
2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5207

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 1
http://proc.conisar.org; https://www.iscap.info

The Use of Tainted Flows in Network Compression

for Distributed Network Intrusion Detection

Sidney C. Smith

Sidney.c.smith24.civ@mail.mil

Computational Information Sciences Directorate
U.S. Army Research Laboratory

Aberdeen Proving Ground, MD 21005, U.S.A

Robert J. Hammell II
rhammell@towson.edu

Department of Computer and Information Sciences
Towson University

Towson, MD 21252, U.S.A

Abstract

In distributed network intrusion detection, it is necessary to transmit data from remote sensors to a
central analysis system. Transmitting all the data captured by a sensor would place an unacceptable
demand on the bandwidth available to the site. Most applications address this problem by sending only
alerts or summaries; however, these alone do not always provide the analyst with enough information

to truly understand what is happening on the network. Lossless compression techniques alone are not
sufficient to address the bandwidth demand. This paper explores a concept called tainted flows employed
in a lossy compression technique. The tainted flows technique uses a Bloom filter of malicious N-gram

hashes to taint or mark flows as malicious. Network traffic is compressed by stopping the transmission
of untainted flows after a user-defined threshold, but keeping all of the tainted flows. This tainted flows
method was used to compress synthetic and competition data sets from 1998 until 2017 to about 30%
of their original size with less than 1% loss of Snort alerts.

Keywords: network intrusion detection, lossy compression, N-grams, Bloom filters, Snort, Tcpdump.

1. INTRODUCTION

Distributed Network Intrusion Detection Systems
(NIDS) allow a relatively small number of highly
trained analysts to monitor a much larger number

of sites; however, they require information to be
transmitted from the remote sensor to the central
analysis system (CAS), as pictured in Figure 1.
Unless an expensive dedicated NIDS network is
employed, this transmission must use the same
channels that the site uses to conduct their daily
business. This makes it important to reduce the

amount of information transmitted back to the
CAS to minimize the impact that the NIDS has on
daily operations as much as practical.

Smith and Hammell (2017) proposed that it
should be possible to create a lossy compression
tool using anomaly detection techniques to rate
each session and a modification of the Kelly

criterion (Kelly, 1956) to select how much traffic
from each session to return, as seen in Figure 2.

The contribution of this research is to explore one
method to compress network traffic without
unacceptably impacting the ability of the NIDS to
detect and analyze malicious activity. Based upon

Smith and Hammell’s findings that malicious
network flows will manifest their maliciousness
early (2019), this research adds the ability to

http://proc.conisar.org/
mailto:Sidney.c.smith24.civ@mail.mil
mailto:rhammell@towson.edu

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5207

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 2
http://proc.conisar.org; https://www.iscap.info

determine if a flow is malicious by collecting

malicious N-grams and hashing them into a
Bloom filter. Packets are then broken into
N-grams, which are hashed and compared to the

Bloom filter. If the hash of an N-gram matches
one in the malicious Bloom filter, the flow is
tainted and all packets from that flow will be
transmitted to the CAS. If no N-grams match,
transmission of the flow to the CAS will stop after
a user-defined threshold.

Figure 1 Distributed network intrusion detection

Figure 2 Kelly compressor

The remainder of this paper is organized into the
following sections: Section 2 provides
background, Section 3 outlines the approach
chosen to address this problem, Section 4
presents our results, and Section 5 provides a
conclusion and discussion of future work.

2. BACKGROUND

One popular strategy for implementing a
distributed NIDS is to do all of the intrusion
detection on the sensor and send only alerts or
logs to the CAS. (Roesch, 1999) (Paxson, 1999)

A second strategy might be to use lossless
compression to reduce the size of the data
returned to the CAS. A third strategy is to
implement some form of lossy compression
algorithm to send back relevant portions of
traffic.

There are three problems with the first strategy.

The first is that it has the potential to over-burden
the sensor's central processing unit (CPU) and
introduce packet loss. Smith et al. discovered that

the impact of packet loss can sometimes be quite
severe for even small rates of packet loss.
(2016a) (2016b) The second problem is that the
alerts by themselves often do not contain enough
information to determine whether the attack was
successful. The third problem is that these
systems are most often implemented with

signature-based intrusion detection engines.
Signature-based systems may be tuned to
produce few false positives; however, they are
ineffective at detecting zero-day and advanced
persistent threats. (Kemmerer & Vigna, 2002)

The problem with the second strategy is that
lossless compression alone simply is not capable
of reducing the amount of traffic enough. Using
GNU Zip to compress the 2009 Cyber Defense
Exercise data set provides a compression ratio of
2:1. (Smith, Neyens, & Hammell, 2017)
Compression ratios of better than 10:1 are

required to minimize the impact of NIDS on day-
to-day operations.

