
2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5540

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 1
https://proc.conisar.org; https://iscap.info

Decreasing the Barrier to Entry for an

Open-Source Full-Stack Web Development

Clark Jason Ngo

clarkngo@cityuniversity.edu

eBay Inc.

Jin Chang
kyongchang@cityu.edu

Sam Chung

chungsam@cityu.edu

School of Technology & Computing
City University of Seattle

Seattle WA

Abstract

The purpose of this paper is to propose how to decrease the barrier to entry for open-source projects
and full-stack web development. For this purpose, we conduct documentation and architectural modeling

to lessen the steep learning curve for open source and full-stack web development. The research will
bring in ten hands-on practices (HOPs) to teach students to build a full-stack web application. The
research will conduct the following: 1) Create documentation and architectural model for the hands-on
practice. 2) Evaluate the documentation and architectural model with a survey. Then, we evaluate the

impact of the documentation and architectural diagram in decreasing the learning curve of full-stack
development through a survey. The survey results show that implementing architectural modeling in
the documentation of an open-source full-stack development reduces the learning curve for the
developers because it gives a visualization that the developer can easily follow and digest the high-level
concept.

Keywords: Software Documentation, Software Architecture, Open Source, Full Stack, MEAN

1. PROBLEM AND MOTIVATION
Open-source software invites anyone with the

technical capability to contribute to the code
base. However, most open-source software has a
significant barrier to entry, as there is no support

for visual architectural modeling, which involves
diagrams to describe components of a system
with the aim to provide high level overview of the
structure (Kim, Chung, & Endicott-Popovsky,
2014).

Open-source software is very complex. It has a
steep learning curve to be able to contribute or

use it. The non-existence of documentation leads
to further complexity. Full-stack web

development is challenging to learn as well
(Shah, & Soomro, 2017).

Aghajani et al. (2019) showed issues in software
documentation. They surveyed a sample size of
955 document issues, including StackOverflow,
GitHub, and mailing lists. 88% (840 issues) were
GitHub issues and pull requests. Half (426 issues)
of the 88% were information content: “what.”

Fifty-three percent (227 issues) were about
missing or insufficient documents and missing

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5540

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 2
https://proc.conisar.org; https://iscap.info

diagrams. Breakdown of the document issues

shows: 50% includes documentation and diagram
(What), 27% on Information Content (How), 8%
on Process Related, and 14% on Tool Related.

Also, there is a steep learning curve from full-
stack development with MEAN (Mongo DB,
Express, Angular, & Node.js) Stack. Shah and
Soomro (2017) showed difficulties in learning
Node.js, server-side component of MEAN stack.
They surveyed a sample size of 80 developers to

answer survey questions. The following shows the
questions and the results: (1) Learning of
JavaScript for Node.js was a challenge: 23.9%
felt a learning challenge, and 44.8% felt learning
a little bit of challenge. (2) Learning JavaScript for
NoSQL Databases was a challenge: 31.3% felt a

learning challenge, and 20.9% felt learning a little
bit of challenge. (3) Event-Driven of Node.js
challenging: 34.3% felt a learning challenge, and
25.4% felt learning a bit of challenge. (4) Non-
Blocking I/O feature of Node.js was challenging:
31.3% felt a learning challenge, and 26.9% felt
learning a little bit of challenge. (5) Asynchronous

processing feature of Node.js was challenging:
38.8% felt a learning challenge, and 17.9% felt
learning a bit of challenge.

This paper challenges reducing the steep learning
curve from both open-source and full-stack
development with MEAN Stack.

2. BACKGROUND

Architectural Model
Unified Modeling Language (UML) notation is a
language that uses pseudo-code, actual code,

pictures, diagrams, and others to help describe
systems. However, as UML is an abstraction to
provide a high-level overview, the notation will
not describe the small details. Still, UML is better
than detail overloading from modeling with code
and ambiguity from modeling with informal
language (Miles & Hamilton, 2006).

