
2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5614

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 1
https://proc.conisar.org; https://iscap.info

Low Maintenance, Low Cost, Highly Secure, and

Highly Manageable Serverless Solutions for
Software Reverse Engineering

Kim Nguyen
nguyenkim@cityu.edu

Sam Chung

chungsam@cityu.edu

School of Technology & Computing 

City University of Seattle

Seattle WA

Abstract

In recent years, serverless and cloud-based software has been gaining lots of attention from developers
and companies. Everyone wants to adopt these futuristic technologies, individuals, or businesses alike.

However, the common roadblocks in migrating to serverless or cloud-based architectures present
enormous learning curves and management difficulties. As a result, many companies are hesitant to
adopt these new technologies, despite their benefits. This research provides a low-maintenance, low-

cost, highly secure, and highly manageable serverless solution to software reverse engineering that is
reusable for different organizations. A full-stack serverless General Event Management System is
provided as a Proof of Concept (POC). In addition, solutions to current serverless technologies strains,
including practical technical projects and knowledge management practices, will be provided.

Keywords: Serverless, Software Reverse Engineering, Cloud Computing, Event Management System

1. INTRODUCTION

Traditionally, companies host applications locally

or rent servers from other companies, which can
be costly, high maintenance, less flexible, and
challenging when migrating is needed. As a
result, companies seek solutions that support
rapid development, continuous integration,

continuous deployment, and cost-effectiveness.

Serverless and cloud-based architecture came as
solutions. In fact, according to a survey done on
160 businesses, “the positive impacts of adopting
serverless are the event-driven architecture
(51%), cost of resources (44%), speed of
development (36%), the flexibility of scaling
(31%), and application performance (19%)”

(Esimann et al., 2021). However, businesses are

reluctant to adopt these technologies (Akande,
April, & Van Belle, 2013). Remarkably, many
organizations have adopted serverless

computing. Lenarduzzi et al. (2020) have found
that maintenance costs increase after adopting
serverless computing, with the leading cause
being a lack of technical understanding. As a
result, to have an effective serverless
implementation, companies must be aware of

“different management issues with cloud

computing” (Akande, April, & Van Belle, 2013),
such as “lack of standardization, customization,
technology bottlenecks, strategy issues, etc.”
(Akande, April, & Van Belle, 2013, Abstract).

Several research studies have been done before
to identify the challenges of serverless

technologies, yet none has been able to solve
those. In addition to technical difficulties,

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5614

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 2
https://proc.conisar.org; https://iscap.info

effective technical project management practices

also play an essential role in successful serverless
adoption. In fact, “One of the key factors
influencing project success or failure is project

management. Unfortunately, effective
management of software projects is not in
practice” (Manzil & Javed, 2007). As a result, this
paper also suggests several project management
software for effective collaboration as well as
besides technical solutions. These software and
practices can be applied to any technical or

software development projects and are not
limited to serverless or cloud-based software
only.

Problem Statement
We address three aspects in this paper:

1. Providing low maintenance, low cost, highly
secure, highly manageable solutions for
businesses using serverless technology.

2. Addressing the challenges of serverless
development.

3. Providing suggestions for effective technical
project management and documentation.

Motivation
Software systems that are locally hosted tend to
be costly and hard to maintain. There are many
reasons why this situation happens, including
employee rotations, missing documents, poorly
written legacy code, and many more. This

situation is unfortunately not specific to any
organization. It is common in most organizations.

On the other hand, real-time collaboration
between developers can also be challenging due
to the hosting method. With many factors
combining, companies are motivated to adopt

serverless. Based on research done on 89
different serverless applications, 47% of them
adopted serverless for cost-saving purposes,
while another 34% of them chose serverless to
reduce developers’ workloads on operational
tasks. (Eismann et al., 2020).

On the project management side, it is recognized
that developers don't enjoy documenting their
works (Selic, 2009). As a result, technical
documents are often lacking information, making

it difficult for future uses. Besides writing good
code, it is also essential that developers
document their code well. Hence, having agile

project management and knowledge tools to
improve this problem is also necessary.

