
2018 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Norfolk, Virginia v11 n 4806

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 1
http://iscap.info

The use of Snap Length in Lossy Network

Traffic Compression for
Network Intrusion Detection Applications

Sidney C. Smith
Sidney.c.smith24.civ@mail.mil

Computational Information Sciences Directorate
U.S. Army Research Laboratory

Aberdeen Proving Ground, MD 21005, U.S.A

Robert J. Hammell II

rhammell@towson.edu
Department of Computer and Information Sciences

Towson University
Towson, MD 21252, U.S.A

Abstract

In distributed network intrusion applications, it is necessary to transmit data from the remote sensors

to the central analysis systems (CAS). Transmitting all the data captured by the sensor would place an
unacceptable demand on the bandwidth available to the site. Most applications address this problem

by sending only alerts or summaries; however, these alone do not always provide the analyst with
enough information to truly understand what is happening on the network. Since lossless compression
techniques alone are not sufficient to address the bandwidth demand, applications that send raw
traffic to the CAS for analysis must employ some form of lossy compression. This lossy compression

may take the form or dropping entire sessions, packets, or portions of packets. In this paper we
explore impact of compressing network traffic by dropping portions of packets. This is accomplished
by truncating packets through adjusting the snap length.

Keywords: compression, network intrusion detection, snap length, Snort, Tcpdump

1. INTRODUCTION

Distributed Network Intrusion Detection Systems

(NIDS) allows a relatively small number of
highly trained analysts to monitor a much larger
number of sites; however, they require
information to be transmitted from the remote

sensor to the central analysis system (CAS) as
pictured in Figure 1. Unless an expensive
dedicated NIDS network is employed, this
transmission must use the same channels that
the site uses to conduct their daily business.
This makes it important to reduce the amount of

information transmitted back to the CAS to

minimize the impact that the NIDS has on daily
operations as much as practical.

Smith and Hammell (2017) proposed that it
should be possible to create a lossy compression
tool using anomaly detection techniques to rate

each session and a modification of the Kelly
criterion (Kelly, 1956) to select how much traffic
from each session to return as seen in Figure 2.

mailto:Sidney.c.smith24.civ@mail.mil
mailto:rhammell@towson.edu

2018 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Norfolk, Virginia v11 n 4806

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 2
http://iscap.info

Figure 1. Distributed network intrusion detection

Once the determination of how much traffic to

return is made, it is necessary to understand the
best way to reduce that traffic. One could carve

entire sessions out of the network traffic as Long
and Morgan did. (2007) One could drop
individual packets as Smith, Hammell, and
Neyens did. (2017) Or one could truncate

packets as Long did with the “snapper” tool.
(2004) This research will consider the
implications of the last method adjusting the
snap length which truncates packets to achieve
lossy compression.

Figure 2. Kelly compressor

The remainder of this paper is organized into the
following sections: Section 2 provides

background, Section 3 outlines the approach
chosen to address this problem, Section 4
presents our results, and Section 5 provides a
conclusion and discussion of future work.

2. BACKGROUND

One popular strategy for implementing a

distributed NIDS is to do all of the intrusion
detection on the sensor and send only alerts or
logs to the CAS. (Roesch, 1999) (Paxson, 1999)
A second strategy might be to use lossless
compression to reduce the size of the data
returned to the CAS. A third strategy is to
implement some form of lossy compression

algorithm to send back relevant portions of

traffic.

There are three problems with the first strategy.

The first is that it has the potential to over
burden the sensor's central processing unit
(CPU) and introduce packet loss. Smith et al.
discovered that the impact of packet loss can
sometimes be quite severe for even small rates
of packet loss. (2016a) (2016b) The second
problem is that the alerts by themselves often

do not contain enough information to determine
whether the attack was successful. The third
problem is that these systems are most often
implemented with signature-based intrusion
detection engines. Signature-based systems
may be tuned to produce few false positives;

however, they are ineffective at detecting zero-
day and advanced persistent threats.
(Kremmerer & Giovanni, 2002)

The problem with the second strategy is that
lossless compression alone simply is not capable
of reducing the amount of traffic enough. Using

GNU Zip to compress the 2009 Cyber Defense
Exercise dataset provides a compression ratio of
2:1. (Smith, Neyens, & Hammell, 2017)
Compression ratios of better than 10:1 are
required to minimize the impact of NIDS on day-
to-day operations.

