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Abstract 
 

Adversarial machine learning focuses on attempting to deceive machine learning classifiers by carefully 

manipulating input data. A lot of work has been done in the context of image classification, where image 
classifiers can be fooled by a “small” change in the input data that is not recognizable to the human 
eye. In this paper, we investigate the vulnerability phenomenon in a different setting, namely the 
network traffic domain. We conduct six experiments with various combinations of machine learning 
algorithms, network traffic data sets, and perturbation methods, and we measure the effects of such 

perturbations on binary network traffic classifiers. The algorithms used include neural networks (NN), 
support vector machines (SVM), decision trees (DT), and random forests (RF). The perturbations 

methods implemented include random perturbation and generative adversarial networks (GAN). Within 
the data sets, malicious network traffic data are perturbed while benign data are left unchanged. Across 
all experiments, we observe a drastic reduction in the accuracy of the classification models. This supports 
the hypothesis that evasions attacks can indeed fool not only image classifiers but also binary network 
classifiers. 
 
 

Keywords: adversarial machine learning, evasion attacks, network traffic classifiers, data 
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1. INTRODUCTION 

 

Recent studies on image classification models 

have elucidated a class of vulnerabilities which 
cause misclassification through malicious input. 
Such input data are called “adversarial examples” 
(Goodfellow et al., 2015), they can be created 
using specific methods to exploit gaps in a 
model’s performance or the latent features upon 

which the classifiers are based (Ilyas, et al., 
2019). This study aims to elucidate how this 
vulnerability manifests in binary network traffic 
classifiers. 
 
Adversarial attacks can be classified into two 

categories: targeted attacks and untargeted 

attacks. In the first instance, an attacker aims to 
find a perturbed input that is classified in the 
same target as the original input. In the second 
instance, the objective is to search for a 
perturbed input that is different target than the 
original one. In terms of the learning model. We 
distinguish between two types of attacks: white-

box attacks and black-box attacks. The first type 
assumes the adversary knows everything related 
to the trained model, while in the second type it 
is assumed that the adversary has no access to 
the trained model but has access only to the 
output of the model. In the latter case, the 

effective transferability of evasion attacks across 
different classification models was demonstrated 

in several places (see for example Demontis et 
al., 2018). 
 
Image classification is considered an 
unconstrained domain, in the sense that the input 

data can vary freely since it simply consists of a 
collection of pixels. On the other hand, network 
traffic is a constrained domain due to the complex 
and mixed nature of the input data, a fact that 
renders its manipulation very sensitive and 
complicated. There are several attack algorithms 
in the literature, we mention a few of them: the 

fast gradient sign method (FGSM), the Jacobian-
based saliency map attack (JSMA), Deepfool, CW 
attack among others. We refer the reader to the 
book by Joseph et al. (2019).  In a recent paper 

(Alhajjar et al., 2019), the authors studied two 
new techniques for generating adversarial 

examples in the intrusion-detection setting, 
namely particle swarm optimization and genetic 
algorithms. Their results clearly show that 
machine learning algorithms are vulnerable to 
adversarial perturbation in unconstrained 
domains.  
 

Given the ample success demonstrated in various 
recent studies about adversarial examples in 
multiple domains, this paper aims to provide 
more evidence about this phenomenon in 
machine learning, in particular to highlight the 

weaknesses in binary network traffic classifiers. 
 

2. METHODOLOGY 
 

In this study, six independent experiments were 
conducted, each testing a different permutation 
of training datasets, model architectures and data 

perturbation methods. Table 1 lists each 
experiment, and the following sections provide an 
overview of the technical details of each 
implementation. 

 
Exp # Dataset Model Perturbation 

1 A NN Random 
2 A SVM Random 
3 B RF AG 
4 B NN Random 
5 C DT Random 
6 C NN GAN 

Table 1. Overview of the six experiments conducted. 
 

