
2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5229

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 1
http://proc.conisar.org; https://www.iscap.info

Evaluating Evasion Attack Methods on Binary
Network Traffic Classifiers

Rishi Shah

rshah36@mit.edu

Jeff Gaston

jg856674@wcupa.edu

Matthew Harvey
msharve2@asu.edu

Michael McNamara
mcnamaramj20@mail.vmi.edu

Osvaldo Ramos

10502244@uvu.edu

Yeonsang You
yyou@hawaii.edu

Elie Alhajjar

elie.alhajjar@westpoint.edu

Army Cyber Institute

United States Military Academy
West Point, NY 10996, USA

Abstract

Adversarial machine learning focuses on attempting to deceive machine learning classifiers by carefully

manipulating input data. A lot of work has been done in the context of image classification, where image
classifiers can be fooled by a “small” change in the input data that is not recognizable to the human
eye. In this paper, we investigate the vulnerability phenomenon in a different setting, namely the
network traffic domain. We conduct six experiments with various combinations of machine learning
algorithms, network traffic data sets, and perturbation methods, and we measure the effects of such

perturbations on binary network traffic classifiers. The algorithms used include neural networks (NN),
support vector machines (SVM), decision trees (DT), and random forests (RF). The perturbations

methods implemented include random perturbation and generative adversarial networks (GAN). Within
the data sets, malicious network traffic data are perturbed while benign data are left unchanged. Across
all experiments, we observe a drastic reduction in the accuracy of the classification models. This supports
the hypothesis that evasions attacks can indeed fool not only image classifiers but also binary network
classifiers.

Keywords: adversarial machine learning, evasion attacks, network traffic classifiers, data
perturbation.

http://proc.conisar.org/
mailto:yyou@hawaii.edu

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5229

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 2
http://proc.conisar.org; https://www.iscap.info

1. INTRODUCTION

Recent studies on image classification models

have elucidated a class of vulnerabilities which
cause misclassification through malicious input.
Such input data are called “adversarial examples”
(Goodfellow et al., 2015), they can be created
using specific methods to exploit gaps in a
model’s performance or the latent features upon

which the classifiers are based (Ilyas, et al.,
2019). This study aims to elucidate how this
vulnerability manifests in binary network traffic
classifiers.

Adversarial attacks can be classified into two

categories: targeted attacks and untargeted

attacks. In the first instance, an attacker aims to
find a perturbed input that is classified in the
same target as the original input. In the second
instance, the objective is to search for a
perturbed input that is different target than the
original one. In terms of the learning model. We
distinguish between two types of attacks: white-

box attacks and black-box attacks. The first type
assumes the adversary knows everything related
to the trained model, while in the second type it
is assumed that the adversary has no access to
the trained model but has access only to the
output of the model. In the latter case, the

effective transferability of evasion attacks across
different classification models was demonstrated

in several places (see for example Demontis et
al., 2018).

Image classification is considered an
unconstrained domain, in the sense that the input

data can vary freely since it simply consists of a
collection of pixels. On the other hand, network
traffic is a constrained domain due to the complex
and mixed nature of the input data, a fact that
renders its manipulation very sensitive and
complicated. There are several attack algorithms
in the literature, we mention a few of them: the

fast gradient sign method (FGSM), the Jacobian-
based saliency map attack (JSMA), Deepfool, CW
attack among others. We refer the reader to the
book by Joseph et al. (2019). In a recent paper

(Alhajjar et al., 2019), the authors studied two
new techniques for generating adversarial

examples in the intrusion-detection setting,
namely particle swarm optimization and genetic
algorithms. Their results clearly show that
machine learning algorithms are vulnerable to
adversarial perturbation in unconstrained
domains.

Given the ample success demonstrated in various
recent studies about adversarial examples in
multiple domains, this paper aims to provide
more evidence about this phenomenon in
machine learning, in particular to highlight the

weaknesses in binary network traffic classifiers.

2. METHODOLOGY

In this study, six independent experiments were
conducted, each testing a different permutation
of training datasets, model architectures and data

perturbation methods. Table 1 lists each
experiment, and the following sections provide an
overview of the technical details of each
implementation.