The third strategy is to use lossy compression to
provide a solution. Network traffic may be
considered to be composed of sessions that span
spectrums from known to unknown and malicious

to benign, as illustrated in Figure 3. Quadrant III,
the known malicious quadrant, is the domain of

intrusion prevention systems as described by
Ierace, Urrautia, and Bassett (Ierace, Urrutia, &
Bassett, 2005). This research is most interested
in quadrant II, the unknown malicious quadrant,

because that is the quadrant where evidence of
zero-day and advanced persistent threat attacks
will be found. In 2004, Kerry Long described the
Interrogator Intrusion Detection System
Architecture (2004).

Figure 3 Network traffic composition

In this architecture, remotely deployed sensors
collect network traffic and transmit a subset of

http://proc.conisar.org/

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5207

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 3
http://proc.conisar.org; https://www.iscap.info

the traffic to the analysis level. Interrogator

employs “a dynamic network traffic selection
algorithm called Snapper”. (2004). Long and
Morgan describe how they used data mining to

discover known benign traffic that they excluded
from the data transmitted back to the analysis
servers (2007).

Smith and Hammell, in their work on compressing
network traffic based upon flow features (2019),
discovered that malicious flows manifested

themselves early; however, some malicious flows
remained malicious deep into the flow. In this
work the flow features are combined with a
network intrusion detection algorithm to taint
flows. This network intrusion detection algorithm
needs to be very light-weight. Anagram (Wang,

Parekh, & Stolfo, 2006) used N-grams and Bloom
filters (Bloom, 1970) to differentiate benign and
malicious traffic. Its approach was to load one
Bloom filter with hashes of N-grams of known
benign network traffic payloads and another
Bloom filter with hashes of N-grams of known
malicious network traffic payloads. ELIDe used

N-grams but a different hashing method for
detecting malicious traffic (Chang, Harang, &
Payer, 2013). FAST-D (Yu & Leslie, 2017) inspired
by Anagram and ELIDe also makes use of
N-grams and Bloom filters.

3. APPROACH

This approach to the problem builds on Smith and

Hammell’s work (2019) with flow features by
using N-grams and a Bloom filter to discover if a
flow is malicious inside a user-defined threshold.
Six data sets were selected to test the technique.

Prototype tools were written to create the Bloom
filters, compress the traffic, and control the
experiments.

Data Sets
These data sets were chosen because they
provide different types of data sets spanning from

1998 to 2017. The data sets provide a mix of
synthetic and competition with 4 being synthetic
and 2 competition.

DARPA Data Sets
As part of their evaluation of intrusion detection
systems conducted under a grant from the

Defense Advanced Research Projects Agency
(DARPA), Lippman et al. created a data set of
synthetic network traffic (2000). The 2 weeks of
tcpdump testing data from 1998 have been
combined into one file for this research. The
DARPA data set from 1999 contains “inside” and

“outside” network capture files. The 2 weeks for

tcpdump testing data from the “outside” have

been combined into one file for this research.

Cyber Defense Exercise 2009

In 2009 the National Security Agency/Central
Security Service (NSA/CSS) conducted an
exercise pitting teams from the military
academies of the United States and Canada
against teams of professional network specialists
to see who best defended their network. Data
from this exercise was captured and used by

Sangster et al. in their efforts to generate labeled
data sets (2009). Two network traffic sensors
were employed in the exercise: gator-usama010
and gator-usama020. The raw network data
captured from both sensors has been condensed
into 2 files for use in this research.

University of New Brunswick
In 2012, the Information Security Centre of
Excellence (ISCX) at the University of New
Brunswick created a data set for intrusion
detection research (Intrusion detection
evaluation dataset (ISCXIDS2012), 2012)

(Shiravi, Shiravi, Tavallaee, & Ghorbani, 2012).
This synthetic labeled data set contains full
network capture files. In 2017, the Canadian
Institute for Cybersecurity (CIC) at the University
of New Brunswick created another data set for
intrusion detection research (Intrusion detection
evaluation dataset (CICIDS2017), 2017). The

ISCX 2012 data set consists of 7 days of traffic.
The first day is reported to contain no malicious

activity; therefore, the network capture data from
the remaining 6 days was concatenated into one
file for this research. The CIC 2017 data set
consists of 5 days of traffic. The first day is free

from malicious traffic and designed to be used for
training. The remaining 4 days of network
traffic was concatenated into one file for this
research.

