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Abstract  

 

In distributed network intrusion detection, it is necessary to transmit data from remote sensors to a 
central analysis system. Transmitting all the data captured by a sensor would place an unacceptable 
demand on the bandwidth available to the site. Most applications address this problem by sending only 
alerts or summaries; however, these alone do not always provide the analyst with enough information 

to truly understand what is happening on the network. Lossless compression techniques alone are not 
sufficient to address the bandwidth demand. This paper explores a concept called tainted flows employed 
in a lossy compression technique. The tainted flows technique uses a Bloom filter of malicious N-gram 

hashes to taint or mark flows as malicious. Network traffic is compressed by stopping the transmission 
of untainted flows after a user-defined threshold, but keeping all of the tainted flows. This tainted flows 
method was used to compress synthetic and competition data sets from 1998 until 2017 to about 30% 
of their original size with less than 1% loss of Snort alerts. 
 
Keywords: network intrusion detection, lossy compression, N-grams, Bloom filters, Snort, Tcpdump. 

 
 

1. INTRODUCTION 
 
Distributed Network Intrusion Detection Systems 
(NIDS) allow a relatively small number of highly 
trained analysts to monitor a much larger number 

of sites; however, they require information to be 
transmitted from the remote sensor to the central 
analysis system (CAS), as pictured in Figure 1. 
Unless an expensive dedicated NIDS network is 
employed, this transmission must use the same 
channels that the site uses to conduct their daily 
business. This makes it important to reduce the 

amount of information transmitted back to the 
CAS to minimize the impact that the NIDS has on 
daily operations as much as practical. 

 
Smith and Hammell (2017) proposed that it 
should be possible to create a lossy compression 
tool using anomaly detection techniques to rate 
each session and a modification of the Kelly 

criterion (Kelly, 1956) to select how much traffic 
from each session to return, as seen in Figure 2. 
 
The contribution of this research is to explore one 
method to compress network traffic without 
unacceptably impacting the ability of the NIDS to 
detect and analyze malicious activity. Based upon 

Smith and Hammell’s findings that malicious 
network flows will manifest their maliciousness 
early (2019), this research adds the ability to 
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determine if a flow is malicious by collecting 

malicious N-grams and hashing them into a 
Bloom filter. Packets are then broken into  
N-grams, which are hashed and compared to the 

Bloom filter. If the hash of an N-gram matches 
one in the malicious Bloom filter, the flow is 
tainted and all packets from that flow will be 
transmitted to the CAS. If no N-grams match, 
transmission of the flow to the CAS will stop after 
a user-defined threshold. 
 

 

 
Figure 1 Distributed network intrusion detection 

 
Figure 2 Kelly compressor 

The remainder of this paper is organized into the 
following sections: Section 2 provides 
background, Section 3 outlines the approach 
chosen to address this problem, Section 4 
presents our results, and Section 5 provides a 
conclusion and discussion of future work. 
 

2. BACKGROUND 
 

One popular strategy for implementing a 
distributed NIDS is to do all of the intrusion 
detection on the sensor and send only alerts or 
logs to the CAS. (Roesch, 1999) (Paxson, 1999) 

A second strategy might be to use lossless 
compression to reduce the size of the data 
returned to the CAS. A third strategy is to 
implement some form of lossy compression 
algorithm to send back relevant portions of 
traffic. 

There are three problems with the first strategy. 

The first is that it has the potential to over-burden 
the sensor's central processing unit (CPU) and 
introduce packet loss. Smith et al. discovered that 

the impact of packet loss can sometimes be quite 
severe for even small rates of packet loss. 
(2016a) (2016b) The second problem is that the 
alerts by themselves often do not contain enough 
information to determine whether the attack was 
successful. The third problem is that these 
systems are most often implemented with 

signature-based intrusion detection engines. 
Signature-based systems may be tuned to 
produce few false positives; however, they are 
ineffective at detecting zero-day and advanced 
persistent threats. (Kemmerer & Vigna, 2002) 
 

The problem with the second strategy is that 
lossless compression alone simply is not capable 
of reducing the amount of traffic enough. Using 
GNU Zip to compress the 2009 Cyber Defense 
Exercise data set provides a compression ratio of 
2:1. (Smith, Neyens, & Hammell, 2017) 
Compression ratios of better than 10:1 are 

required to minimize the impact of NIDS on day-
to-day operations. 
 