The third strategy is to use lossy compression to
provide a solution. Network traffic may be

considered to be composed of sessions that span
spectrums from known to unknown and
malicious to benign as illustrated in Figure 3.
Quadrant III, the known malicious quadrant, is

the domain of intrusion prevention systems as
described by Ierace, Urrautia, and Bassett
(Ierace, Urrutia, & Bassett, 2005). This research
is most interested in quadrant II, the unknown
malicious quadrant, because that is the quadrant
where evidence of zero-day and advanced
persistent threat attacks will be found. In 2004,

Kerry Long described the Interrogator Intrusion
Detection System Architecture (2004). In this
architecture, remotely deployed sensors collect
network traffic and transmit a subset of the

traffic to the analysis level. Interrogator employs
“a dynamic network traffic selection algorithm
called Snapper'”. (2004). Long and Morgan

describe how they used data mining to discover
known benign traffic that they excluded from the
data transmitted back to the analysis servers
(2007).

2018 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Norfolk, Virginia v11 n 4806

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 3
http://iscap.info

Figure 3. Network traffic composition

3. APPROACH

Tcpdump (Jacobson, Leres, & McCanne, 2017) is

a very popular network capture tool. The data
format used by tcpdump to store the captured

network traffic has become the de facto

standard format for network capture data. Snort

(Roesch, 1999) is a very popular signature
based network intrusion detection tool. Both

tcpdump and snort support an option to set the

snap length. This option is used to set the
maximum size of any packet collected. Packets
larger than the snap length will be truncated. It
is primarily used to improve efficiency when the

maximum transmission unit of the network is
known. One might suspect that conducting
several iterations of these experiments would be
as simple as repeatedly executing one of the
commands seen in Error! Reference source

not found.. The authors of tcpdump pulled the

packet capture routines out of tcpdump into a

stand-alone library known as the packet capture
library or libpcap (Jacobson, Leres, & McCanne,
2015). Today both tcpdump and snort leverage

this library. It turns out that both tcpdump and

snort implement snap length by passing the

option to libpcap (Jacobson, Leres, & McCanne,

2015) which only implements this feature for
live traffic capture.

To use the snap length features of either

tcpdump or snort we needed to leverage an

experimental environment similar to the one
seen in Figure 5. Replaying a dataset several

times at some multiple of the original speed

small enough to ensure that packets are not lost
in transmission requires a significant amount of
time. We conducted this experiment only twice

to gain a baseline. We developed a tool that will
implement the snapping in software. We tested
it against the baseline we established using the
experimental environment. The validated tool
was then used to quickly test the impact of snap
length across multiple datasets.

Experimental Baseline
The experimental environment seen in Figure 5
consists of two workstation class systems with
Gigabit Ethernet cards directly connected to
each other. We did not configure the interfaces
of these cards to prevent any extraneous traffic

from appearing on this network. Albus is

designated as the source, and tcpreplay

(Turner & Bing, 2013) was used to replay the
traffic. Severus was designated as the sink and

tcpdump and snort were used to collect and

analyze the traffic. Several iterations were
conducted changing the snap length. The snap
length used, the percentage for the original size
of the data set, and the number of alerts are
collected and plotted.

Figure 5. Experimental environment

Snapping Tool
There are three length fields in libpcap files. The

first is a global length field. We set this field by
passing the new snap length to the

pcap_open_dead() function when we created

the pcap_t structure which we passed to

pcap_dump_open(). The other two length

fields are contained in the pcap_pkthdr

$ tcpdump -r ${DATASET} -s ${SNAPLEN} \
> -w - |
> snort -N -c ${RULESET} -k none -r - -l .