Rule Sets
The initial rule set was the registered rule set

downloaded from www.snort.org in August 2013.
This rule set was effective with the traffic from the
CDX 2009 data set, but worked poorly with the
DARPA 1998 data set. The more rules that are

tested by Snort, the more computing resources
Snort requires to complete the analysis. These
resources may climb to the point where Snort is

unable to keep up with the network traffic causing
packet loss. Therefore, the registered rule set
from 2013 has most of the rules commented out.
In order to analyze older data sets, it was
necessary to tailor the rule set to ensure that
rules appropriate to the time period are active.

Four rule sets were used in this research:
Circa2000 is the registered rule set from 2013

http://proc.conisar.org/
http://www.snort.org/

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5207

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 4
http://proc.conisar.org; https://www.iscap.info

with rules appropriate for 2000 activated,

Circa2009 is the registered rule set from 2013
with rules appropriate for 2009 activated,
RegAug2013 is the registered rules as

downloaded from the Snort website in August
2013, and RegSep2018 is the registered rule set
as downloaded from the Snort web-site in
September 2018.

Software
This research included the development of

several pieces of prototype software. These
include tools to create and manipulate files
containing Bloom filters, software to collect
network traffic, track flows, and test packets
against the Bloom filter, and software to control
the experiments.

Bloom Filters
Bloom filters are stored in binary files for speed
of ingest and reduction in size. The Bloom filter
files are stored in network byte order to facilitate
use of different architectures. Each file contains a
magic number with a version number, the size of

the Bloom filter, the number of unique elements
in the Bloom filter, the size of the N-grams, length
of the Bloom filter name, the name of the Bloom
filter, the number of hashes, hash type and seed

pairs, and the filter itself. The program mkbflt is

used to create Bloom filters, the program

dispbflt is used to display the contents of a

Bloom filter, and the program bfltmerge is used

to merge 2 or more Bloom filters.

PCAP File Manipulators

The pcappurge program was written to remove

malicious traffic from a file in PCAP (Jacobson,

Leres, & McCanne, 2015) format based upon the
alerts found by Snort (Roesch, 1999). The

pappurge program is sensitive to time warps

where a packet is read that is younger than
packets previously processed. The programs

pcaptsplit and pcaptmerge were developed to

address this problem. The pcaptsplit program

takes a file in PCAP format and creates one or
more files that do not contain any time warps.

The pcaptmerge program takes the PCAP files

created by pcaptsplit and merges them into a

single PCAP file without any time warps.

Network Traffic Compressor

The netcomp program was written to collect traffic

using Libpcap (Jacobson, Leres, & McCanne,
2015) and compress that traffic using lossy
compression based upon tainted flows. The

netcomp program tracks flows terminating

transmission after a user-provided threshold
similar to the tool developed by Smith and

Hammell (2019). In addition, it decomposes the

payload into N-grams, hashes these N-grams,
and compares the hash against a malicious Bloom
filter. Flows that contain matching N-grams are

tainted and traffic associated with tainted flows
will continue to be transmitted to the CAS.

Experimental Control
The data set database was developed to support
this research. The data set database contains
information about the data sets, rule sets, and the

Snort alerts discovered when data sets are
analyzed by rule sets. It consists of 3 tables
implemented as colon-separated text files. This
choice was made because many of these
experiments will be conducted on hardware that
simulates a network intrusion detection sensor,

which would not support a relational database

system. The data is accessed through the dsdb

command.

The experiments involved running the netcomp

command at different thresholds in order to plot
the alert loss rate (ALR) and the compression. The

netcompit shell script that controlled the

experiments employed the data set database to
obtain the required information about each data
set and rule set. It also employed the Sequence

program (Smith & Hammell II, 2018) to set the
thresholds.