Datasets 
Datasets A and B are 2 of the 13 network captures 
of botnet traffic of the CTU-13 dataset (García et 
al., 2014). In each of the datasets, real malware 
is executed on the computer system and a traffic 
capture is recorded. The traffic capture includes 

the malicious botnet traffic with real and 
background traffic. For each of the 13 datasets, 
the actions the malware took are different. 
Specifically, dataset A showcases botnet traffic 
using http to conduct spam and port scanning 
over the course of 11.63 hours with close to 4.5 
million packets. In dataset B, Internet Relay Chat, 

spam, and click fraud are captured, the duration 
was 4.21 hours with close to 71.9 million packets. 
The dataset has 11 raw features: duration, 
protocol, source IP/port, destination IP/port, 
flags, Tos, packet count, byte count, and flows. 
For both datasets, the IP addresses and ports are 
further subdivided by byte for a total of 8 feature 

values from these raw features. This process 

results in an engineered feature set of 15 values. 
All numerically continuous features are 
normalized to the interval [0,1]. For features with 
unique values such as strings, one-hot encoding 
is used to represent them.  

 
Dataset C is obtained from the Canadian Institute 
for Cybersecurity’s 2017 traffic collection, meant 
for the testing of Intrusion Detection Systems 
(IDS). The dataset spans five days of network 
traffic and includes the execution of more than 
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eight different cyberattacks, including DoS, 

Botnet, DDoS, and Brute Force SSH. The dataset 
contains over 80 raw features, which are 
narrowed down to 16, using cross-correlation 

analysis with a binarized label (benign vs 
malicious traffic). 
 
Classification Models 
Six independent classification models are trained, 
of varying type and architecture. Each is 
developed in Python using the Sklearn and 

Tensorflow libraries. Neural networks (NN) are 
the most common classifier used in this series of 
experiments. Experiments 1 and 4 are 
implemented using shallow NNs with an Adam 
optimizer. Learning rates are chosen 
experimentally based upon accuracy and F1-

score. Input size is dependent upon respective 
datasets, while output is always binary (malicious 
vs benign). 
 
This is similar to experiment 6, where a deep NN 
is constructed to conduct binary classification of 
network traffic. The classification network 

consists of two dense hidden layers of 500 nodes 
each and uses a stochastic gradient descent (with 
Nesterov momentum) for optimization. The 
architecture is experimentally defined based upon 
accuracy and F1-score on dataset C. 
 
Besides NNs, experiment 2 utilizes a generic 

support vector machine (SVM) to classify the 
network traffic. Experiment 5 uses a decision tree 

(DT) model that allowes for more accurate 
characterization of dataset C, since each leaf node 
represents a class label, i.e. the decision taken 
after computing all attributes (García et al., 

2014). Furthermore, a DT allows for a visual 
representation of weaknesses and possible target 
points in the algorithm’s function. 
 
Lastly, experiment 3 utilizes a random forest 
framework to construct a network traffic 
classifier. Since all decision tree-based models 

can be overfitted easily based upon maximum 
height, and because dataset B is particularly 
unbalanced (with 100:1 benign to malicious data 
points), the random forest classifier is chosen to 

accurately model the function of an IDS. In 
addition, 8 of the 15 features are derived from the 
IP address and port number raw features. 

 
Perturbation Methods 
For each data set, two separate perturbation 
methods are applied. Each data set is then tested 
with at least one random perturbation, and (for 
datasets B and C) variants of a generative 

method of data perturbation are also 
implemented. 

Randomization 

Experiments 1, 2, 5 all use a standard 
randomization method to perturb their respective 
datasets. Randomization is bounded by the 

possible ranges of each feature value. In addition, 
certain features are bounded such that 
randomization could only modify input data points 
in one direction. This is specifically used for 
features which would be difficult for an adversary 
to artificially decrease (e.g. duration, packets, 
bytes) without affecting other feature values. 