UML Documentation improves software
maintenance. With UML providing a high-level
overview and structure, developers can

understand software architecture easily. On the
contrary, building UML documentation costs extra
time to make and is not useful for easy and small

tasks to fix (Arisholm, Briand, Hove & Labiche,
2006).

Full Stack Web Development - MEAN Stack
MEAN stack consists of four technologies used
together. These are MongoDB (Data Tier),

Express (back-end web framework), Angular
(front-end web framework), and Node.js (back-

end environment). MEAN stack is a technology

that uses JavaScript across all components
removing the need for translation and saves build
time (Dunka, Emmanuel, & Oyerinde, 2018). See

Figure 1 for a diagram on client-side, server-side,
and database using JavaScript.

Figure 1. End-to-end JavaScript. Adopted from
“Node.js Challenges in Implementation” by
Shah, H., & Soomro, T. (2017).

RESTful APIs Design
Following the Representational State Transfer

(REST) Application Programming Interface (API)
in an application allows us to conform to the web
standards to easily establish a connection
between the information provider and user. By
applying REST principles, the constraints applied
on the API make communication interaction

simple and system modular. Criteria in RESTful
API are client-server architecture, stateless
client-server communication, cacheable data,
uniform interface, layered design, and code-on-
demand (Kulkarni & Takalikar, 2018).

Back-end with Node.js

Node.js is built for handling asynchronous I/O

while JavaScript has an event loop built-in for the
client-side. See Figure 2 for Node.js processing
model.

Figure 2. Node.js Processing Model. Adopted from
“After much research and photoshop, I am proud
to give you the finalized #nodejs System

diagram” Esostalgic. (31, July, 2014).

The event-driven/callback approach makes
Node.js fast in performance compared to other
environments. However, this approach makes
Node.js challenging to debug and learn as well.

See Figure 3 for Node.js System.

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5540

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 3
https://proc.conisar.org; https://iscap.info

Figure 3. Node.js System. Adopted from “After
much research and photoshop, I am proud to give
you the finalized #nodejs System diagram”

Esostalgic. (31, July, 2014).

Node.js includes modules such as mongoose,
which is a MongoDB object modeling, and express
web application framework. Through node
modules, abstraction can be achieved, which

reduces the overall complexity of the MEAN stack.

Back-end with Express Framework
Express is a minimalist and unopinionated
application framework for Node.js. It is a layer on
top of Node.js that is feature-rich for web and
mobile development without hiding any Node.js
functionalities (Adhikari, 2016).

Front-end with Angular
Angular is a web development platform built-in
TypeScript that provides developers with robust
tools for creating the client-side of web
applications. It allows the development of single-

page web applications where content changes
dynamically based on user behavior and

preferences. It features dependency injections to
ensure whenever a component is changed, other
components related to it will be changed
automatically. Figure 4 shows the MVC (Model
View Controller) architecture (Adhikari, 2016).

Figure 4. Model View Controller. Adopted from
“Node.js Challenges in Implementation” by Shah,
H., & Soomro, T. (2017).

Database with MongoDB
MongoDB is a NoSQL database that stores data in
Binary JavaScript Object Notation (BJSON).

MongoDB became the de facto standard database
for Node.js applications to fulfill the JavaScript
everywhere using JavaScript Object Notation

(JSON) to transmit data across different tiers

(front-end, back-end, and database) (Adhikari,
2016). NoSQL database relies on the BASE
(Basically Available, Soft state, Eventual

consistency). The Basically Available concept
guarantees the availability of data, The Soft state
concept allows a state of a system to change over
time, and the eventually consistency concept
means the system will be consistent after it stops
receiving input. In Brewer’s theorem (Figure 5),
MongoDB satisfies CP in CAP (Consistency,

Availability, and Partition-tolerance). If the data
requirements are changing over time, big data,
and cannot lock in on a schema, a NoSQL
database would be the preferred choice (Pore &
Pawar, 2015).