$ snort -r ${DATASET} -k none \
> –c ${RULESET}\

> --snaplength ${SNAPLEN} -l .

Figure 4. Command line

2018 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Norfolk, Virginia v11 n 4806

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 4
http://iscap.info

structure. These are caplen and len. The len

field is the original length of the packet, and the

caplen field is the number of bytes actually

stored in the libpcap file.

In previous research, we developed the pcapcat

program (Smith S. C., 2013). This program
simply takes the list of libpcap file names on the

command line and reads each file writing it to
standard output. This provided a necessary first
step for any tools which will manipulate libpcap
files, and a convenient method to join several
libpcap files into one file. We took this program
and added a snap length option. Implementing
this option involved setting the global snap

length when we created the output handle, and

setting the caplen value of the pcap_pkthdr.

Datasets
In the following section we provide a brief
summary of the various datasets that were used
in our experiment. Table 1 provides a summary
of the duration and packet count for each of

these datasets.

DARPA Datasets
As part of their evaluation of intrusion detection
systems, Lippman et al. created a dataset of
synthetic network traffic (2000). We used the
small sample dataset which was provided before

the experiment to give the participants
examples of the data that they would be

provided in the evaluation. This dataset is about
10 min long and was used to validate that the
tools were working correctly. They also created
the four hour dataset. This dataset was used to
evaluate the efficiency of the intrusion detection

techniques. We used it because it is large
enough to provide a good baseline but small
enough to allow us to conduct our experiment in
a reasonable amount of time. We used it to
compare the results of using the snap length

options of tcpdump and snort to our snapping

tool. Finally we used the testing data from
Wednesday and Friday of week 2. We selected

these two days because Wednesday contains the
smallest number of alerts and Friday contains
the largest number of alerts.

Cyber Defense Exercise 2009
In 2009 the National Security Agency/Central

Security Service (NSA/CSS) conducted an
exercise pitting teams from the military
academies of the United States and Canada
against teams of professional network specialists
to see who best defended their network. Data
from this exercise was captured and used by
Sangster et al. in his efforts to generate labeled

datasets (2009). Two network traffic sensors

were employed in the exercise: gator-usama010

and gator-usama020. We used the pcapcat

program to consolidate the individual hours of
for network traffic collected by each sensor into

two libpcap files.

Mid-Atlantic Collegiate Cyber Defense
Competition

Based upon the pattern of the Cyber Defense
Exercises, a group of industry academics created
the collegiate cyber defense competitions

(Carlin, Manson, & Zhu, 2010). We used the
network capture data for the Mid-Atlantic
Collegiate Cyber Defense Competitions from
2010 and 2011 which is available from:
https://www.netresec.com/?page=MACCDC.

Real World
We were able to collect real world network traffic
from the top level architecture of one site of a
research laboratory on the Defense Research
Engineering Network.

Table 1. Datasets

Name Seconds Packets

DARPA98ss 624 14,523

DARPA984h 19,258 233,428
DARPATestW2Wed 86,400 2,026,473
DARPATestW2Fri 90,432 2,177,646
CDX09_usama010 378,000 5,218,144

CDX09_usama020 345,600 42,293,657
MACCDC2010 275,666 264,973,151

MACCDC2011 165,243 134,465,786
Real World 138,895 2,256,633,016

4. RESULTS

First we will review the results of our validation
exercises. Then we will present the results of our

validated snapping tool.

Validation in the Experimental Environment
The first step in the process is to ensure that our
snapping tool provides the same results as we

obtained using tcpdump. To do this we will take

the DARPA98 Four Hour and DAPRA98 Small
Sample datasets and replay them in the
experimental environment seen in Figure 5. We
automated 30 iterations of Albus replaying the

traffic using the tcpreplay tool while Severus

used tcpdump with using snap lengths ranging

from 1542-42. These captured files were then

analyzed with snort.