 
Given the structural similarities between datasets 
A and B, experiment 4 utilizes a slightly improved 
iteration of the random perturbation method. In 
this modified random method, samples are 
randomly drawn from a normal distribution of the 

feature value, as represented in Figure 1. The 
distribution is created based off the original 
dataset, while the additional samples drawn from 
the distribution are used as the perturbed 
samples. Drawing from the normal distribution 
helps elucidate more specifically how small 
modifications in feature values could possibly 

affect a classifier’s output. 
 

 
Figure 1. Feature values before (orange) and after 
(blue) random perturbation. 

 
Augmented Generative 
If a machine learning classifier for network traffic 

flow is considered to be a “black-box”, the 
attackers can only use the input network traffic 
flow data and output results (benign or malicious) 

to conduct the adversarial perturbation. The 
augmented generative method is created in this 
study for experiment 3, in order to emulate the 
process of an adversary learning about a network 
traffic classifier. 
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In order to elucidate details about the classifier, 

the random network traffic flow samples are first 
generated from a uniform distribution of the past 
data and fed into the machine learning classifier. 

Several features are kept fixed due to their 
unique characteristics such as Destination IP 
address and Destination Port. After the random 
samples are classified, we obtain the distribution 
of samples classified as malicious or benign. By 
using these distributions, the decision boundaries 
of the classifier are visualized (as shown in Figure 

2). In order to further isolate a particular decision 
boundary, new samples are generated based on 
the distributions of samples already classified and 
fed into the machine learning classifier. This 
process can be conducted multiple times based 
on the characteristics of the decision boundaries. 

 
 

 
Figure 2. The process to find the probability 
distribution of decision boundaries. 
  

In figure 3, the decision boundaries are shown as 
statistical models. This process defines the 
characteristics of the decision boundaries with 
probability distributions. If the attackers know  

the distributions of the decision boundaries, they 
can fool the machine learning classifier with a 
masking process. In figure 4, the attackers can 
turn malicious data to be classified as benign data 
with a modification of network traffic data. 
 

 
Figure 3. Visualizing decision boundary based on the 
distribution of classified random sample. 

 

 
Figure 4. Perturbation workflow for experiment 3. 

 
Generative Adversarial Network 
Experiment 6 implements a deep neural network 
against data points perturbed with a Generative 
Adversarial Network (GAN). This technique 

involves the creation of a generative neural 

network, which takes inputs of a 100-dimensional 
array of noise (latent variables), and returns 
outputs of the dimensions of network traffic data 

points. This network consists of three dense 
hidden layers, of sizes 256, 512, and 1024 units. 
Using a “Leaky ReLu” activation function on each 
layer and an Adam optimization function, the 
generative network is trained by plugging its 
outputs into the classification model and 
conducting weight updates for data points that 

the classifier was able to tell were fake. In this 
way, the generator and the classifier are trained 
simultaneously, both improving their accuracies 
and F1-score across multiple alternating training 
rounds. 

 

3. RESULTS & DISCUSSIONS 
 

In each model presented, the dependency on 
certain features can be adjusted to reduce 
vulnerability. However, these models and 
corresponding weaknesses represent models 
optimized for accuracy and F1-score, rather than 

security. In this way, these results reveal 
valuable insights into the feature engineering of 
secure network traffic classifiers in the future. 
 
Random Perturbation on NNs 
 

 
Figure 5. Accuracy levels after successive, 
compounding perturbations. 

 
As shown in figure 5, the baseline accuracy for 
experiment 1 is represented, and followed by 

compounding perturbations. Experiment 1 
achieves a baseline accuracy score of 97.91%. 

The test set after perturbation consists only of 
malicious data points to measure if the 
perturbations can cause a misclassification of 
malicious to benign, the most dangerous case in 
real-life applications. The most significant 

decrease in accuracy after perturbing one feature 
is achieved after perturbing the source port, 
resulting in a 68.54% decrease in accuracy. In 
addition, the final data point displays an upward 
trend in accuracy from 7.966% to 15.26%. This 
may be caused by over manipulation of the data, 
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resulting in the specific data points becoming 

obscure and too far from an original non-
perturbed data point (and therefore being 
classified as malicious). 