Accordingly, to support the findings of this
research, we provide a well-architected software
application that can be applied to any

organization, despite the business sizes,
operating systems, or business's focuses. At the

same time, we want to share practical technical

project and knowledge management methods
that any organization can adopt. A General Event
Management System is built as a proof of concept

for this purpose.

Following are the four main motivations of this
research:
• Encourage organizations to adopt cloud

computing (Akande, April, & Belle, 2013).
• Reduce technical debts of serverless

computing (Lenarduzzi et al., 2020).
• Increase ease of serverless testing and

testability (Lenarduzzi et al., 2020).
• Improve technical project management and

documentation (Selic, 2009).

2. BACKGROUND

Below are the explanations of the main concepts
- reengineering, cloud computing, General Event
Management System, low maintenance, low cost,
highly secure, and highly manageable.
“Reengineering is the most widely used approach

to support evolutionary maintenance. It examines
and alters a legacy system to reconstitute it in a
new form”. (Pérez-Castillo et al., 2011). There
are many reasons why a system needs to be
reengineered. It could be because of customers’
needs, software improvements, etc. There are
three stages in a reengineering process: “reverse

engineering, restructuring, and forward
engineering.” (Pérez-Castillo et al., 2011).

According to the National Institute of Standards
and Technology (NIST), “Cloud computing is a
model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of

configurable computing resources (e.g.,
networks, servers, storage, applications, and
services) that can be rapidly provisioned and
released with minimal management effort or
service provider interaction.” (Mell & Grance,
2011)

General Event Management System is a system

or software where users can easily create and
manage different events. Allowed actions include

CRUD operation. This software is made
generalized so that any organization can reuse its
services.

Low maintenance refers to the ease of detecting,
mitigating, and solving problems of any service,

especially in emergency situations.

Low cost evaluates the cost of operation,
specifically, the cost of resources and hardware.

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5614

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 3
https://proc.conisar.org; https://iscap.info

Highly secure refers to the overall security of the

system and architecture, not only from the
server-side but also from the client-side.
Precisely, the application should come with

authentication and secure data transfer.

Highly manageable should address the ease of
managing the performances of serverless
components. The high manageability could be
through reports, analysis, logs, etc.

3. RELATED WORK

The implementation of cloud computing is not
new, yet, not seasoned. Currently, Cloud
Computing still has many rooms for developers to
explore, leaving documentation, technical

discussions, and solutions with unclear

instructions or open questions. For example, to
connect a Lambda Function to a database, there
are many different ways. AWS official
documentation alone has several suggested
methods to achieve this action. Each has its pros
and cons. The downsides of each solution are still
being improved as things go. Thus, many benefits

cloud computing can bring, as well as difficulties.
Following is a summary and synthesis of three
related works for this research.

As shown in Table 1, only the first research
mentioned AWS Lambda and AWS Step Function
in terms of serverless computing. However, no

implementation was found. A similar situation
applies to full-stack development, where only one
research has proposed a serverless application,
yet, no implementation was provided (Yuan &
Chung 2021). In terms of project and knowledge
management practice, none of the related works

has touched these areas.

Table 1. Related Work Comparison

4. APPROACH

Despite mentioning some cloud-based software
and serverless services, the related works mostly
focused on identifying the shortcomings of
serverless and cloud computing developments
while suggesting the areas for further research or
providing good practices rather than producing
any solutions. Table 2 shows the comparisons

between the related works and our approach
called KN Approach.

In our approach, we address the issues of

adopting serverless development, which was

mentioned in the previous sections, by providing

a full-stack, serverless and ready-to-use system.

This solution can minimize the work and learning

curves for organizations when adopting

serverless. The system architecture was well

designed and generalized so that any business

model can easily adopt. At the same time, we

propose project and knowledge management

practices and software. All the technology stacks

and software used in the KN approach are listed

in Table 2.