Learning Curve
When we learn, we acquire new knowledge and
skill. The rate of knowledge or skill acquisition is
called the learning curve (Kang & Hahn, 2009).
Learning is defined as obtaining knowledge
through studying and experiencing a subject
matter. The three core foundations of learning are

knowledge, skill, and competence (Britto, Šmite,
& Damm, 2016). Knowledge is information
processed and absorbed through structured or
unstructured learning. Skills are acquired through
practice. Competence is the effectiveness of an
individual in a specific field. Reducing a steep
learning curve increases the return-on-

investment (ROI) for software development as it
will lead to the faster building of new features and

fixing or bugs. It also increases the productivity
of developers who mentor (Tüzün &
Tekinerdogan, 2015).

Figure 5. Brewer’s CAP Theorem. Adopted from
“CAP Theorem. Medium” by Singh, V. K. (2019).

The learning curve becomes steep when the topic
to be learned is complex, such as software
architecture that has challenges on
understanding the theory behind it (design
principles, tradeoffs, architectural patterns, etc.),

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5540

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 4
https://proc.conisar.org; https://iscap.info

visibility at scale only, and requiring

communication between different stakeholders
(Van Deursen et al., 2017). The following
principles were introduced to address the

challenges: (1) embrace open source, (2)
embrace collaboration, (3) embrace open
learning, (4) interact with architects, and (5)
combine breadth and depth. The approach for
tackling challenges was to (1) apply theory to
practice, (2) contribute to the system, (3)
integrate architectural views, and (4) providing

feedback to other students. Additionally, reducing
the steep learning curve can be done through
mentoring. The use of markdown was
implemented to facilitate sharing, versioning, and
reviewing various systems.

Another study found another way to reduce the
steep learning curve was by pairing developers
with mentors. The study showed that an Open
Source Project (OS) activity with mentored
developers was significantly higher than non-
mentored developers (Fagerholm & Sanchez,
2014).

Documentation
Documentation helps define what a project does,
why the project is valuable, how users can start
using the project, where users can get help, and
defines who maintains and contributes to the
project (Prana et al., 2018). Why is

documentation necessary? There are dangers of
internet search instead of looking at software

documentation. Users might use the wrong
information. Software developers are likely to
build poor software quality built due to a lack of
good documentation (Loggem, 2014).

Documentation on Open Source
In open-source software, documentation is
mainly created using a markdown file called
README.md. README is the custom standard
platform used for software distribution. This
markdown file is analogous to a website’s home

page. If the README.md is poorly written and
maintained, developers would not be attracted to
try out the technology. See Figure 6 for a
comparison of the README.md file of Node.js in

GitHub (Node.js, 2020) and Amazon Web
Services (AWS) home page (Amazon Web
Services, 2020).

Figure 6. Open Source README.md versus

Website Homepage

Amateur developers write documentation last.

Most software has no set end date that it will be
fully built and functional. Developers might forget
to write documentation or have written it late
because it is not as valuable anymore. However,
professional developers write documentation first
using Test-Driven Development or Behavior-
Driven Development (Mastropasqua, 2016). Early

and timely documentation attracts new
developers to collaborate on open-source projects
and eases the onboarding process.

According to Lee (2018), best practices for
creating and maintaining software documentation

are the following: (1) Include a README or text
file as it is more human-readable than HyperText
Markup Language (HTML). (2) Use a style guide
to tell users how to use it. (3) Include a help
command for developers without a Graphical User
Interface (GUI). (4) Provide a link to the complete
documentation to avoid cluttering the README

file. (5) Apply version control to support versions
of the project.

API Documentation
Documentation is not limited to system
architecture, adding a documentation for API
endpoints and parameters allows developers to

quickly comprehend the resources available in a
service. The OpenAPI specification defines the

standard for documenting RESTful web services.
Swagger UI is an open-source software that
follows the specification and self-generates
interactive interface of API endpoints. (Koren &

Klamma, 2018). See Figure 7 for API endpoint
user interface.

Figure 7. Swagger User Interface

3. RELATED WORK

The key papers are compared with the availability
of the topics: (1) documentation, (2)
architecture, (3) open-source, and (4) full-stack.
See Table 1 for a summary of key papers.