 

 
Figure 6. Correct classification (blue) vs 

misclassification (orange) based on source IP. 

 
Experiment 4 also applies random perturbation to 
a NN. The original accuracy of its neural network 
module is 90.49%. After complete randomization 

of all features, the new accuracy is 12.41%. Each 
feature is then randomized individually. The most 
notable changes in accuracy are from the second, 
third, and fourth bytes of the source IP address 
with 34.67%, 57.70%, and 27.30% respectively. 

The only other feature with an accuracy below 

90% is source port with an accuracy of 89.88%. 
Figure 6 shows the result from perturbing the 
fourth byte of the source IP address. It is 
important to note that the change needed for the 
source IP address to cause misclassification of the 
neural network is relatively small (3-6) compared 
to the feature size (255). This can be easily done 

by an attacker using a VPN, spoofing the IP 
address, or even using a different computer on 
the same subnet. Source port, while still having a 
low change in accuracy, is the only other feature 
to have an accuracy below 90%. A larger change 
would be needed to cause misclassification; 
however, these changes could be done by 

opening another port to send packets on. Another 

important observation is the abundance of 
features that do not cause a large change in 
accuracy; the bytes and packet features cause no 
change in accuracy. A possible explanation as to 
why the source IP address and port number are 

responsible for a huge shift in accuracy is because 
the dataset is a capture of a malware infected 
computer, the source IP address of the malicious 
packets would be mostly constant throughout the 
dataset. It is worthwhile to note that the 

destination IP address and port are not as 

vulnerable as their source counterparts. A 
probable reason to explain this discrepancy is that 
the neural network might have found a 

correlation between source IP address and 
malicious data before any pattern was found in 
the destination IP address and port. 
 
Random Perturbation on an SVM 
Experiment 2 utilizes a support vector machine on 
the data set A. Feature values are normalized 

(e.g. port numbers were all divided by 65,535 
which is the largest possible unsigned port 
number not registered under ICANN). Within this 
framework, the data points labeled "malicious" in 
the data set are perturbed in the following way. 
The upper and lower bounds are fixed using 

averages of upper and lower quartiles, which 
made it possible to find a threshold where the 
classifier misclassifies malicious connections as 
benign. 
 
Training and testing the model on unperturbed 
data led to an accuracy of 93.12% and F1-score 

of 92.6% as shown in Figure 7. When the 
classifier is tested from an adversarial perspective 
with perfect knowledge of the system, the 
classifier performs poorly. The highest accuracy it 
achieves when tested against the perturbed 
subset was only 39%. 

 
Figure 7. Accuracy (orange) and F1 score (grey) after 
successive perturbations. 
 

Random Perturbation on a Decision Tree 
In experiment 5, a DT is used which shows 98% 

baseline accuracy and allows for a visual 
representation of the decision boundaries. Figure 
8 shows a sample of one of those branches 

enlarged to give an idea of how big this decision 
tree grows based on the classifier with the sample 
data. The accuracy of each leaf node is recorded 

as well for the sake of completeness. Therefore, 
taking that data and perturbing it with a 
randomized algorithm would allow it to pick 
between the sixteen classifiers used in our data 
sample. 
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Figure 8. Sample branch of DT. Dark orange 
represents confidence in a benign label, while dark 
blue represents confidence in a malicious label. 

 
It is found that the “Max Inter-packet Interval” 

feature is the most susceptible to targeting by an 
adversary who tries to cause misclassification via 
perturbation, as can be seen in the first 
perturbation of Figure 9. Specifically, perturbing 

this feature leads to a decrease in accuracy down 
to 76%. 
 

 
Figure 9. Decreases in accuracy (red) compared to the 
baseline (blue) across perturbations. 

