

Server-Side Scripting
In

JavaScript/JScript And VBScript

John D. Haney
john.haney@nau.edu

and

Craig A. VanLengen

craig.vanlengen@nau.edu

College of Business Administration, Northern Arizona University
Flagstaff, AZ 86011-5066

ABSTRACT

When developing server-side scripting using Microsoft’s Active Server Pages and their Internet Information Server
(IIS), either VBScript or JScript are available. The language of choice for most developers is VBScript since it is
closely akin to Visual Basic and Visual Basic for Applications. However, for those developers that are more familiar
with Java and JavaScript, JScript is a comfortable alternative. The differences between VBScript and JScript lie
primarily in the syntax and not in the functionality. The examples interact with an Oracle database: to connect to the
database; create record sets; and adding, changing, and deleting records shows identical logic structure. Where the use
of JScript rather than VBScript can become rather tedious is the scarcity of functions in JScript that are available in
VBScript. The solution is to write comparable user-defined functions in JScript as demonstrated by the
FormatCurrency function.

Keywords: IS Curriculum, programming languages, Web development

1. INTRODUCTION

When developing applications for the Web there are
several scripting language choices including: JavaScript,
JScript, VBScript or others that will not be discussed in
this paper. This paper presents an example of
maintaining a database with add, change, and delete
options written in both JScript and VBScript using an
Oracle database. Client-side and server-side scripting is
discussed along with the scripting language features and
factors to consider when developing an application on
the Web.

2. DEVELOPMENT ENVIRONMENT

The differences in the scripting languages will be
demonstrated by using examples that were developed in
the following environment: Microsoft NT server, using
Internet Information Server (IIS), and Active Server
Pages (ASP). Oracle was the database used in the
examples. However, Microsoft Access and SQL Server

have also been used in similar examples. All of the
application scripts are embedded within HTML
documents that are stored on the server with the .asp
extension.

3. SERVER-SIDE SCRIPTING VERSUS CLIENT-

SIDE SCRIPTING

A script application is part of an HTML document. The
difference in the tagging indicates whether the code
executes on the server or on the client. Client-side script
code is written using the <script> tag and executed on
the client. Web server scripting in Microsoft Internet
Information Server has the script code between the
brackets and percent symbol (<%…..%>) and the code
executes on the server. The HTML document has an .asp
extension instead of .htm or .html.

The choice between client scripts or server scripting is
based on the level of interaction needed with the
database on the server. If interaction with a database is

not needed then the script could be on the client. This
way the amount of network traffic is reduced.
Server-side scripts must be used for database interaction,
when accessing other programs that are on the server
and whenever it is necessary to store data from user
interaction. When security is an issue server-side
scripting would be used to make the application code
invisible on the client machine.

For client-side scripting the developer must be
concerned about which browser the user has loaded. For
client-side scripting you would want to use JavaScript or
JScript to ensure that the application ran in either
Internet Explorer or Netscape Communicator. A
Netscape browser will ignore a client-side application
developed in VBScript.

4. SERVER-SIDE SCRIPTING EXAMPLES USING

VBSCRIPT AND JSCRIPT

Examples of adding, changing, and deleting of record
occurrences within tables in an Oracle database are
shown in both VBScript and JScript. First the embedded
script that is necessary to connect and open a database is
shown. Then the definition of an SQL statement and the
opening of a recordset are given. And finally the code
required to add, change or delete a record from a table
within the database is listed.

Connecting to the Database

The example database is a catalog table that has the
following fields: an id, description, price, quantity on-
hand, and date purchased. The first step in interacting
with the catalog table in the Oracle database is to create
a connection to the Oracle database, and then to open the
domain of the database that the catalog table is within.

VBScript: First an instance of the connection

object is created with the Set statement. In this example
conn is a user defined variable. Then the open method
is used with the connection object to open the specific
domain of the Oracle database. In this example cis440
is the name of the data source name (DSN) that points to
the Oracle database, and userid and pw are the user id
and password of the specific domain of the database.

Set conn = Server.CreateObject(“ADODB.Connection”)
conn.Open “cis440”, “userid”, “pw”

Jscript: In JScript the syntax varies only slightly

but the effect is the same. The Set verb is not used in
JScript but the rest of the statement of the creation of the
connection object is the same. In JScript the syntax of
the open statement uses parenthesis to surround the
arguments.

conn = Server.CreateObject(“ADODB.Connection”);
conn.Open(“cis440”, “userid”, “pw”);

So, connecting to and opening the database in VBScript
or JScript is very similar syntactically. A Set is used in
VBScript on the connection, and parentheses are used in
JScript on the open.

Opening a Recordset

Next a recordset must be opened. A recordset is a

collection of records selected from one or more tables
from the database. In this example only the Catalog
table is used. First a variable is filled with the
appropriate SQL statement that will select from the
table. Then an instance of the recordset object is
created, and then the recordset is opened. After the open
the recordset will contain the selected records from the
table.