The third strategy is to use lossy compression to 
provide a solution. Network traffic may be 
considered to be composed of sessions that span 
spectrums from known to unknown and malicious 

to benign, as illustrated in Figure 3. Quadrant III, 
the known malicious quadrant, is the domain of 

intrusion prevention systems as described by 
Ierace, Urrautia, and Bassett (Ierace, Urrutia, & 
Bassett, 2005). This research is most interested 
in quadrant II, the unknown malicious quadrant, 

because that is the quadrant where evidence of 
zero-day and advanced persistent threat attacks 
will be found. In 2004, Kerry Long described the 
Interrogator Intrusion Detection System 
Architecture (2004).  

 
Figure 3 Network traffic composition 

In this architecture, remotely deployed sensors 
collect network traffic and transmit a subset of 
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the traffic to the analysis level. Interrogator 

employs “a dynamic network traffic selection 
algorithm called Snapper”. (2004). Long and 
Morgan describe how they used data mining to 

discover known benign traffic that they excluded 
from the data transmitted back to the analysis 
servers (2007). 
 
Smith and Hammell, in their work on compressing 
network traffic based upon flow features (2019), 
discovered that malicious flows manifested 

themselves early; however, some malicious flows 
remained malicious deep into the flow. In this 
work the flow features are combined with a 
network intrusion detection algorithm to taint 
flows. This network intrusion detection algorithm 
needs to be very light-weight. Anagram (Wang, 

Parekh, & Stolfo, 2006) used N-grams and Bloom 
filters (Bloom, 1970) to differentiate benign and 
malicious traffic. Its approach was to load one 
Bloom filter with hashes of N-grams of known 
benign network traffic payloads and another 
Bloom filter with hashes of N-grams of known 
malicious network traffic payloads. ELIDe used  

N-grams but a different hashing method for 
detecting malicious traffic (Chang, Harang, & 
Payer, 2013). FAST-D (Yu & Leslie, 2017) inspired 
by Anagram and ELIDe also makes use of  
N-grams and Bloom filters. 
 

3. APPROACH 

 
This approach to the problem builds on Smith and 

Hammell’s work (2019) with flow features by 
using N-grams and a Bloom filter to discover if a 
flow is malicious inside a user-defined threshold. 
Six data sets were selected to test the technique. 

Prototype tools were written to create the Bloom 
filters, compress the traffic, and control the 
experiments. 
 
Data Sets 
These data sets were chosen because they 
provide different types of data sets spanning from 

1998 to 2017. The data sets provide a mix of 
synthetic and competition with 4 being synthetic 
and 2 competition. 
 

DARPA Data Sets 
As part of their evaluation of intrusion detection 
systems conducted under a grant from the 

Defense Advanced Research Projects Agency 
(DARPA), Lippman et al. created a data set of 
synthetic network traffic (2000). The 2 weeks of 
tcpdump testing data from 1998 have been 
combined into one file for this research. The 
DARPA data set from 1999 contains “inside” and 

“outside” network capture files. The 2 weeks for 

tcpdump testing data from the “outside” have 

been combined into one file for this research. 
 
Cyber Defense Exercise 2009 

In 2009 the National Security Agency/Central 
Security Service (NSA/CSS) conducted an 
exercise pitting teams from the military 
academies of the United States and Canada 
against teams of professional network specialists 
to see who best defended their network. Data 
from this exercise was captured and used by 

Sangster et al. in their efforts to generate labeled 
data sets (2009). Two network traffic sensors 
were employed in the exercise: gator-usama010 
and gator-usama020. The raw network data 
captured from both sensors has been condensed 
into 2 files for use in this research. 

 
University of New Brunswick 
In 2012, the Information Security Centre of 
Excellence (ISCX) at the University of New 
Brunswick created a data set for intrusion 
detection research (Intrusion detection 
evaluation dataset (ISCXIDS2012), 2012) 

(Shiravi, Shiravi, Tavallaee, & Ghorbani, 2012). 
This synthetic labeled data set contains full 
network capture files. In 2017, the Canadian 
Institute for Cybersecurity (CIC) at the University 
of New Brunswick created another data set for 
intrusion detection research (Intrusion detection 
evaluation dataset (CICIDS2017), 2017). The 

ISCX 2012 data set consists of 7 days of traffic. 
The first day is reported to contain no malicious 

activity; therefore, the network capture data from 
the remaining 6 days was concatenated into one 
file for this research. The CIC 2017 data set 
consists of 5 days of traffic. The first day is free 

from malicious traffic and designed to be used for 
training. The remaining 4 days of network 
traffic was concatenated into one file for this 
research. 
 