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5540

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 5
https://proc.conisar.org; https://iscap.info

Topic [KRUC

95]

[KIM

14]

[ADMI

17]

[STAF

15]

Documentation No Yes No No

Architecture
[4+1 View]

Yes Yes Yes Yes

Open Source Yes Yes Yes No

Full Stack[MEAN] No No No No

Table 1. Key Topics for Previous Work

The 4 + 1 View Model of Software
Architecture
Krutchen (1995) proposed an architectural model
using the 4 + 1 views, consisting of the Logical
View, Development View, Process View, Physical

View, and Scenarios. The Logical View supports
functional requirements. The Development View
shows the static organization of software in the
development environment. The Process View

shows the flow of synchronization in the design.
The Physical View shows the connection of
software to hardware. Scenarios put the 4 views

together and validate them through the
perspective of the end-user. See Figure 8 for 4 +
1 View Model.

Software Architecture Model Driven
Reverse Engineering Approach to Open
Source Software Development

Kim, Chung, and Endicott-Popovsky (2014)
designed architectural models for deployment
view for MITREid Connect, an open-source
authentication protocol. See Figure 9 for
Deployment View. They also developed a design
view to show an overview of classes, object

instances, and message exchanges. See Figure

10 for Design View.

Figure 8. The 4 + 1 View Model. Adopted from
“The 4+1 View Model of architecture” by
Kruchten, P.B. (1995). IEEE Software. 12(6). 42
–50.

Figure 9. Deployment View. Adopted from
“Software Architecture Model Driven Reverse

Engineering Approach to Open Source Software
Development” by Kim, W., Chung, S., & Endicott-
Popovsky, B. (2014). Proceedings of the 3rd
annual conference on Research in Information
Technology.

Figure 10. Design View. Figure 9. Deployment
View. Adopted from “Software Architecture Model
Driven Reverse Engineering Approach to Open
Source Software Development” by Kim, W.,

Chung, S., & Endicott-Popovsky, B. (2014).
Proceedings of the 3rd annual conference on
Research in Information Technology.

Technical Design for Angular Apps
Admiraal (2017) designed an architectural

diagram for Angular applications with UML
notation and color coding for the package

diagram to provide an overview of Angular
modules and their dependencies to each other.
See Figure 11 for the package diagram.

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5540

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 6
https://proc.conisar.org; https://iscap.info

Figure 11. Package Diagram of Angular Modules.
Adopted from “Technical Design in UML for

Angular Applications” by Admiraal, H. (2017).

He also designed a scenario-based sequence
diagram to show the activity flow and color-coded

based on the Angular modules. See Figure 12 for
the Use Case View example.

Stafford (2015) showed a request and request
data flow sequence diagram. The diagram
showed both the request and response across the
MEAN Stack that includes the front-end, back-
end, and database.

Figure 12. Scenario of User Login. Adopted from
“Technical Design in UML for Angular
Applications” by Admiraal, H. (2017).

4. APPROACH AND UNIQUENESS
This author’s approach was the combined
implementation of Kruchten’s 4+1 View, Kim’s
Design View and experiment validation, and
Admiraal’s color-coded diagrams. The approach

brought in in ten hands-on practices (HOPs)to
teach students to build a full-stack web
application. Check See Table 2 for the author’s
approach in the [TAA] column.

Topic [KRUC

95]

[KIM

14]

[ADMI

17]

[STAF1

5]

[TAA

]

Documen
tation

No Yes No No Yes

Architecture
[4+1 View]

Yes Yes Yes Yes Yes

Open
Source

Yes Yes Yes No Yes

Full Stack
[MEAN]

No No No No Yes

Table 2. Author’s Approach in the column [TAA]

4.1 Experimental Design and Methods
We choose a series of examples from “Getting
MEAN with Mongo, Express, Angular, and Node”
by Holmes, S. and Harber, C. (2019), Manning
Publications. This book teaches us how to develop
full-stack web applications using the MEAN stack

through many examples. Also, we used the online
diagram tool, Lucidchart, to build the sequence,
package, and class diagrams from scratch. You
can see source codes, and diagrams from
https://github.com/clarkngo/cityu_capstone.