2018 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Norfolk, Virginia v11 n 4806

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 5
http://iscap.info

DARPA 98 Four Hour

To ensure that this experiment using the four
hour dataset completed in a reasonable amount
of time, we replayed the traffic at 10 times the

original speed. In Figure 6, we have plotted the
percentage of the original file size using
triangles. We have plotted the alert loss rate
(ALR) as a percentage in circles. We have also
plotted the packet loss rate (PLR) as a
percentage in crosses. In Figure 7, we have
plotted the results of using the snapping tool on

the same dataset. Comparing the graphs, we
find that the relationship between the ALR and
the snap length for the experimental
environment and the snapping tool is very
similar. The differences between the
relationship between the compression and the

snap length between the two experiments may
be attributed to the PLR.

DARPA 98 Small Sample
To further assure that our snapping tool is
performing correctly, we repeated the
experiment with the DAPRA 98 Small Sample

dataset. This dataset is about 10 min long
allowing us to replay the traffic at the original
speed and still complete the experiment in a
reasonable amount of time. In Figure 8, we
have plotted the percentage of the original file
size using triangles.

Figure 6. Results of using tcpdump to snap the
packets of the DARPA 98 Four Hour dataset in

the experimental environment

We have plotted the ALR as a percentage in
circles. We have also plotted the PLR as a
percentage in crosses. One thing of note is that
packet loss is completely from packets that

snort has discarded. Since these packets were

discarded and not dropped, they are not
subtracted from the size when the percentage of
the original size is computed. In Figure 9, we
have plotted the results of using the snapping

tool on the same dataset. Again the results are
very similar and from this we conclude that our
snapping tool is truncating the packets in the
same manner that they would be truncated

using either tcpdump or snort.

Figure 7. Snap length verses the ALR and
Compression of the DARPA 98 Four Hour

datasets using the snapping tool

Figure 8. Results of using tcpdump to snap the
packets of the DARPA 98 Small Sample dataset

in the experimental environment

2018 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Norfolk, Virginia v11 n 4806

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 6
http://iscap.info

Figure 9. Snap Length verses the ALR and
Compression of the DARPA 98 Small Sample
dataset using the snapping tool

Experimentation with the Snapping Tool
Having validated that the snapping tool performs

in the same manner as the snap length option to

tcpdump, we may forgo further use of the

experimental environment. We created a shell
script to automate the snapping and analysis of
the remaining datasets.

DARPA 98 Testing Week 2 Wednesday
In Figure 10 and Figure 11 we see the results of

using our snapping tool on the 2 days we
selected from the DARPA 98 Testing dataset.
Notice that for each of these 2 datasets, we are
able to gain a significant amount of compression
by snapping packets with little or no increase in
the ALR. The same may be said for the datasets
that we used to validate the snapping tool.

Cyber Defense Exercise
In Figure 12 and Figure 13 we see the results of
using our snapping tool on the Cyber Defense
Exercise 2009 datasets. These graphs show a
much earlier rise in ALR.

Mid-Atlantic Collegiate Cyber Defense
Competition Datasets
In Figure 14 and Figure 15 we see the results of
applying our snapping tool to the Mid-Atlantic
Collegiate Cyber Defense Competitions of 2010
and 2011. With the 2010 data we see more

dramatic rise in ALR, but not as dramatic as the
rise we saw in the CDX data. With the 2011 data
we see that it is possible for the snapping
process to create alerts in the data that did not

exist previously. The creation of false positive

alerts was not one of the anticipated outcomes.

Figure 10. Snap length verses the ALR and
Compression of the DARPA 98 testing week 2
day 3 datasets using the snapping tool

Figure 11. Snap length verses the ALR and

Compression of the DARPA 98 testing week 2
day 6 datasets using the snapping tool

2018 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Norfolk, Virginia v11 n 4806

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 7
http://iscap.info

Figure 12. Snap Length verses the ALR and
Compression for CDX2009 usama010 using the
snapping tool

Figure 13. Snap Length verses the ALR and
Compression for CDX2009 usama020 using the
snapping tool

Figure 14. Snap length verses the ALR and
Compression of the MACCDC 2010 dataset using
the snapping tool

Figure 15. Snap length verses the ALR and
Compression of the MACCDC 2011 dataset using
the snapping tool

Real World
The results of the experiment using real world
data may be seen in Figure 16. It would appear
that that data set had a small number of very
large packets, but once the snap length reached
about 1500 the size started falling steadily, but
the ALR raised quickly only to level off.