Exp # Dataset Model Perturbation

1 A NN Random
2 A SVM Random
3 B RF AG
4 B NN Random
5 C DT Random
6 C NN GAN

Table 1. Overview of the six experiments conducted.

Datasets
Datasets A and B are 2 of the 13 network captures
of botnet traffic of the CTU-13 dataset (García et
al., 2014). In each of the datasets, real malware
is executed on the computer system and a traffic
capture is recorded. The traffic capture includes

the malicious botnet traffic with real and
background traffic. For each of the 13 datasets,
the actions the malware took are different.
Specifically, dataset A showcases botnet traffic
using http to conduct spam and port scanning
over the course of 11.63 hours with close to 4.5
million packets. In dataset B, Internet Relay Chat,

spam, and click fraud are captured, the duration
was 4.21 hours with close to 71.9 million packets.
The dataset has 11 raw features: duration,
protocol, source IP/port, destination IP/port,
flags, Tos, packet count, byte count, and flows.
For both datasets, the IP addresses and ports are
further subdivided by byte for a total of 8 feature

values from these raw features. This process

results in an engineered feature set of 15 values.
All numerically continuous features are
normalized to the interval [0,1]. For features with
unique values such as strings, one-hot encoding
is used to represent them.

Dataset C is obtained from the Canadian Institute
for Cybersecurity’s 2017 traffic collection, meant
for the testing of Intrusion Detection Systems
(IDS). The dataset spans five days of network
traffic and includes the execution of more than

http://proc.conisar.org/

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5229

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 2
http://proc.conisar.org; https://www.iscap.info

eight different cyberattacks, including DoS,

Botnet, DDoS, and Brute Force SSH. The dataset
contains over 80 raw features, which are
narrowed down to 16, using cross-correlation

analysis with a binarized label (benign vs
malicious traffic).

Classification Models
Six independent classification models are trained,
of varying type and architecture. Each is
developed in Python using the Sklearn and

Tensorflow libraries. Neural networks (NN) are
the most common classifier used in this series of
experiments. Experiments 1 and 4 are
implemented using shallow NNs with an Adam
optimizer. Learning rates are chosen
experimentally based upon accuracy and F1-

score. Input size is dependent upon respective
datasets, while output is always binary (malicious
vs benign).

This is similar to experiment 6, where a deep NN
is constructed to conduct binary classification of
network traffic. The classification network

consists of two dense hidden layers of 500 nodes
each and uses a stochastic gradient descent (with
Nesterov momentum) for optimization. The
architecture is experimentally defined based upon
accuracy and F1-score on dataset C.

Besides NNs, experiment 2 utilizes a generic

support vector machine (SVM) to classify the
network traffic. Experiment 5 uses a decision tree

(DT) model that allowes for more accurate
characterization of dataset C, since each leaf node
represents a class label, i.e. the decision taken
after computing all attributes (García et al.,

2014). Furthermore, a DT allows for a visual
representation of weaknesses and possible target
points in the algorithm’s function.

Lastly, experiment 3 utilizes a random forest
framework to construct a network traffic
classifier. Since all decision tree-based models

can be overfitted easily based upon maximum
height, and because dataset B is particularly
unbalanced (with 100:1 benign to malicious data
points), the random forest classifier is chosen to

accurately model the function of an IDS. In
addition, 8 of the 15 features are derived from the
IP address and port number raw features.

Perturbation Methods
For each data set, two separate perturbation
methods are applied. Each data set is then tested
with at least one random perturbation, and (for
datasets B and C) variants of a generative

method of data perturbation are also
implemented.

Randomization

Experiments 1, 2, 5 all use a standard
randomization method to perturb their respective
datasets. Randomization is bounded by the

possible ranges of each feature value. In addition,
certain features are bounded such that
randomization could only modify input data points
in one direction. This is specifically used for
features which would be difficult for an adversary
to artificially decrease (e.g. duration, packets,
bytes) without affecting other feature values.

Given the structural similarities between datasets
A and B, experiment 4 utilizes a slightly improved
iteration of the random perturbation method. In
this modified random method, samples are
randomly drawn from a normal distribution of the

feature value, as represented in Figure 1. The
distribution is created based off the original
dataset, while the additional samples drawn from
the distribution are used as the perturbed
samples. Drawing from the normal distribution
helps elucidate more specifically how small
modifications in feature values could possibly

affect a classifier’s output.