Table 2. Related Work and Our Approach called KN.

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5614

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 4
https://proc.conisar.org; https://iscap.info

Figure 1 below is the breakdown of the KN
approach phases. As we reengineered an existing
locally hosted system to a serverless system, we

have broken the process down to five phases as
below.

Figure 1. Five Phases of Our Approach

Phase 1 – Learn and Understand Legacy System:
During this phase, a thorough understanding of

the legacy system is necessary to effectively and
correctly reengineer the system while
maintaining the correct business logic. The legacy
system we worked on is built mainly with PHP and
uses Microsoft SQL for the database. The system
is locally hosted and has a monolithic structure.

Figure 2 shows the legacy system’s source code,
and Figure 3 shows the legacy system’s
architecture.

Figure 2. The Legacy System’s Source Code

Figure 3. Legacy System (Yuan & Chung, 2021)

Phase 2 – Design: The goals for the target system

are multi-tier architecture, serverless, and easy
to include mobile development in the future.
Figure 4 below is the architecture of the target
system.

Figure 4. The Target System with Serverless Architecture.

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5614

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 5
https://proc.conisar.org; https://iscap.info

Phase 3 – Implementation: Once the learning of

the legacy system and designing of the target
system has been in place, it is time to implement.
The target system’s frontend is built with React,

one of the popular web development libraries, as
shown in Figure 5.

The backend component in Figure 6 is built using

Amazon API Gateway, AWS Lambda Functions,
AWS Cognito (used for authentication), and AWS
Amplify. The programming languages used are
Python and JavaScript (runs on NodeJS
environment). The database used is Amazon
DynamoDB – a NoSQL database.

Figure 6. The Target System’s Backend Source

Code Structure

By using DynamoDB, the target system is fully

serverless. Figure 7 shows a snapshot of the
database used in the demo product.

Phase 4 – Testing: Testing of the target system
development is done constantly and alongside
development. When changes are made to the

source code or architecture design, testing is

done right away. The testing is done in the Visual
Studio Code environment, AWS console, and
Amplify environment.

Figure 7. The Target System’s DynamoDB Database

Figure 5. The Target System’s Frontend
Source Code Structure

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5614

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 6
https://proc.conisar.org; https://iscap.info

Phase 5 – Deployment: AWS Amplify is used to

deploy both frontend and backend, where
frontend source code is hosted in a private S3
bucket, and backend functions are deployed to

AWS Lambda. See Figure 8.

Figure 8. The Target System’s Deployment

Method

5. DATA COLLECTION

For the software side, data collection for this
research is done by comparing the legacy system
and the target system to draw out the
improvements, pros, and cons of the re-designed

system.

For the project management side, we collect data
through user’s satisfaction from using Jira and
Confluence. Below are examples of Jira board and
Confluence documents used during
implementation. See Figures 9 and 10.

Figure 9. Jira Software for Agile Project

Management

Figure 10. Confluence Software for Knowledge

Management

6. Data Analysis

The criteria used to analyze the data collected
are listed below:
• Maintainability of software
• Cost of implementation, development, and

maintenance.
• Security of software and environment.

• Manageability of Software
• Effectiveness of proposed project

management and knowledge management
practices.

• Scalability of software.

• Reusability of software, source code, and

architecture.

Let’s look at the data analysis for each of the
criteria listed above.

Low maintenance: the ease of detecting,
mitigating, and solving problems in general and

in case of any emergency, in particular, has
increased remarkably. The reason being that the

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5614

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 7
https://proc.conisar.org; https://iscap.info

Separation of Concerns (SoC) principle has been
applied.

From Figure 11, putting the architectures and
code structures of the legacy system and the
target system side by side, it is clear that all the
services of the target system are separated into

different layers. Thus, if any problem or update
happens, it is straightforward to navigate and
identify the services that needed to be worked.

Unlike the legacy system, where all the code are
mixed together, making things hard to navigate,
especially in emergencies, for example, when

attacks happen.