Rule Sets 
The initial rule set was the registered rule set 

downloaded from www.snort.org in August 2013. 
This rule set was effective with the traffic from the 
CDX 2009 data set, but worked poorly with the 
DARPA 1998 data set. The more rules that are 

tested by Snort, the more computing resources 
Snort requires to complete the analysis. These 
resources may climb to the point where Snort is 

unable to keep up with the network traffic causing 
packet loss. Therefore, the registered rule set 
from 2013 has most of the rules commented out. 
In order to analyze older data sets, it was 
necessary to tailor the rule set to ensure that 
rules appropriate to the time period are active. 

Four rule sets were used in this research: 
Circa2000 is the registered rule set from 2013 

http://proc.conisar.org/
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with rules appropriate for 2000 activated, 

Circa2009 is the registered rule set from 2013 
with rules appropriate for 2009 activated, 
RegAug2013 is the registered rules as 

downloaded from the Snort website in August 
2013, and RegSep2018 is the registered rule set 
as downloaded from the Snort web-site in 
September 2018. 
 
Software 
This research included the development of 

several pieces of prototype software. These 
include tools to create and manipulate files 
containing Bloom filters, software to collect 
network traffic, track flows, and test packets 
against the Bloom filter, and software to control 
the experiments. 

 
Bloom Filters 
Bloom filters are stored in binary files for speed 
of ingest and reduction in size. The Bloom filter 
files are stored in network byte order to facilitate 
use of different architectures. Each file contains a 
magic number with a version number, the size of 

the Bloom filter, the number of unique elements 
in the Bloom filter, the size of the N-grams, length 
of the Bloom filter name, the name of the Bloom 
filter, the number of hashes, hash type and seed 

pairs, and the filter itself. The program mkbflt is 

used to create Bloom filters, the program 

dispbflt is used to display the contents of a 

Bloom filter, and the program bfltmerge is used 

to merge 2 or more Bloom filters. 
 
PCAP File Manipulators 

The pcappurge program was written to remove 

malicious traffic from a file in PCAP (Jacobson, 

Leres, & McCanne, 2015) format based upon the 
alerts found by Snort (Roesch, 1999). The 

pappurge program is sensitive to time warps 

where a packet is read that is younger than 
packets previously processed. The programs 

pcaptsplit and pcaptmerge were developed to 

address this problem. The pcaptsplit program 

takes a file in PCAP format and creates one or 
more files that do not contain any time warps. 

The pcaptmerge program takes the PCAP files 

created by pcaptsplit and merges them into a 

single PCAP file without any time warps. 
 
Network Traffic Compressor 

The netcomp program was written to collect traffic 

using Libpcap (Jacobson, Leres, & McCanne, 
2015) and compress that traffic using lossy 
compression based upon tainted flows. The 

netcomp program tracks flows terminating 

transmission after a user-provided threshold 
similar to the tool developed by Smith and 

Hammell (2019). In addition, it decomposes the 

payload into N-grams, hashes these N-grams, 
and compares the hash against a malicious Bloom 
filter. Flows that contain matching N-grams are 

tainted and traffic associated with tainted flows 
will continue to be transmitted to the CAS. 

 
Experimental Control 
The data set database was developed to support 
this research. The data set database contains 
information about the data sets, rule sets, and the 

Snort alerts discovered when data sets are 
analyzed by rule sets. It consists of 3 tables 
implemented as colon-separated text files. This 
choice was made because many of these 
experiments will be conducted on hardware that 
simulates a network intrusion detection sensor, 

which would not support a relational database 

system. The data is accessed through the dsdb 

command. 
 

The experiments involved running the netcomp 

command at different thresholds in order to plot 
the alert loss rate (ALR) and the compression. The 

netcompit shell script that controlled the 

experiments employed the data set database to 
obtain the required information about each data 
set and rule set. It also employed the Sequence 

program (Smith & Hammell II, 2018) to set the 
thresholds. 
 