Preparation

Before the experiments can begin it is necessary
to prepare a malicious Bloom filter for each data

set. The pcappurge, which is used to remove

malicious traffic based upon Snort alerts, is very
sensitive to time warps. A time warp occurs when

packets are out of order. More specifically, it
occurs when the date on the current packet is
further in the past than the date of the previously
read packet. Time warps must first be removed

from the data set using pcaptsplit and

pcaptmerge. The unabridged data set is then

analyzed with Snort applying the appropriate rule
set. Once there is a PCAP file for the data set free
of time warps and a Snort alert file, the

pcappurge program can split the file into a

malicious PCAP file and a benign PCAP file. First

the mkbflt program uses the benign PCAP file to

create a Bloom filter of benign N-grams. The

mkbflt program then uses the malicious PCAP

file and the benign Bloom filter to create a Bloom
filter of malicious N-grams. Malicious flows
contain a considerable amount of benign N-
grams. If these were not filtered, the false
positive rate would be unacceptable.

http://proc.conisar.org/

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5207

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 5
http://proc.conisar.org; https://www.iscap.info

4. RESULTS

In the following tests the ALR is plotted in circles
and the compression, expressed as a percentage

of the original size of the data set, is plotted in
triangles. The threshold has been normalized
using (1) where t is the threshold, p is the current
packet count, and m is a configurable maximum
packet count. Using this formula it is possible for
the computed threshold to be negative if the
packet count exceeds the maximum packet

count. This also explains why at a threshold of
zero the compression is not always 100%. In each
of these tests m was set to 200.

𝑡 = 1 −
𝑝

𝑚
. (1)

DARPA 1998 Testing
Figure 4 shows the effect of compressing the
DARPA 1998 testing data set using the tainted
flows technique and analyzing that data with
Snort using the Circa2000 rule set. When the
threshold is set to 0.75, the data set is
compressed to 77.00% of its original size, and

0.00% of the alerts have been lost. When the
threshold is set to 0.95, the data set is
compressed to 66.00% of the original size and
0.27% of the alerts have been lost.

Figure 4 Tainted flow-based compression using
the DARPA 1998 testing data set and the
Circa2000 rule set

DARPA 1999 Testing Outside
Figure 5 shows the effect of compressing the

DARPA 1999 testing outside data set using the
tainted flows technique and analyzing that data
with Snort using the Circa2000 rule set. When the
threshold is set to 0.00, the data set is

compressed to 78.00% of its original size, and
0.01% of the alerts have been lost. When the
threshold is set to 0.96, the data set is
compressed to 33.00% of the original size and
0.87% of the alerts have been lost.

Figure 5 Tainted flow-based compression using
the DARPA 1999 outside testing data set and the
Circa2000 rule set

CDX 2009 gator-usama010

Figure 6 shows the effect of compressing the CDX
2009 gator-usama010 data set using the tainted
flows technique and analyzing that data with
Snort using the Circa2009 rule set. When the
threshold is set to 0.50, the data set is

compressed to 84.00% of its original size, and
0.00% of the alerts have been lost. When the
threshold is set to 0.96, the data set is
compressed to 61.00% of the original size and
0.58% of the alerts have been lost.

Figure 6 Tainted flow-based compression using
the CDX 2009 gator-usama010 data set and the
Circa2009 rule set

CDX 2009 gator-usama020
Figure 7 shows the effect of compressing the CDX
2009 gator-usama020 data set using the tainted
flows technique and analyzing that data with

Snort using the Circa2009 rule set. When the
threshold is set to 0.00, the data set is
compressed to 30.00% of its original size, and

0.00% of the alerts have been lost. When the
threshold is set to 0.95, the data set is
compressed to 23.00% of the original size and
0.57% of the alerts have been lost.

http://proc.conisar.org/

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5207

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 6
http://proc.conisar.org; https://www.iscap.info

Figure 7 Tainted flow-based compression using
the CDX 2009 gator-usama020 data set and the
Circa2009 rule set

ISCX 15 Jun 2012

Figure 8 shows the effect of compressing the ISCX
15 Jun 2012 data set using the tainted flows
technique and analyzing that data with Snort
using the RegAug2013 rule set. When the
threshold is set to 0.00, the data set is

compressed to 88.00% of its original size, and
0.04% of the alerts have been lost. When the
threshold is set to 0.99, the data set is
compressed to 31.00% of the original size and
0.89% of the alerts have been lost.

Figure 8 Tainted flow-based compression using
the ISCX 15 Jun 2012 data set and the

RegAug2013 rule set

CIC 5 Jul 2017
Figure 9 shows the effect of compressing the CIC
5 Jul 2017 data set using the tainted flows
technique and analyzing that data with Snort

using the RegSep2018 rule set. When the
threshold is set to 0.80, the data set is
compressed to 36.00% of its original size, and
0.00% of the alerts have been lost. When the
threshold is set to 0.90, the data set is
compressed to 34.00% of the original size and

0.94% of the alerts have been lost.