2018 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Norfolk, Virginia v11 n 4806

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 8
http://iscap.info

Figure 16. . Snap length verses the ALR and
Compression for real world data using the
snapping tool

5. CONCLUSIONS

Looking at our results from the DARPA datasets

it would appear that employing snap length as a
compression tool has the potential to reduce the
size of the traffic that must be transmitted from
the sensor to the CAS. Our results from the
Cyber Defense Exercise data indicate that this

might be a very dangerous technique as the ALR
rises rapidly with the decrease in snap length.

Our results from the Mid-Atlantic Collegiate
Cyber Defense Competition and real world data
seem to occupy the middle ground with the
caveat that the technique may introduce false
positive alerts.

It might appear that the malicious content in
new traffic is deeper in the packet than
malicious content in older traffic; however, an
examination of the traffic reveals that this is not
the case. We examined several packets which
triggered an alert in the original data but did not
trigger an alert in the abridged data. In each of

these packets, the string in the rule existed in

the abridged packet. The explanation for our
results lies in the number of discarded packets
observed in the experiment using the DARPA 98
Small Sample dataset in our experimental
environment. Even though we used the option

to instruct snort not to validate the checksums,

it is discarding truncated packets. We are not

seeing that the malicious nature is deeper in the
packets in new traffic. We are seeing that
packets in general including those with a

malicious nature are larger in newer traffic. Also

a large number of alerts in the DARPA datasets
come from very small packets. A detection tool
that does not discard truncated packets would

have detected the malicious traffic. Also
analysts reviewing the truncated traffic based

upon alerts generated by snort seeing the

unabridged traffic would be able to use the
truncated traffic to conduct their analysis.

Although tools like snort are best run on the

sensor where they may have a full view of the
network traffic, there is value in running tools
like this on the CAS where the size of the ruleset

will not negatively impact of the amount of
traffic which may be collected. In future work it
will be necessary to explore other methods of

lossy compression that might not have the same

issues. Alternatively snort could be altered to

accept truncated packets or a similar tool could
be developed that would accept truncated
packets.

6. REFERENCES

Carlin, A., Manson, D. P., & Zhu, J. (2010).
Developing the Cyber Defenders of Tomorrow
with Regional Collegiate Cyber Defense
Competitions (CCDC). Information Systems

Education Journal, 3-10.

Ierace, N., Urrutia, C., & Bassett, R. (2005).

Intrusion Prevention Systems. Ubiquity, 2-2.

Jacobson, V., Leres, C., & McCanne, S. (2015,
March 8). PCAP -- packet capture library.
Retrieved from Tcpdump/Libpcap:
http://www.tcpdump.org/manpages/pcap.3p

cap.1.html

Jacobson, V., Leres, C., & McCanne, S. (2017,
February 2). tcpdump -- dump traffic on a
network. Retrieved from TCPDUMP &
LIBPCAP:
http://www.tcpdump.org/manpages/tcpdum
p.1.html

Kelly, J. L. (1956). A new interpretation of

information rate. Information Theory, IRE
Transactiosn on, 185-189.

Kremmerer, R. A., & Giovanni, V. (2002).
Intrusion detection: a brief history and
overview (supplement to Computer

magazine). Computer, 27-30.

Lippmann, R. P., Fried, D. J., Graf, I., Haines, J.
W., Kendall, K. R., McClung, D., . . .