Low cost: AWS serverless computing pricing
model is pay-as-you-go. If no resource is
allocated, no charge should be occurred, as
shown in Figure 12.

Besides not paying for unnecessary expenses,
users can also eliminate hardware maintenance
and management costs, thus, making
applications’ operations low, as mentioned in the
Introduction section.

Highly secure: Besides the guaranteed security of

the cloud provided by AWS, our solution uses
Cognito – an authentication and access control
service to ensure that only users with the right

access right can connect and use the system.

Figure 13 is the interface of the user pools. Once

any user sign-up, they must verify their real email
address to then be granted access to use the
system.

Highly manageable: By using AWS and its
serverless components, reports, analysis, alarms,
metrics, and logs of services can be auto-

Figure 12. Operational cost of serverless services

Legacy System Architecture & Code structure Target System Architecture & Code structure

Figure 11. Comparing Legacy System and Target System

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5614

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 8
https://proc.conisar.org; https://iscap.info

generated, making it much easier to manage the
system from a holistic view. Figure 14 shows the

access log of our application.

The effectiveness of proposed project
management and knowledge management
practices was increased due to Jira and
Confluence software. Atlassian provides Jira task
management and Confluence documentation

features, where teams can keep track of each
other’s progress and having product documents
all in one place. A source code management like
GitHub can also be integrated.

Several software engineers have pointed out that
Jira and Confluence brought a more positive

impact on the documentation and task
management of the software development

process. For example, Min Qiu – a software
engineer with over three years of experience,
said, “Jira is helpful for our team to manage the
development tasks, which means that we can see

each team member's workflow and process. This
can ensure that each sprint is under control and
help the manager define the potential risks.
During each sprint, we can put each functionality
in the Confluence, so we can accelerate the
feedback loop with inline comments on pages and
files attached”. He also shared his experience

before and after using Jira and Confluence –
“Before without Jira, we need to spend a lot of

time assigning the task and communicating with

each other that make sure what they are doing
and how work is done so far. Furthermore, when
we are dealing with the documentation, we need
to create a shared folder to put everyone's
documents there, and also not convenient to
manage those things.”

The scalability and reusability of software, source
code, and architecture are much higher than the
legacy system. As mentioned in the previous
sections, the target system’s architecture was
designed intentionally with the plan in mind that
any extra services can be added at any time.

Specifically, since the application is serverless,
with a backend built and run on AWS Lambda

functions, if a mobile application needs to be
added, companies can directly connect the
Lambda functions with the mobile application
without having to re-design the whole

architecture.

7. FINDING

The problem this research tries to address is “How
can we develop low maintenance, low cost, highly
secure, and highly manageable solutions for

Figure 13. Cognito User Pool interface

Figure 14. Access Log of Serverless application

https://proc.conisar.org/

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5614

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 9
https://proc.conisar.org; https://iscap.info

software reverse engineering?”. The answer lies

in serverless computing, agile project, and
knowledge management software. Specifically,
the infrastructure and software include AWS

serverless computing, AWS hosting and
managing services, Atlassian project
management, and Confluence documentation
software.

As examined in the Data Analysis section, using
AWS serverless’ services and architecture, all the

aspects of low maintenance, low cost, highly
secure, and highly manageable solution are
satisfied.

However, besides the benefits that cloud
computing and project management software

bring, some challenges remain. One of the
biggest ones is the learning curve of cloud
computing, which can often take months, not only
for developers but also for other employees and
operations of a company.

Accordingly, the findings of this research indicate

that there are pros and cons to using serverless
computing. Below are some pros to serverless
development:
• Manageability, security, liability,

maintainability, scalability, and speed of
software are improved noticeably.

• Integration for future development, such as

mobile development, is made more
accessible.

• Cost is effective due to the pay-as-you-go
model and serverless pricing.

However, some cons are remaining:

• Cloud computing requires steep learning
curves.

