by echoing "gayfgt"

2. Download shell script.
3. Using downloaded shell script, kill previously running malicious process, download
malware binaries of different CPU architectures and block 23/TCP in order to prevent other
infection.
4. Run all downloaded malware binaries.

606

nttpd
1. Check whether shell can be used or not by echoing "welcome"
2. Download binary to /tmp directory.

3. Run Binary.

3.2

KOS

1. Check whether shell can be used or not by echoing "$?K_O_S_T_Y_P_E"
2. List /proc/self/exe

3. Check all running process
4. Download malware binary using tftp to /mnt folder
5. Run Malware
6. Check CPU information

3.5

Figure 3 IoT Pot Patterns of Attack

2017 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
Austin, Texas USA v10 n4518
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 11
http://iscap.info

…

def replace_bosybox(tn):

 tn.read_until(CMD_PROMPT, 1)

 tn.write('echo $(which busybox) > tmp_busybox; cp $(cat tmp_busybox)

$(cat tmp_busybox).' + DATETIME + '\n')

 tn.write('if [! -f "${mybusybox}.bin"]; then cp $(cat tmp_busybox)

$(cat tmp_busybox).bin; fi\n')

 tn.write('echo \'#!/bin/sh\' > tmp_bb\n')

 tn.write('echo \'mybusybox=$(which busybox)\' >> tmp_bb \n')

 tn.write('echo \'BADFLAG=0 \' >> tmp_bb \n')

 tn.write('echo \'string="$*" \' >> tmp_bb \n')

 tn.write('echo \'words="telnet wget tftp" \' >> tmp_bb \n')

 tn.write('echo \'for word in $words; do if ["${string#*$word}" !=

"$string"]; then return 0; else BADFLAG=1; fi; done \' >> tmp_bb \n')

 tn.write('echo \'if [$BADFLAG = 1]; then ${mybusybox}.bin "$@"; fi

\' >> tmp_bb \n')

 tn.write('mv tmp_bb $(cat tmp_busybox); chmod +x $(cat

tmp_busybox)\n')

 print tn.read_until(CMD_PROMPT, 1)

Figure 4 Replace_busybox

2017 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
Austin, Texas USA v10 n4518
__

©2017 ISCAP (Information Systems & Computing Academic Professionals) Page 12
http://iscap.info

...

def change_passwd_telnet(tn):

 p = random_gen()

 tn.write("passwd " + user + "\n")

 tn.read_until("(current) UNIX password: ")

 tn.write(password + "\n")

 tn.read_until("Enter new UNIX password: ")

 tn.write(p + "\n")

 tn.read_until("Retype new UNIX password: ")

 tn.write(p + "\n")

 targetDetails = "%s:%d:%s:%s:%s" % (target, port, proto, user, p,)

 log.info("Changed values: \t%s" % targetDetails)

...

def upload_run_script():

 ...

 with open(file_exec) as f:

 content = f.read()

 _execFile = file_exec.strip('.\\')

 # convert file contents to base64 and split into chunks to send

reliably over telnet

 content_serialized = split_by_length(base64.b64encode(content),

FILE_CHUNK)

 execFile = RUN_LOCATION + DATETIME + "_" + _execFile

 decodedFile = RUN_LOCATION + DATETIME + "_RUN_" + _execFile

 ...

 # write file in FILE_CHUNK sections

 for c in content_serialized:

 tn.write("echo \"" + c + "\" >> " + execFile + " \n")

 tn.read_until(CMD_PROMPT, 3)

 ...

 print tn.read_until(CMD_PROMPT, 3)

 # execute script on device

 tn.write("cd " + RUN_LOCATION + " && /usr/bin/nohup /bin/sh " +

decodedFile + " " + arg_str +

 " >/dev/null 2>&1 &\n")

 print tn.read_until(CMD_PROMPT, 3)

Figure 5 antimmirai.py

PS="/bin/busybox ps"

while true; do

 socket=$(grep /proc/net/tcp -e '[0-9]*: [A-Z0-9]*:[A-Z0-9]\{4\} [A-Z0-

9]\{8\}:0017' | tr -s ' ' | cut -d' ' -f 11)

 if [! -z "$socket"]; then

 master_pid=$(find /proc/ -type l 2>/dev/null | grep /fd/ | xargs ls -la

2>/dev/null | grep $socket | head -1 | tr -s ' ' | cut -f 9 -d ' ' | cut -f 3 -d '/')

 name=$($PS aux | grep $master_pid | head -1 | tr -s ' ' | cut -d ' ' -f 4)

 $PS aux | grep $name | sed \$d | awk '{print $1}' | xargs kill -9 2>/dev/null

 fi

 sleep 2

done

Figure 6. secure.sh