Figure 9 Tainted flow-based compression using
the CIC 5 Jul 2017 data set and the RegSep2018
rule set

Summary

Figure 9 summarizes the results listing the data
set, threshold, ALR, and size. Assuming that less
than 1% ALR is acceptable, this table shows that
for 4 out of 6 of the data sets the tainted flow
compression technique was able to reduce the

size of the data set to close to 30% or less. Smith
et al. discovered that this level of compression
was enough to allow standard lossless
compression techniques to bring the data to
within 10% of the original size (2017).

The DARPA 1998 testing data set includes a large

amount of TELNET traffic. A large number of the
alerts contained in that data set were TELNET
failed login attempts. TELNET traffic tends to

consist of a very large number of very small
packets. The thresholds range from 0.90 to 0.96
percent. This equates to packet counts from 20 to
8. It is clear 8 packets would seldom be enough

to capture a TELNET failed login. Further, the
TELNET has fallen into disuse. The preponderance
of Transmission Control Protocol alerts in the CDX
2009 gator-usama010 data set are from the
Hyper Text Transport Protocol. A threshold of
0.96 means that we are stopping transmission of

untainted flows only 8 packets into each flow.
Considering that this is a competition data set, it
is likely that there is simply that much traffic
associated with each tainted flow.

Table 1 thresholds, ALR, and size for each data

set with ALR less than 1%

Data set Threshold ALR Size

D98TE 0.95 0.27% 66.00%

D99TEO 0.96 0.87% 33.00%

CDX09u010 0.96 0.58% 61.00%

CDX09u020 0.95 0.57% 23.00%

ISCX 2012 0.99 0.89% 31.00%

CIC 2017 0.90 0.94% 34.00%

http://proc.conisar.org/

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5207

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 7
http://proc.conisar.org; https://www.iscap.info

5. CONCLUSIONS

The tainted flow lossy network compression
technique was able to compress 4 out of 6 of the

tested data sets to about 30% of the original size.
This level of compression is good enough to allow
standard lossless technique to complete
compressing to less than 10%. There are
reasonable explanations as to why the other 2
data sets did not compress well. This research
demonstrates that the tainted flow technique is a

promising approach for compressing network
traffic in distributed network intrusion detection
applications.

There are 3 major directions in future work. One
is to optimize the code to run as efficiently as

possible. Another is to test the thresholds
discovered here on different data sets. Lastly, the
program should be tested in a realistic
environment.

The prototype is written in C++. The flow tracking
code relies on the standard map data structure,

which should execute in 0log2(n) time. The
N-gram matching relies on a Bloom filter, which
is highly efficient. Since the program must run as
efficiently as possible to prevent over-burdening
the sensor and introducing packet loss, it would
benefit from further optimization.

It is one thing to adjust the thresholds until the
optimal threshold is discovered for a particular

data set; however, this will not be possible in the
real world. In the future, these findings may be
tested by selecting a threshold before the data is
compressed and analyzed.

All of these tests were conducted reading a PCAP
file that had already been captured. In the future
this prototype should be installed on hardware
designed to simulate a sensor and traffic should
be replayed on a network interface to be
captured, compressed, and analyzed. This would

allow the prototype’s performance to be
compared to other tools like Snort in a relevant
environment.

6. REFERENCES

Bloom, B. H. (1970). Space/time trade-offs in

hash coding with allowable errors.
Communications of the ACM, 422-426.

Chang, R. J., Harang, R. E., & Payer, G. S. (2013).
Extremely lightweight intrusion detection
(ELIDe) (No. ARL-CR-0730). Adelphi, MD: US
Army Research Laboratory.

Ierace, N., Urrutia, C., & Bassett, R. (2005).

Intrusion Prevention Systems. Ubiquity, 2-2.

Intrusion detection evaluation dataset
(CICIDS2017). (2017). Retrieved September

2018, from University of New Brunswick:
http://www.unb.ca/cic/datasets/ids-
2017.html

Intrusion detection evaluation dataset
(ISCXIDS2012). (2012). Retrieved
September 2018, from University of New
Brunswick:

http://www.unb.ca/cic/datasets/ids.html

Jacobson, V., Leres, C., & McCanne, S. (2015,
March 8). PCAP -- packet capture library.