• Lambda development comes with difficulties,
especially when integrating Lambda
Functions with other layers of the
application.

• AWS Serverless Application Model (SAM) is a
management tool that helps manage
serverless services on AWS. However, it
requires using the “YAML Ain't Markup

Language” (YAML) files. Thus, it requires a

remarkable amount of knowledge to learn
since YAML is not a popular format.
Especially if non-serverless services are
needed. For instance, developing
Infrastructure as Code (IaC) using YAML files
can be harder to configure.

• Integrating different AWS services is
challenging than the AWS official
documentation put out to be.

8. CONCLUSION & FUTURE WORK

This research brings a more holistic view of
serverless and cloud-based full-stack

development to software reengineering. Low
maintenance, low cost, highly secure, highly
manageable serverless solutions are attractive
and beneficial to companies. However, steep
technical knowledge, software documentation,
and other operations often come in as obstacles
to obtaining such results. AWS serverless

computing and Atlassian project management
software are the answer to these difficulties.
Despite the remaining challenges the software
and architectures have, the benefits can
outweigh, as long as the right approach and
services are effectively and efficiently utilized, as

suggested throughout this research.

However, we can still improve the provided
solution to achieve higher ease of management
and development. Instead of creating and
managing separate services through the AWS
console, the whole system’s architecture can be

designed and managed through only one YAML
file in AWS SAM – a serverless management tool.
For future work, the following can be considered
to achieve such results:

• Integrate AWS SAM into the existing system

of this research.

• Develop IaC using SAM YAML file.
• Integrate Code Commit to increase ease of

collaboration between team members.

9. REFERENCE

Akande, A. O., April, N. A., & Van Belle, J. P.
(2013, December). Management issues with
cloud computing. In Proceedings of the
Second International Conference on
Innovative Computing and Cloud
Computing (pp. 119-124).
https://doi-

org.proxy.cityu.edu/10.1145/2556871.2556
899

Carver, J. C., Penzenstadler, B., Scheuner, J., &

Staron, M. (2021). Insights for Serverless
Application Engineering. IEEE Annals of the
History of Computing, 38(01), 123-125.
https://doi-ieeecomputersociety-

org.proxy.cityu.edu/10.1109/MS.2020.3028
659

Eismann, S., Scheuner, J., Van Eyk, E.,
Schwinger, M., Grohmann, J., Herbst, N., ...
& Iosup, A. (2020). Serverless applications:
Why, when, and how? IEEE Software, 38(1),

https://proc.conisar.org/
https://doi-org.proxy.cityu.edu/10.1145/2556871.2556899
https://doi-org.proxy.cityu.edu/10.1145/2556871.2556899
https://doi-org.proxy.cityu.edu/10.1145/2556871.2556899
https://doi-ieeecomputersociety-org.proxy.cityu.edu/10.1109/MS.2020.3028659
https://doi-ieeecomputersociety-org.proxy.cityu.edu/10.1109/MS.2020.3028659
https://doi-ieeecomputersociety-org.proxy.cityu.edu/10.1109/MS.2020.3028659

2021 Proceedings of the Conference on Information Systems Applied Research ISSN 2167-1508
Washington DC v14 n5614

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 10
https://proc.conisar.org; https://iscap.info

32-39.

https://doi-ieeecomputersociety-
org.proxy.cityu.edu/10.1109/MS.2020.3023
302

Kim, W., Chung, S., & Endicott-Popovsky, B.
(2014, October). Software architecture model
driven reverse engineering approach to open
source software development. In Proceedings
of the 3rd annual conference on Research in
information technology (pp. 9-14).
https://doi.org/10.1145/2656434.2656440

Lenarduzzi, V., Daly, J., Martini, A., Panichella,
S., & Tamburri, D. A. (2020). Toward a
technical debt conceptualization for
serverless computing. IEEE Software, 38(1),
40-47.