Figure 1. Feature values before (orange) and after
(blue) random perturbation.

Augmented Generative
If a machine learning classifier for network traffic

flow is considered to be a “black-box”, the
attackers can only use the input network traffic
flow data and output results (benign or malicious)

to conduct the adversarial perturbation. The
augmented generative method is created in this
study for experiment 3, in order to emulate the
process of an adversary learning about a network
traffic classifier.

http://proc.conisar.org/

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5229

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 3
http://proc.conisar.org; https://www.iscap.info

In order to elucidate details about the classifier,

the random network traffic flow samples are first
generated from a uniform distribution of the past
data and fed into the machine learning classifier.

Several features are kept fixed due to their
unique characteristics such as Destination IP
address and Destination Port. After the random
samples are classified, we obtain the distribution
of samples classified as malicious or benign. By
using these distributions, the decision boundaries
of the classifier are visualized (as shown in Figure

2). In order to further isolate a particular decision
boundary, new samples are generated based on
the distributions of samples already classified and
fed into the machine learning classifier. This
process can be conducted multiple times based
on the characteristics of the decision boundaries.

Figure 2. The process to find the probability
distribution of decision boundaries.

In figure 3, the decision boundaries are shown as
statistical models. This process defines the
characteristics of the decision boundaries with
probability distributions. If the attackers know

the distributions of the decision boundaries, they
can fool the machine learning classifier with a
masking process. In figure 4, the attackers can
turn malicious data to be classified as benign data
with a modification of network traffic data.

Figure 3. Visualizing decision boundary based on the
distribution of classified random sample.

Figure 4. Perturbation workflow for experiment 3.

Generative Adversarial Network
Experiment 6 implements a deep neural network
against data points perturbed with a Generative
Adversarial Network (GAN). This technique

involves the creation of a generative neural

network, which takes inputs of a 100-dimensional
array of noise (latent variables), and returns
outputs of the dimensions of network traffic data

points. This network consists of three dense
hidden layers, of sizes 256, 512, and 1024 units.
Using a “Leaky ReLu” activation function on each
layer and an Adam optimization function, the
generative network is trained by plugging its
outputs into the classification model and
conducting weight updates for data points that

the classifier was able to tell were fake. In this
way, the generator and the classifier are trained
simultaneously, both improving their accuracies
and F1-score across multiple alternating training
rounds.

3. RESULTS & DISCUSSIONS

In each model presented, the dependency on
certain features can be adjusted to reduce
vulnerability. However, these models and
corresponding weaknesses represent models
optimized for accuracy and F1-score, rather than

security. In this way, these results reveal
valuable insights into the feature engineering of
secure network traffic classifiers in the future.

Random Perturbation on NNs

Figure 5. Accuracy levels after successive,
compounding perturbations.

As shown in figure 5, the baseline accuracy for
experiment 1 is represented, and followed by

compounding perturbations. Experiment 1
achieves a baseline accuracy score of 97.91%.

The test set after perturbation consists only of
malicious data points to measure if the
perturbations can cause a misclassification of
malicious to benign, the most dangerous case in
real-life applications. The most significant

decrease in accuracy after perturbing one feature
is achieved after perturbing the source port,
resulting in a 68.54% decrease in accuracy. In
addition, the final data point displays an upward
trend in accuracy from 7.966% to 15.26%. This
may be caused by over manipulation of the data,

http://proc.conisar.org/

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5229

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 4
http://proc.conisar.org; https://www.iscap.info

resulting in the specific data points becoming

obscure and too far from an original non-
perturbed data point (and therefore being
classified as malicious).

Figure 6. Correct classification (blue) vs

misclassification (orange) based on source IP.

Experiment 4 also applies random perturbation to
a NN. The original accuracy of its neural network
module is 90.49%. After complete randomization

of all features, the new accuracy is 12.41%. Each
feature is then randomized individually. The most
notable changes in accuracy are from the second,
third, and fourth bytes of the source IP address
with 34.67%, 57.70%, and 27.30% respectively.