Preparation 

Before the experiments can begin it is necessary 
to prepare a malicious Bloom filter for each data 

set. The pcappurge, which is used to remove 

malicious traffic based upon Snort alerts, is very 
sensitive to time warps. A time warp occurs when 

packets are out of order. More specifically, it 
occurs when the date on the current packet is 
further in the past than the date of the previously 
read packet. Time warps must first be removed 

from the data set using pcaptsplit and 

pcaptmerge. The unabridged data set is then 

analyzed with Snort applying the appropriate rule 
set. Once there is a PCAP file for the data set free 
of time warps and a Snort alert file, the 

pcappurge program can split the file into a 

malicious PCAP file and a benign PCAP file. First 

the mkbflt program uses the benign PCAP file to 

create a Bloom filter of benign N-grams. The 

mkbflt program then uses the malicious PCAP 

file and the benign Bloom filter to create a Bloom 
filter of malicious N-grams. Malicious flows 
contain a considerable amount of benign N-
grams. If these were not filtered, the false 
positive rate would be unacceptable. 
 

http://proc.conisar.org/


2019 Proceedings of the Conference on Information Systems Applied Research   ISSN: 2167-1508 

Cleveland, Ohio    v12 n5207  

 

©2019 ISCAP (Information Systems & Computing Academic Professionals)   Page 5 
http://proc.conisar.org; https://www.iscap.info 

4. RESULTS 

 
In the following tests the ALR is plotted in circles 
and the compression, expressed as a percentage 

of the original size of the data set, is plotted in 
triangles. The threshold has been normalized 
using (1) where t is the threshold, p is the current 
packet count, and m is a configurable maximum 
packet count. Using this formula it is possible for 
the computed threshold to be negative if the 
packet count exceeds the maximum packet 

count. This also explains why at a threshold of 
zero the compression is not always 100%. In each 
of these tests m was set to 200. 

 

𝑡 = 1 −
𝑝

𝑚
.                                    (1) 

 

DARPA 1998 Testing 
Figure 4 shows the effect of compressing the 
DARPA 1998 testing data set using the tainted 
flows technique and analyzing that data with 
Snort using the Circa2000 rule set. When the 
threshold is set to 0.75, the data set is 
compressed to 77.00% of its original size, and 

0.00% of the alerts have been lost. When the 
threshold is set to 0.95, the data set is 
compressed to 66.00% of the original size and 
0.27% of the alerts have been lost. 
 

 
Figure 4 Tainted flow-based compression using 
the DARPA 1998 testing data set and the 
Circa2000 rule set 

DARPA 1999 Testing Outside 
Figure 5 shows the effect of compressing the 

DARPA 1999 testing outside data set using the 
tainted flows technique and analyzing that data 
with Snort using the Circa2000 rule set. When the 
threshold is set to 0.00, the data set is 

compressed to 78.00% of its original size, and 
0.01% of the alerts have been lost. When the 
threshold is set to 0.96, the data set is 
compressed to 33.00% of the original size and 
0.87% of the alerts have been lost. 
 

 
Figure 5 Tainted flow-based compression using 
the DARPA 1999 outside testing data set and the 
Circa2000 rule set 

CDX 2009 gator-usama010 

Figure 6 shows the effect of compressing the CDX 
2009 gator-usama010 data set using the tainted 
flows technique and analyzing that data with 
Snort using the Circa2009 rule set. When the 
threshold is set to 0.50, the data set is 

compressed to 84.00% of its original size, and 
0.00% of the alerts have been lost. When the 
threshold is set to 0.96, the data set is 
compressed to 61.00% of the original size and 
0.58% of the alerts have been lost. 
 

 
Figure 6 Tainted flow-based compression using 
the CDX 2009 gator-usama010 data set and the 
Circa2009 rule set 

CDX 2009 gator-usama020 
Figure 7 shows the effect of compressing the CDX 
2009 gator-usama020 data set using the tainted 
flows technique and analyzing that data with 

Snort using the Circa2009 rule set. When the 
threshold is set to 0.00, the data set is 
compressed to 30.00% of its original size, and 

0.00% of the alerts have been lost. When the 
threshold is set to 0.95, the data set is 
compressed to 23.00% of the original size and 
0.57% of the alerts have been lost. 
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Figure 7 Tainted flow-based compression using 
the CDX 2009 gator-usama020 data set and the 
Circa2009 rule set 

ISCX 15 Jun 2012 

Figure 8 shows the effect of compressing the ISCX 
15 Jun 2012 data set using the tainted flows 
technique and analyzing that data with Snort 
using the RegAug2013 rule set. When the 
threshold is set to 0.00, the data set is 

compressed to 88.00% of its original size, and 
0.04% of the alerts have been lost. When the 
threshold is set to 0.99, the data set is 
compressed to 31.00% of the original size and 
0.89% of the alerts have been lost. 
 