Retrieved from Tcpdump/Libpcap:
http://www.tcpdump.org/manpages/pcap.3p
cap.1.html

Kelly, J. L. (1956). A new interpretation of
information rate. Information Theory, IRE
Transactions on, 185-189.

Kemmerer, R. A., & Vigna, G. (2002). Intrusion
detection: a brief history and overview
(supplement to Computer magazine).
Computer, 27-30.

Lippmann, R. P., Fried, D. J., Graf, I., Haines, J.
W., Kendall, K. R., McClung, D., . . . Zissman,

M. A. (2000). Evaluating intrusion detection
systems: the 1998 DARPA off-line intrusion
detection evaluation. DARPA Information
Survivability Conference and Exposition,
2000. DISCEX'00. Proceedings (pp. 12-26).

Hilton Head, SC: IEEE.

Long, K. S. (2004). Catching the Cyber Spy:
ARL's Interrogator. Aberdeen Proving
Ground: Army Research Laboratory.

Long, K. S., & Morgan, J. B. (2007). Using data
mining to improve the efficiency of intrusion

detection analsysis. Army Research
Laboratory. Aberdeen Proving Ground (MD):
Army Research Laboratory.

Paxson, V. (1999). Bro: a system for detecting
network intruders in real-time. Computer
Networks, 2435-2463.

Roesch, M. (1999). Snort: lightweight intrusion

detection for networks. Proceedings of the
13th System Administration Conference
(LISA '99) (pp. 229-238). Seattle, WA:
USENIX.

http://proc.conisar.org/

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5207

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 8
http://proc.conisar.org; https://www.iscap.info

Sangster, B., O'Conner, T., Cook, T., Franelli, R.,

Dean, E., Adams, W. J., . . . Conti, G. (2009).
Toward instrumenting network warfare
competitions to generate labeled datasets.

Proc. of the 2nd Workshop on Cyber Security
Experimentation and Test CSET09. Montreal
Canada.

Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani,
A. A. (2012). Toward developing a systematic
approach to generate benchmark datasets for
intrusion detection. Computers & Security,

31(3), 357-374.

Smith, S. C., & Hammell II, R. J. (2018).
Controlling Experiments Using Mathematical
Sequences. US Army Research Laboratory.

Aberdeen Proving Ground, MD: US Army
Research Laboratory.

Smith, S. C., & Hammell II, R. J. (2019). The use
of Flow Features in Lossy Network Traffic
Compression for Network Intrusion Detection
Applications. The 10th International Multi-
Conference on Complexity, Informatics and
Cybernetics: IMCIC 2019 (pp. 181-186).
Orlando, FL: International Institute of

Informatics and Systemics.

Smith, S. C., & Hammell, R. J. (2017, Aug).
Proposal for Kelly Criterion-Inspired Lossy
Network Compression for Network Intrusion

Applications. Journal of Information Systems
Applied Research, 10(2), 43-51.

Smith, S. C., Hammell, R. J., Wong, K. W., &

Carlos, J. M. (2016a). An Experimental
Exploration of the Impact of Host-Level

Packet Loss on Network Intrusion Detection.

Cybersecurity Symposium (CYBERSEC) (pp.
13-19). IEEE.

Smith, S. C., Hammell, R. J., Wong, K. W., &

Carlos, J. M. (2016b). An experimental
exploration of the impact of multi-level packet
loss on network intrusion detection. 2016
IEEE 14th International Conference on
Software Engineering Research, Management
and Applications (SERA) (pp. 23-30).
Towson, MD: IEEE.

Smith, S. C., Neyens, S. R., & Hammell, R. J.
(2017). The use of Entropy in Lossy Network
Traffic Compression for Network Intrusion
Detection Applications. Proceedings of the

12th International Conference on Cyber
Warfare and Security {ICCWS} 2017 (pp.

352-360). Reading (UK): Academic
Conferences and Publishing International
Limited.

Wang, K., Parekh, J., & Stolfo, S. (2006).
Anagram: A content anomaly detector
resistant to mimicry attack. International
Workshop on Recent Advances in Intrusion

Detection (pp. 226-248). Hamburg,
Germany: Springer.

Yu, K., & Leslie, N. O. (2017). FAST-D: malware
and intrusion detection for mobile ad hoc

networks (MANETs). NATO Specialist Meeting
IST-145 on Predictive Analytics and Analysis
in the Cyber Domain (pp. 10-11). Sibiu,

Romania: NATO IST.

http://proc.conisar.org/