2018 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Norfolk, Virginia v11 n 4806

©2018 ISCAP (Information Systems & Computing Academic Professionals) Page 9
http://iscap.info

Zissman, M. A. (2000). Evaluating intrusion

detection systems: the 1998 DARPA off-line
intrusion detection evaluation. DARPA
Information Survivability Conference and

Exposition, 2000. DISCEX'00. Proceedings
(pp. 12-26). Hilton Head, SC: IEEE.

Long, K. S. (2004). Catching the Cyber Spy:
ARL's Interrogator. Aberdeen Proving
Ground: Army Research Laboratory.

Long, K. S., & Morgan, J. B. (2007). Using data
mining to improve the efficiency of intrusion

detection analsysis. Army Research
Laboratory. Aberdeen Proving Ground (MD):
Army Research Laboratory.

Paxson, V. (1999). Bro: a system for detecting
network intruders in real-time. Computer
Networks, 2435-2463.

Roesch, M. (1999). Snort: lightweight intrusion
detection for networks. Proceedings of the
13th System Administration Conference
(LISA '99) (pp. 229-238). Seattle, WA:
USENIX.

Sangster, B., O'Conner, T., Cook, T., Franelli, R.,
Dean, E., Adams, W. J., . . . Conti, G.

(2009). Toward instrumenting network
warfare competitions to generate labeled
datasets. Proc. of the 2nd Workshop on

Cyber Security Experimentation and Test
CSET09. Montreal Canada.

Smith, S. C. (2013, May). The effect of packet
loss on Network Intrusion Detection. Towson

University Institutional Repository. Towson,
MD, USA: Towson University.

Smith, S. C., & Hammell, R. J. (2017, aug).
Proposal for Kelly Criterion-Inspired Lossy
Network Compression for Network Intrusion
Applications. Journal of Information Systems

Applied Research, 10(2), 43-51.

Smith, S. C., Hammell, R. J., Wong, K. W., &
Carlos, J. M. (2016). An Experimental

Exploration of the Impact of Host-Level
Packet Loss on Network Intrusion Detection.
Cybersecurity Symposium (CYBERSEC) (pp.
13-19). IEEE.

Smith, S. C., Hammell, R. J., Wong, K. W., &
Carlos, J. M. (2016). An experimental
exploration of the impact of multi-level
packet loss on network intrusion detection.
2016 IEEE 14th International Conference on

Software Engineering Research,

Management and Applications (SERA) (pp.
23-30). Towson, MD: IEEE.

Smith, S. C., Neyens, S. R., & Hammell, R. J.

(2017). The use of Entropy in Lossy Network
Traffic Compression for Network Intrusion
Detection Applications. Proceedings of the
12th International Conference on Cyber
Warfare and Security ICCWS 2017 (pp. 352-
360). Reading (UK): Academic Conferences
and Publishing International Limited.

Smith, S. C., Neyens, S. R., & Hammell, R. J.
(2017). The use of Entropy in Lossy Network
Traffic Compression for Network Intrusion
Detection Applications. Proceedings of the

12th International Conference on Cyber
Warfare and Security ICCWS (pp. 352-360).

Reading (UK): Academic Conferences and
Publishing International Limited.

Turner, A., & Bing, M. (2013, December 14).
Tcpreplay: Pcap editing and replay tools for
*nix. Retrieved from Syn Fin dot Net:
http://tcpreplay.synfin.net

Glossary

Real World Data: This is data collected from a
network that is actually connected to the

Internet and in use for real work by real
people.

Signature-base IDS: These are intrusion

detection systems which employ a
ruleset of patterns or signatures that are
then compared against packets in the
data stream. Packets that match the
patterns or signatures generate alerts.

Snap Length: This is also known as the

snapshot length. Both tcpdump and
snort provide options to limit the amount
of data contained in each packet that
captured from the network.

Top Level Architecture: This consists of the
group of systems which are used to
connect a local area network to the

Internet. This is typically composed of a
frontier router which is directly
connected to the Internet Service
Provider, a firewall, and a security
router. It may also contain demilitarized
zones for external facing resources.