 
Figure 8 Tainted flow-based compression using 
the ISCX 15 Jun 2012 data set and the 

RegAug2013 rule set 

CIC 5 Jul 2017 
Figure 9 shows the effect of compressing the CIC 
5 Jul 2017 data set using the tainted flows 
technique and analyzing that data with Snort 

using the RegSep2018 rule set. When the 
threshold is set to 0.80, the data set is 
compressed to 36.00% of its original size, and 
0.00% of the alerts have been lost. When the 
threshold is set to 0.90, the data set is 
compressed to 34.00% of the original size and 

0.94% of the alerts have been lost. 
 

 
Figure 9 Tainted flow-based compression using 
the CIC 5 Jul 2017 data set and the RegSep2018 
rule set 

Summary 

Figure 9 summarizes the results listing the data 
set, threshold, ALR, and size. Assuming that less 
than 1% ALR is acceptable, this table shows that 
for 4 out of 6 of the data sets the tainted flow 
compression technique was able to reduce the 

size of the data set to close to 30% or less. Smith 
et al. discovered that this level of compression 
was enough to allow standard lossless 
compression techniques to bring the data to 
within 10% of the original size (2017). 
 
The DARPA 1998 testing data set includes a large 

amount of TELNET traffic. A large number of the 
alerts contained in that data set were TELNET 
failed login attempts. TELNET traffic tends to 

consist of a very large number of very small 
packets. The thresholds range from 0.90 to 0.96 
percent. This equates to packet counts from 20 to 
8. It is clear 8 packets would seldom be enough 

to capture a TELNET failed login. Further, the 
TELNET has fallen into disuse. The preponderance 
of Transmission Control Protocol alerts in the CDX 
2009 gator-usama010 data set are from the 
Hyper Text Transport Protocol. A threshold of 
0.96 means that we are stopping transmission of 

untainted flows only 8 packets into each flow. 
Considering that this is a competition data set, it 
is likely that there is simply that much traffic 
associated with each tainted flow. 

 
Table 1 thresholds, ALR, and size for each data 

set with ALR less than 1% 

Data set Threshold ALR Size 

D98TE 0.95 0.27% 66.00% 

D99TEO 0.96 0.87% 33.00% 

CDX09u010 0.96 0.58% 61.00% 

CDX09u020 0.95 0.57% 23.00% 

ISCX 2012 0.99 0.89% 31.00% 

CIC 2017 0.90 0.94% 34.00% 
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5. CONCLUSIONS 

 
The tainted flow lossy network compression 
technique was able to compress 4 out of 6 of the 

tested data sets to about 30% of the original size. 
This level of compression is good enough to allow 
standard lossless technique to complete 
compressing to less than 10%. There are 
reasonable explanations as to why the other 2 
data sets did not compress well. This research 
demonstrates that the tainted flow technique is a 

promising approach for compressing network 
traffic in distributed network intrusion detection 
applications. 
 
There are 3 major directions in future work. One 
is to optimize the code to run as efficiently as 

possible. Another is to test the thresholds 
discovered here on different data sets. Lastly, the 
program should be tested in a realistic 
environment. 
 
The prototype is written in C++. The flow tracking 
code relies on the standard map data structure, 

which should execute in 0log2(n) time. The  
N-gram matching relies on a Bloom filter, which 
is highly efficient. Since the program must run as 
efficiently as possible to prevent over-burdening 
the sensor and introducing packet loss, it would 
benefit from further optimization. 
 

It is one thing to adjust the thresholds until the 
optimal threshold is discovered for a particular 

data set; however, this will not be possible in the 
real world. In the future, these findings may be 
tested by selecting a threshold before the data is 
compressed and analyzed. 

 
All of these tests were conducted reading a PCAP 
file that had already been captured. In the future 
this prototype should be installed on hardware 
designed to simulate a sensor and traffic should 
be replayed on a network interface to be 
captured, compressed, and analyzed. This would 

allow the prototype’s performance to be 
compared to other tools like Snort in a relevant 
environment. 
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