VBScript: In the following example sql is a string

variable that will contain the SQL statement, and RS is a
variable that will contain an instance of the recordset
object. In this example, once the Open method is
executed the recordset will contain all of the records
from the Catalog table. The 3 on the Open method
defines a static open. This means that a snapshot is
taken of the database table and any changes made to the
table would not be reflected in the recordset. The 2 on
the Open method defines a pessimistic lock where the
record is locked until an update method occurs.

sql = “Select * From Catalog”
Set RS = Server.CreateObject(“ADODB.Recordset”)
RS.Open sql, conn, 3, 2

Jscript: The comparison between VBScript and

JScript again depicts very similar syntax. In JScript a
Set verb is not used on the CreateObject statement and
parenthesis are used to surround the arguments on the
Open statement.

sql = “Select * From Catalog”
RS = Server.CreateObject(“ADODB.Recordset”);
RS.Open (sql, conn, 3, 2);

Adding a record to a table within the database

VBScript: Now to the heart of the interaction with

the database where records will be added, changed, or
deleted. In the following example a record will be
added to the Catalog table by using the recordset. First a
determination will be made as to whether the record
already exists. If the record exists a redirection is made
to a Web page that displays a message that the record is
already on file. If the record does not exist then the
record is added by using the AddNew and Update
methods.

First an SQL statement is created that compares the
Cat_ID field, which is the primary key of the Catalog
table, to a field that is supplied from a form on a Web
page that is then posted to the Web page that contains

the following script. The Request.Form is an active
server page object that accesses the fields posted to this
Web page. In this example the value is placed into a
variable that in turn is referenced in the SQL statement.

fCat_ID = Request.Form(“Cat_ID”)
sql = "Select * From Catalog Where Cat_ID = " & "'" &
fCat_ID & "'"

Next the recordset object is created and then opened.

Set RS = Server.CreateObject(“ADODB.Recordset”)
RS.Open sql, conn, 3, 2

At this point the recordset is tested to determine whether
it contains a record or not. If it contains a record then a
redirection is made to a Web page, OnFile.asp that
informs the user that a record cannot be added because it
already exists:

If Not RS.Eof Then

Response.Redirect “OnFile.asp”
EndIf

If the logic falls through here then a record with that
Catalog ID does not exist so it is safe to add a record.

The AddNew method opens a buffer for placing values
into the fields of the recordset. Again, the Request.Form
object is used to access the fields posted to this Web
page. The values of the form fields are placed into the
recordset fields. When all of the recordset fields are
filled the Update method writes from the buffer area to
the table in the database.

RS.AddNew
fPrice = Request.Form("Price")
RS("Cat_ID") = Request.Form(“Cat_ID”)
RS("Description") =Request.Form("Description")
RS("Price") = 0
RS("Qty_OnHand") =Request.Form("Quantity")
RS("Pur_Date") = Request.Form("PDate")
RS.Update
RS.Close

A zero was placed into the Price field. The reason for
this is when placing a value from a form using the
Request.Form object into a real number in an Oracle
database the decimal positions are stripped away. To
work around this problem the following SQL Update
statement is used. The SQL statement is built and then
the Execute method updates the database.

sql = "Update Catalog Set Price = " & fPrice & " Where
Cat_ID = " & "'" & fCat_ID & "'"
conn.Execute(sql)

Jscript: Adding a record to a table using JScript is

very similar, except for the syntax of the language.

fCat_ID = Request.Form(“Cat_ID”);
sql = "Select * From Catalog Where Cat_ID = " + "'" +
fCat_ID + "'";
RS = Server.CreateObject("ADODB.Recordset");
RS.Open (sql, conn, 3, 2);
if (!RS.eof)

{
NewPage = "OnFile.asp";
Response.Redirect (NewPage);
}

RS.AddNew();
fPrice = Request.Form("Price");
RS("Cat_ID") = Request.Form(“Cat_ID”);
RS("Description") = Request.Form("Description");
RS("Price") = 0;
RS("Qty_OnHand") = Request.Form("Quantity");
RS("Pur_Date") = Request.Form("PDate");
RS.Update();
sql = "Update Catalog Set Price = " + fPrice + " Where
Cat_ID = " + "'" + fCat_ID + "'";
conn.Execute(sql);

Changing a record in a table within the database:

VBScript: In the following example a record will

be changed in the Catalog table by using the recordset.
First a determination will be made as to whether the
record exists or not. If the record does not exist then a
redirection is made to a Web page that displays a
message that the record is not on file. If the record does
exist then the record is changed by using the Update
method.