Physical View with Deployment Diagram
The deployment diagram shows 3 servers: front-
end, back-end, and database. In the front-end,
we require the browser as angular applications
are browser-based web applications. The back-
end server hosts our Node.js with Express on top
of Node.js. In Express, we have the application

and mongoose on top of it. Express will handle
the communication on both the front-end and
database. The database server only includes
MongoDB. JSON is utilized for communicating
across servers.

Process View with Sequence Diagram

When an HTTP request is made, the front-end will

be triggered, and Angular will pick up the request.
The request will be passed internally in Angular
with Route sending a request for the view to
View/Template. View/Template will request the
Controller. The Controller will then create an HTTP

request to a Representational state transfer
(RESTful) endpoint to the Server Side,
Express/Node.js. The request will then be passed
internally with Express/Node.js from its Route to
the Controller/Model. The Controller/Model will
request the Mongoose Object-Document Mapping
(ODM) to interact with the Database Server

MongoDB. MongoDB will process the request and
respond to the callback to Express/Node.js.
Express/Node.js sends a JSON response to the
Angular Controller. Angular Controller would

respond with a view.

Development View with Package Diagram
In a book store application example, the package
diagram shows the dependency of each Angular
module to other Angular modules. These modules
are CatalogModule, which includes
CatalogSearchModule and CatalogUpdateModule,
LoginModule, and SharedModule in Figure 13.

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5540

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 7
https://proc.conisar.org; https://iscap.info

Figure 13. Package Diagram of Angular Modules.
Adopted from “Technical Design in UML for

Angular Applications” by Admiraal, H. (2017).

Logical View with Class Diagram
On the server-side, the book store application has

a Book class the has the following attributes: title,
ISBN, author, picture, and price. It also has the

following methods: addBook, fetchBooks,
fetchBook, updateBook, and deleteBook. See
Figure 14 for class diagram for the Book class.

As our database is using a NoSQL database, the
diagram will be shown with the JSON format. See

Figure 15 for NoSQL diagram.

Figure 14. Class Diagram for Book Class

Figure 15. Diagram for NoSQL

Scenarios with Sequence Diagram
The scenario described is a user accessing a book

store application. When the user enters the URL,
JavaScript will be run and will hit the router of the
front-end server, which is AppRoutingModule.
AppRoutingModule will call the BooksComponent,
which will load fetchBooks as its dependency
injection. The fetchBooks will then create an HTTP

request to the back-end server with a router,
controller, and model to process the request and

request to the database server. The database

server processes the request and, with the back-
end server waiting, grabs the data and sent it
back to the front-end server as a JSON response.

The front-end will now have the data and the
template view to show to the user.

5. EVALUATION
The method to evaluate the impact of the
documentation and architectural diagram in
decreasing the learning curve of full-stack

development is through a survey. The author
used Google Forms to create two similar survey
forms. They both ask for information about the
participants, assessment before reading the
documentation, and assessment after reading the
documentation. The only difference between the

two survey forms is the documentation they will
assess. One is assessing the official
documentation for the MEAN stack, and the other
is the author’s documentation for the MEAN stack.

The evaluation method was through student
research group participation, which might have a

potential bias due to the testers and test subjects
being acquainted. The survey had a small sample
size that might not be considered a good
representation.

6. RESULTS AND FINDINGS
We recruited the students of a research group

that the author had collaborated. For the survey
on the author’s documentation, we surveyed 9

students who are or had a degree in computer
science. Among them, 3 students have 0-1 years
of experience building software, and 4 students
have 2 or more years of experience building

software. On average, 3 students have used and
have work experience with UML, Full-Stack Web
Development, and MEAN Stack.

After reading the official documentation, the 6
students saying it increased their understanding
of the MEAN stack, and the description and

diagrams in the documentation were helpful. The
official documentation got an overall rating of 4
out 5 for 9 students in Figure 16. Most
respondents suggested showing more diagrams

to explain the technology. Especially, the
sequence diagram in Figure 17 was the most
helpful in increasing their understanding.