 
Augmented Generative Method on a 
Random Forest 

The augmented generative perturbation method 
is applied to one million samples labeled as 
malicious in experiment 3. The samples are 
iteratively generalized and reselected into benign 
data with the masking process described 
previously. Testing this data on the target 
classifier, 99.9% of malicious network traffic is 

classified as benign. With this specialized and 
realistic perturbation method, an adversary is 
able to isolate the decision boundaries of a 
classifier and mask the malicious data as benign 
data with a great accuracy. The most significant 
feature of the boundary that was attacked is 

source IP address. Based on target boundaries 

characteristics, the most important feature will be 
perturbed. However, across models and datasets, 
source IP address seems to not only be heavily 
dependent upon for classification, but also can be 
used to cause misclassification. 
 

Generative Adversarial Network on an NN 
Constructing and training a GAN resulted, in part, 
in a generative network able to consistently 
produce misclassified data samples. When saved 

off, the unsupervised generative model could be 

used to consistently produce fake data samples, 
given only noise from a normal distribution. 
 

As shown in Figure 10, training iterations result in 
the discriminator and the generator accuracy 
fluctuating around 50% in the first half of the 
training batches. Although at first sight this 
seems poor, the fluctuation shows repeating 
cycles of generator and discriminator 
improvements, the sign of successful GAN 

training. However, most training iterations are 
not quite successful. Since this type of model is 
unstable, many training iterations result in 
complete convergence to an over-trained 
classifier (a generative network that created poor 
data samples) too early in the training process. 

Since successful iterations are rare and seemingly 
random, the creation and training of the model 
shows the need for further research into 
optimization of GANs on network traffic data sets. 
With this successful model, however, fake data 
points are created from the latent noise inputs, 
and subsequently are passed into a separate 

classifier (with the same architecture as the 
version in the GAN but trained separately). This 
separate classifier achieves a 97.54% accuracy 
with a 93.38% F1-score after being trained on a 
binary version of the data set, using the feature 
engineering described in the methods section. 
However, when tested against fake generated 

data points, 87% of them are classified as 
malicious. This result implies that the generator, 

during GAN training, converges to malicious 
feature values more than benign and/or the 
additional classification network learns to classify 
data points in a discrete range as benign, and all 

others as malicious. 
 

 
Figure 10. Accuracy of the discriminator network 
(blue) and generator network (orange) during training 
iterations. 

 
Overall, GANs prove to be insightful in 
automating the process of data perturbation and 

could provide an avenue to discover new 
perturbation methods. However, this study also 
showcases the need for significantly more 
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research into the application, given its instability 

during training and ambiguity regarding the 
reason behind misclassification of the generated 
points. 

 
4. CONCLUSIONS 

 
This study represents an additional step forward 
in the field’s understanding of the effect of 
perturbed data on various network traffic 
classification models. Random perturbation 

elucidates possible attack vectors in Neural 
Networks, an SVM, and a decision tree. 
Specifically, vulnerabilities in these models are 
found by analyzing the distribution of feature 
values for those data samples that are 
misclassified. These effective perturbation ranges 

are developed for features such as IP addresses 
and ports. 
 
In addition, a novel perturbation method is tested 
in the augmented generative experiment. Not 
only does it showcase a new potential attack 
vector against linear classification models, but 

also should encourage further investigation of 
other perturbation methods where an adversary 
evades detection via black-box analysis. 
Similarly, experimentation with the GAN also 
showcases a black-box adversarial process, given 
a classifier can be built which is similar to the 
target. 

 
Although much work is left to be done in the 

investigation of adversarial machine learning in 
the cyber domain, this study supports the general 
hypothesis that machine learning classifiers are 
not robust in unconstrained domains the same 

way they are not robust in constrained domains. 
Moving forward, more permutations of data sets, 
classification models, and perturbation methods 
should be tested. In addition, in order to better 
model the actions of potential adversaries, 

methods of constructing genuinely malicious 

network packets within the bounds specified here 
should be investigated. 
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