The only other feature with an accuracy below

90% is source port with an accuracy of 89.88%.
Figure 6 shows the result from perturbing the
fourth byte of the source IP address. It is
important to note that the change needed for the
source IP address to cause misclassification of the
neural network is relatively small (3-6) compared
to the feature size (255). This can be easily done

by an attacker using a VPN, spoofing the IP
address, or even using a different computer on
the same subnet. Source port, while still having a
low change in accuracy, is the only other feature
to have an accuracy below 90%. A larger change
would be needed to cause misclassification;
however, these changes could be done by

opening another port to send packets on. Another

important observation is the abundance of
features that do not cause a large change in
accuracy; the bytes and packet features cause no
change in accuracy. A possible explanation as to
why the source IP address and port number are

responsible for a huge shift in accuracy is because
the dataset is a capture of a malware infected
computer, the source IP address of the malicious
packets would be mostly constant throughout the
dataset. It is worthwhile to note that the

destination IP address and port are not as

vulnerable as their source counterparts. A
probable reason to explain this discrepancy is that
the neural network might have found a

correlation between source IP address and
malicious data before any pattern was found in
the destination IP address and port.

Random Perturbation on an SVM
Experiment 2 utilizes a support vector machine on
the data set A. Feature values are normalized

(e.g. port numbers were all divided by 65,535
which is the largest possible unsigned port
number not registered under ICANN). Within this
framework, the data points labeled "malicious" in
the data set are perturbed in the following way.
The upper and lower bounds are fixed using

averages of upper and lower quartiles, which
made it possible to find a threshold where the
classifier misclassifies malicious connections as
benign.

Training and testing the model on unperturbed
data led to an accuracy of 93.12% and F1-score

of 92.6% as shown in Figure 7. When the
classifier is tested from an adversarial perspective
with perfect knowledge of the system, the
classifier performs poorly. The highest accuracy it
achieves when tested against the perturbed
subset was only 39%.

Figure 7. Accuracy (orange) and F1 score (grey) after
successive perturbations.

Random Perturbation on a Decision Tree
In experiment 5, a DT is used which shows 98%

baseline accuracy and allows for a visual
representation of the decision boundaries. Figure
8 shows a sample of one of those branches

enlarged to give an idea of how big this decision
tree grows based on the classifier with the sample
data. The accuracy of each leaf node is recorded

as well for the sake of completeness. Therefore,
taking that data and perturbing it with a
randomized algorithm would allow it to pick
between the sixteen classifiers used in our data
sample.

http://proc.conisar.org/

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5229

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 5
http://proc.conisar.org; https://www.iscap.info

Figure 8. Sample branch of DT. Dark orange
represents confidence in a benign label, while dark
blue represents confidence in a malicious label.

It is found that the “Max Inter-packet Interval”

feature is the most susceptible to targeting by an
adversary who tries to cause misclassification via
perturbation, as can be seen in the first
perturbation of Figure 9. Specifically, perturbing

this feature leads to a decrease in accuracy down
to 76%.

Figure 9. Decreases in accuracy (red) compared to the
baseline (blue) across perturbations.

Augmented Generative Method on a
Random Forest

The augmented generative perturbation method
is applied to one million samples labeled as
malicious in experiment 3. The samples are
iteratively generalized and reselected into benign
data with the masking process described
previously. Testing this data on the target
classifier, 99.9% of malicious network traffic is

classified as benign. With this specialized and
realistic perturbation method, an adversary is
able to isolate the decision boundaries of a
classifier and mask the malicious data as benign
data with a great accuracy. The most significant
feature of the boundary that was attacked is

source IP address. Based on target boundaries

characteristics, the most important feature will be
perturbed. However, across models and datasets,
source IP address seems to not only be heavily
dependent upon for classification, but also can be
used to cause misclassification.

Generative Adversarial Network on an NN
Constructing and training a GAN resulted, in part,
in a generative network able to consistently
produce misclassified data samples. When saved

off, the unsupervised generative model could be

used to consistently produce fake data samples,
given only noise from a normal distribution.