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5540

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 8
https://proc.conisar.org; https://iscap.info

Figure 16. An overall rating of 4 out 5 for 9
students

Figure 17. A sequence diagram for MEAN Stack
Request/Response

The author’s documentation got 57% response of

4 out of 5 and 43% response of 5 out 5 for their
overall rating of the author’s in Figure 18. The
restaurant analogy and process view sequence
diagram were the most helpful in increasing their

understanding. Most respondents suggested
adding more descriptions and more examples for
the documentation.

Figure 18. An overall rating of the author’s
documentation

To compare the two results, we used the average
return of high-level understanding to 15-minute
time spent. It is calculated by using each result’s
average score of all responses divided by the max
score of 5. No need to divide by 15-minute as the

same amount of time was used for the
documentation comprehension portion of the
survey. The average return of high-level
understanding to 15-minute time spent was 67%
for the official documentation and 80% for the

author’s documentation. With this small sample

size, it shows that the author’s documentation is
13% better than the official documentation for
return on high-level understanding.

7. CONCLUSION
The learning curve from open-source full-stack
web development is decreased with the help of
high-level overview diagrams. The author’s
documentation is 13% more effective than the
official documentation to decrease the learning

curve. Documentation with architectural
modeling adds additional time and resources to
build. High-level overview diagrams should be
constructed instead of low-level ones to decrease
the time and resources to construct these
diagrams. Most open-source full-stack

development only has text descriptions and
codebase in their documentation, making it too
verbose. Implementing architectural modeling in
the documentation of an open-source full-stack
development gives a visualization that the
developer can easily follow and digest the high-
level concept. Thus, decreasing the learning

curve for the developers.

8. FUTURE WORK
First, we need to increase the sample size for
future work. Also, we need to analyze the impact
of software documentation according to software
development experience.

Second, with UML Notation, we can easily

decouple the technology stack and integrate new
technologies. For example, we can extend the
MEAN stack scenario view using a sequence
diagram to add offline capabilities, one of the

features of a Progressive Web App (PWA). PWA is
an enhancement strategy to create a cross-
platform web application. We can also create a
physical view using a deployment diagram for
PWA. It can show how adding IndexedDB wrapper
in the Angular application to communicate with
IndexedDB, client-side storage. It can also

display a service worker and cache storage to
store data and be retrieved when the application’s
internet connectivity is offline.

9. REFERENCES

Adhikari, A. (2016). Full Stack JavaScript: Web

Application Development with MEAN.
Retrieved from:
https://pdfs.semanticscholar.org/547a/f8ea2
05a8cc7c02506f58c9599a447da07a7.pdf

Admiraal, H. (2017) Technical Design in UML for
Angular Applications.

https://proc.conisar.org/
https://pdfs.semanticscholar.org/547a/f8ea205a8cc7c02506f58c9599a447da07a7.pdf
https://pdfs.semanticscholar.org/547a/f8ea205a8cc7c02506f58c9599a447da07a7.pdf

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5540

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 9
https://proc.conisar.org; https://iscap.info

Aghajani, E., Nagy, C., Vega-Márquez, L.,

Linares-Vásquez, M., Moreno, L., Bavota, G.,
& Lanza, M. (2019). Software documentation
issues unveiled. In Proceedings of the 41st

International Conference on Software
Engineering (ICSE ’19). IEEE Press, 1199–
1210. Retrieved from https://dl-acm-
org.proxy.cityu.edu/doi/abs/10.1109/ICSE.2
019.00122

Amazon Web Services. (2020). Amazon Web
Services. Retrieved from:

https://aws.amazon.com/

Arisholm, E., Briand, L., Hove, S., & Labiche, Y.
(2006). The Impact of UML Documentation on
Software Maintenance: An Experimental
Evaluation. IEEE Transactions on Software

Engineering. 32(6), 365-381. Retrieved from:

https://ieeexplore.ieee.org/document/16502
13

Britto, R., Šmite, D., & Damm, L.-O. (2016).
Group Learning and Performance in a Large-
scale Software Project: Results and Lessons
Learned. Retrieved from https://www.diva-
portal.org/smash/get/diva2:1143810/FULLT

EXT01.pdf.