https://doi.org/10.1109/MS.2020.3030786

Lethbridge, T. C., Singer, J., & Forward, A.
(2003). How software engineers use
documentation: The state of the practice.
IEEE software, 20(6), 35-39.
https://doi-ieeecomputersociety-
org.proxy.cityu.edu/10.1109/52.41645

Li, J., Kulkarni, S. G., Ramakrishnan, K. K., & Li,

D. (2019, December). Understanding open
source serverless platforms: Design
considerations and performance. In
Proceedings of the 5th International
Workshop on Serverless Computing (pp. 37-
42).

https://doi-

org.proxy.cityu.edu/10.1145/3366623.3368
139

Manzil, E. M., & Javed, T. (2007). Practicum in
Software Project Management-an Endeavor

to Effective and Pragmatic Software Project

Management Education.
https://doi-
org.proxy.cityu.edu/10.1145/1287624.1287

691

Mell, P., Grance, T. (2011). The NIST Definition
of Cloud Computing.
https://csrc.nist.gov/publications/detail/sp/8
00-145/final

Pérez-Castillo, R., de Guzman, I. G. R., Piattini,
M., & Ebert, C. (2011). Reengineering

technologies. IEEE software, 28(6), 13-17.
https://doi-ieeecomputersociety-
org.proxy.cityu.edu/10.1109/MS.2011.145

Selic, B. (2009). Agile documentation, anyone?.

IEEE software, 26(6), 11-12.
https://doi-ieeecomputersociety-

org.proxy.cityu.edu/10.1109/MS.2009.167

Shi, Y., Meng, X., Zhao, J., Hu, X., Liu, B., &
Wang, H. (2010, October). Benchmarking
cloud-based data management systems. In
Proceedings of the second international
workshop on Cloud data management (pp.
47-54).

https://doi-
org.proxy.cityu.edu/10.1145/1871929.1871
938.

Yuan, H. E., & Chung, S. (2021). A Case Study of
Software Reengineering using Emerging
Cloud Computing: A Non-profit's National

Math Competition Event Management

System.
http://repository.cityu.edu/handle/20.500.1
1803/1027

https://proc.conisar.org/
https://doi-ieeecomputersociety-org.proxy.cityu.edu/10.1109/MS.2020.3023302
https://doi-ieeecomputersociety-org.proxy.cityu.edu/10.1109/MS.2020.3023302
https://doi-ieeecomputersociety-org.proxy.cityu.edu/10.1109/MS.2020.3023302
https://doi.org/10.1145/2656434.2656440
https://doi.org/10.1109/MS.2020.3030786
https://doi-ieeecomputersociety-org.proxy.cityu.edu/10.1109/52.41645
https://doi-ieeecomputersociety-org.proxy.cityu.edu/10.1109/52.41645
https://doi-org.proxy.cityu.edu/10.1145/3366623.3368139
https://doi-org.proxy.cityu.edu/10.1145/3366623.3368139
https://doi-org.proxy.cityu.edu/10.1145/3366623.3368139
https://doi-org.proxy.cityu.edu/10.1145/1287624.1287691
https://doi-org.proxy.cityu.edu/10.1145/1287624.1287691
https://doi-org.proxy.cityu.edu/10.1145/1287624.1287691
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://doi-ieeecomputersociety-org.proxy.cityu.edu/10.1109/MS.2011.145
https://doi-ieeecomputersociety-org.proxy.cityu.edu/10.1109/MS.2011.145
https://doi-ieeecomputersociety-org.proxy.cityu.edu/10.1109/MS.2009.167
https://doi-ieeecomputersociety-org.proxy.cityu.edu/10.1109/MS.2009.167
https://doi-org.proxy.cityu.edu/10.1145/1871929.1871938
https://doi-org.proxy.cityu.edu/10.1145/1871929.1871938
https://doi-org.proxy.cityu.edu/10.1145/1871929.1871938
http://repository.cityu.edu/handle/20.500.11803/1027
http://repository.cityu.edu/handle/20.500.11803/1027