As shown in Figure 10, training iterations result in
the discriminator and the generator accuracy
fluctuating around 50% in the first half of the
training batches. Although at first sight this
seems poor, the fluctuation shows repeating
cycles of generator and discriminator
improvements, the sign of successful GAN

training. However, most training iterations are
not quite successful. Since this type of model is
unstable, many training iterations result in
complete convergence to an over-trained
classifier (a generative network that created poor
data samples) too early in the training process.

Since successful iterations are rare and seemingly
random, the creation and training of the model
shows the need for further research into
optimization of GANs on network traffic data sets.
With this successful model, however, fake data
points are created from the latent noise inputs,
and subsequently are passed into a separate

classifier (with the same architecture as the
version in the GAN but trained separately). This
separate classifier achieves a 97.54% accuracy
with a 93.38% F1-score after being trained on a
binary version of the data set, using the feature
engineering described in the methods section.
However, when tested against fake generated

data points, 87% of them are classified as
malicious. This result implies that the generator,

during GAN training, converges to malicious
feature values more than benign and/or the
additional classification network learns to classify
data points in a discrete range as benign, and all

others as malicious.

Figure 10. Accuracy of the discriminator network
(blue) and generator network (orange) during training
iterations.

Overall, GANs prove to be insightful in
automating the process of data perturbation and

could provide an avenue to discover new
perturbation methods. However, this study also
showcases the need for significantly more

http://proc.conisar.org/

2019 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508

Cleveland, Ohio v12 n5229

©2019 ISCAP (Information Systems & Computing Academic Professionals) Page 6
http://proc.conisar.org; https://www.iscap.info

research into the application, given its instability

during training and ambiguity regarding the
reason behind misclassification of the generated
points.

4. CONCLUSIONS

This study represents an additional step forward
in the field’s understanding of the effect of
perturbed data on various network traffic
classification models. Random perturbation

elucidates possible attack vectors in Neural
Networks, an SVM, and a decision tree.
Specifically, vulnerabilities in these models are
found by analyzing the distribution of feature
values for those data samples that are
misclassified. These effective perturbation ranges

are developed for features such as IP addresses
and ports.

In addition, a novel perturbation method is tested
in the augmented generative experiment. Not
only does it showcase a new potential attack
vector against linear classification models, but

also should encourage further investigation of
other perturbation methods where an adversary
evades detection via black-box analysis.
Similarly, experimentation with the GAN also
showcases a black-box adversarial process, given
a classifier can be built which is similar to the
target.

Although much work is left to be done in the

investigation of adversarial machine learning in
the cyber domain, this study supports the general
hypothesis that machine learning classifiers are
not robust in unconstrained domains the same

way they are not robust in constrained domains.
Moving forward, more permutations of data sets,
classification models, and perturbation methods
should be tested. In addition, in order to better
model the actions of potential adversaries,

methods of constructing genuinely malicious

network packets within the bounds specified here
should be investigated.

5. REFERENCES

Alhajjar, E., Bastian, N., Maxwell, P. (2019).
Generating adversarial examples using PSO
and GS. Preprint.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L.,

Tran, B., and Madry, A. (2019). Adversarial
examples are not bugs, they are features.
arXiv:1905.02175.

Demontis, A., Melis, M., Pintor, M., Jagielski, M.,
Biggio, B., Oprea, A., Nita-Rotaru, C., Roli, F.

(2018). Why do adversarial attacks transfer?

Explaining transferability of evasion and
poisoning attacks. ArXiv:1809.02861.

Sharafaldin, I., Lashkari, A. and Ghorbani, A.
(2018). Toward generating a new intrusion
detection dataset and intrusion traffic
characterization. Proceedings of the 4th
International Conference on Information

Systems Security and Privacy, pages 108-
116.

García, S., Grill, M., Stiborek, J. and Zunino, A.
(2014). An empirical comparison of botnet
detection methods. Computers & Security,

45:100–123.

Goodfellow, I. J., Shlens, J., and Szegedy, C.

(2015). Explaining and harnessing
adversarial examples, stat 1050.

Joseph, A. D., Nelson, B., Rubinstein, B. I. P. and
Tygar, J. D. (2019). Adversarial Machine
Learning. Cambridge University Press.

http://proc.conisar.org/