Dunka, B., Emmanuel, E., & Oyerinde Y. (2018).
Simplifying Web Application Development
Using-Mean Stack Technologies.
International Journal of Latest Research in
Engineering and Technology (IJLRET).

Esostalgic. (31, July, 2014). After much research

and photoshop, I am proud to give you the
finalized #nodejs System diagram. Retrieved
from
https://mobile.twitter.com/Esostalgic/status/
494959181871316992

Fagerholm, F., Sanchez Guinea, A., Borenstein,

J., & Munch, J. (2014). Onboarding in Open
Source Projects. IEEE Software, 31(6), 54–
61. Retrieved from:
https://doi.org/10.1109/MS.2014.107

Kang, K. & Hahn, J. (2009). Learning and
Forgetting Curves in Software Development:
Does Type of Knowledge Matter? Retrieved

from:

https://pdfs.semanticscholar.org/05d1/a1ff8
b17168bae748dca886ee4b3299f0dea.pdf

Kim, W., Chung, S., & Endicott-Popovsky, B.
(2014). Software Architecture Model Driven
Reverse Engineering Approach to Open
Source Software Development. Proceedings

of the 3rd annual conference on Research in
information technology. Retrieved from

https://www.tacoma.uw.edu/sites/default/fil

es/sections/InstituteTechnology/W_Kim.pdf

Koren, I., & Klamma, R. (2018). The Exploitation
of OpenAPI Documentation for the

Generation of Web Frontends. International
World Wide Web Conference Committee,
781–787. Retrieved from
https://doi.org/https://dl.acm.org/doi/10.11
45/3184558.3188740

Kruchten, P.B. (1995). The 4+1 View Model of
architecture, IEEE Software. 12(6). 42 –50.

Retrieved from:
https://pdfs.semanticscholar.org/c5f4/9f3fe7
624bd8ecfc5321d8e7b64a505b8f67.pdf

Kulkarni, C. M., & Takalikar, M. S. (2018).

Analysis of REST API Implementation.
International Journal of Scientific Research in

Computer Science, Engineering and
Information Technology, 3(5), 108–113.
https://doi.org/https://www.researchgate.ne
t/publication/338336716_CSEIT183535_Ana
lysis_of_REST_API_Implementation

Lee, B. (2018). Ten simple rules for documenting
scientific software. PLOS Computational

Biology. 14(12). Retrieved from
https://journals.plos.org/ploscompbiol/articl
e?id=10.1371/journal.pcbi.1006561.

Mastropasqua, F. (2016). You Might Be an
Amateur Programmer and Not Even Know It.
Retrieved from

https://www.clearlyagileinc.com/agile-

blog/2016/5/21/you-might-be-an-amateur-
programmer-and-not-even-know-it.

Miles, R., Hamilton, K. (2006). Learning UML
2.0. Switzerland: O'Reilly Media.

Node.js. (2020). Node.js. Retrieved from
https://github.com/nodejs/node

Pore, S. S., & Pawar, S. B. (2015).
Comparative Study of SQL & NoSQL
Databases. International Journal of Advanced
Research in Computer Engineering &
Technology, 4(5), 1747–1753. Retrieved
from http://ijarcet.org/wp-
content/uploads/IJARCET-VOL-4-ISSUE-5-

1747-1753.pdf

Prana, G. A. A., Treude, C., Thung, F., Atapattu,
T., & Lo, D. (2018). Categorizing the Content
of GitHub README Files. Retrieved from
https://link.springer.com/article/10.1007/s1
0664-018-9660-3.

Shah, H., & Soomro, T. (2017) Node.js

Challenges in Implementation. Retrieved
from

https://proc.conisar.org/
https://dl-acm-org.proxy.cityu.edu/doi/abs/10.1109/ICSE.2019.00122
https://dl-acm-org.proxy.cityu.edu/doi/abs/10.1109/ICSE.2019.00122
https://dl-acm-org.proxy.cityu.edu/doi/abs/10.1109/ICSE.2019.00122
https://aws.amazon.com/
https://ieeexplore.ieee.org/document/1650213
https://ieeexplore.ieee.org/document/1650213
https://www.diva-portal.org/smash/get/diva2:1143810/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1143810/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1143810/FULLTEXT01.pdf
https://mobile.twitter.com/Esostalgic/status/494959181871316992
https://mobile.twitter.com/Esostalgic/status/494959181871316992
https://doi.org/10.1109/MS.2014.107
https://pdfs.semanticscholar.org/05d1/a1ff8b17168bae748dca886ee4b3299f0dea.pdf
https://pdfs.semanticscholar.org/05d1/a1ff8b17168bae748dca886ee4b3299f0dea.pdf
https://www.tacoma.uw.edu/sites/default/files/sections/InstituteTechnology/W_Kim.pdf
https://www.tacoma.uw.edu/sites/default/files/sections/InstituteTechnology/W_Kim.pdf
https://pdfs.semanticscholar.org/c5f4/9f3fe7624bd8ecfc5321d8e7b64a505b8f67.pdf
https://pdfs.semanticscholar.org/c5f4/9f3fe7624bd8ecfc5321d8e7b64a505b8f67.pdf
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006561
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006561
https://www.clearlyagileinc.com/agile-blog/2016/5/21/you-might-be-an-amateur-programmer-and-not-even-know-it
https://www.clearlyagileinc.com/agile-blog/2016/5/21/you-might-be-an-amateur-programmer-and-not-even-know-it
https://www.clearlyagileinc.com/agile-blog/2016/5/21/you-might-be-an-amateur-programmer-and-not-even-know-it
https://github.com/nodejs/node
https://link.springer.com/article/10.1007/s10664-018-9660-3
https://link.springer.com/article/10.1007/s10664-018-9660-3

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5540

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 10
https://proc.conisar.org; https://iscap.info

https://www.researchgate.net/publication/3

18310544_Nodejs_Challenges_in_Implemen
tation

Singh, V. K. (2019). CAP Theorem. Medium.

https://medium.com/system-design-
blog/cap-theorem-1455ce5fc0a0

Stafford, Gary. (2015) Calling Third-Party HTTP-
based RESTful APIs from the MEAN Stack.
Retrieved from:
https://programmaticponderings.com/tag/m
ean-stack/

Tüzün, E. & Tekinerdogan, B. (2015). Impact of
Experience Curve on ROI in Software Product

Line Engineering. Inf. Softw. Technol., vol.

59, no. C, pp. 136–148. Retrieved from
https://doi.org/10.1016/j.infsof.2014.09.008

Van Deursen, A., Aniche, M., Aué, J., Slag, R., De

Jong, M., Nederlof, A., & Bouwers, E. (2017).
A Collaborative Approach to Teaching
Software Architecture. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’17).
Association for Computing Machinery, New
York, NY, USA, 591–596. Retrieved from:

https://doi-
org.proxy.cityu.edu/10.1145/3017680.3017
737

https://proc.conisar.org/
https://www.researchgate.net/publication/318310544_Nodejs_Challenges_in_Implementation
https://www.researchgate.net/publication/318310544_Nodejs_Challenges_in_Implementation
https://www.researchgate.net/publication/318310544_Nodejs_Challenges_in_Implementation
https://medium.com/system-design-blog/cap-theorem-1455ce5fc0a0
https://medium.com/system-design-blog/cap-theorem-1455ce5fc0a0
https://programmaticponderings.com/tag/mean-stack/
https://programmaticponderings.com/tag/mean-stack/
https://doi.org/10.1016/j.infsof.2014.09.008
https://doi-org.proxy.cityu.edu/10.1145/3017680.3017737
https://doi-org.proxy.cityu.edu/10.1145/3017680.3017737
https://doi-org.proxy.cityu.edu/10.1145/3017680.3017737