First an SQL statement is created that compares the
Cat_ID field in the table of the database to a field that is
supplied from a form on a Web page that is posted to
this Web page with scripting. Note that the following
script is almost identical to the Add routine. The
notable difference is that on a change an AddNew
method is not used, otherwise it is identical.

fCat_ID = Request.Form(“Stuff_ID”)
sql = "Select * From Catalog Where Cat_ID =" & "'" &
fCat_ID") & "'"
Set RS = Server.CreateObject("ADODB.Recordset")
RS.Open sql, conn, 3, 2
fPrice = Request.Form("Price")
RS("Description") =Request.Form("Description")
RS("Price") = 0
RS("Qty_OnHand") =Request.Form("Quantity")
RS("Pur_Date") =Request.Form("PDate")
RS.Update
RS.Close
sql = "Update Stuff Set Price = " & fPrice & " Where
Cat_ID = " & "'" & fCat_ID & "'"
conn.Execute(sql)

Jscript: As with VBScript, the only difference
between the Add and the Change is that on a Change the
AddNew method is not used.

sql = "Select * From Catalog Where (Cat_ID= '" +
fCat_ID + "')";
RS = Server.CreateObject("ADODB.Recordset");
RS.Open (sql, conn, 3, 2);
FPrice = Request.Form(“Price”);
RS("Description") = Request.Form("Description");
RS("Price") = 0;
RS("Qty_OnHand") = Request.Form("Quantity");
RS("Pur_Date") = Request.Form("PDate");
RS.Update();
RS.Close();
sql = "Update Catalog Set Price = " + fPrice + " Where
Cat_ID = " + "'" + fCat_ID + "'";
conn.Execute(sql);

Deleting a record from a table within the database:

In the following example a record will be deleted from
the Catalog table by using the recordset. First a
determination will be made as to whether the record
exists. If the record does not exist then a redirection is
made to a Web page that displays a message that the
record is not on file. If the record does exist then the
record is deleted by using the Delete method.

VBScript:

fCat_ID = Request.Form(“Cat_ID”)
sql = "Select * From Catalog Where Cat_ID =" & "'" &
fCat_ID") & "'"
Set RS = Server.CreateObject("ADODB.Recordset")
RS.Open sql, conn, 3, 2

To delete the record all that is needed is to execute the
Delete method.

RS.Delete
RS.Close

Jscript:

To delete a record in JScript the logic is exactly the
same as in VBScript, only the syntax is different.

sql = "Select * From Catalog Where (Cat_ID= '" +
fCat_ID + "')";
RS = Server.CreateObject("ADODB.Recordset");
RS.Open (sql, conn, 3, 2);
RS.Delete();
RS.Close();

5. COMPARISON OF SCRIPTING LANGUAGES

Server-side scripting has little concern for which
scripting language is used as long as the server
environment is compatible with the scripting language
that is used. However, this is not true of client-side
scripting. If Web pages are developed that include
scripts that will be executed on the client the browser
environment must be taken into account. While

developing, it is recommended that the Web pages be
tested in both Internet Explorer and Netscape
Communicator. Do not assume that if it works in one it
will work correctly in the other.

JavaScript from Netscape and JScript from Microsoft
are both compliant with The European Computer
Manufacturers Association (ECMA) standard on
Internet scripting language (ECMA-262). This ECMA
Script standard was adopted in 1998. The standard was
based on JavaScript 1.1 and it is assumed that Microsoft
and Netscape will abide by the standard. Of course
developers must be aware of enhancements to the
standard that might be offered by Microsoft and
Netscape. Therefore in the discussion JavaScript and
JScript will be treated as synonymous or equivalent.

VBScript is a subset of Microsoft's Visual BASIC and
with client-side scripting runs in Microsoft's Internet
Explorer. JavaScript which was developed by Netscape
and runs in either Microsoft's Internet Explorer or
Netscape's Communicator.

Comparing Variables Between the Scripts

A variable is the name of a location in memory where
data is stored during application execution. VBScript
allows explicit and implicit declaration of variables.
Implicit is where the variable is created when it is used.
The better programming approach is to explicitly declare
the variables prior to use. With explicit declaration it at
least appears like some planning was done prior to
writing the application. By using the Option Explicit
statement at the beginning of the script we can force all
variables to be declared prior to their use in another
statement. Examples of variable declarations follow:

Dim fName, lName

As far as data typing in VBScript everything is of
variant type. This type allows the storage of different
data types in the same variable. The variant data type
allows several common subtypes: boolean, currency,
date, double, integer, long, object, single, and string.
Explicit conversion from one subtype to another is by
CInt() to convert a value to an integer and CSgn() to
convert a value to a single precision real number. Other
conversion functions are available.

VBScript also allows arrays. An array is declared like a
variable with the Dim statement. Dim students(100)
declares an array with 101 elements because VBScript
like Visual BASIC is zero based. Arrays can be static in
size or dynamic. The dynamic array is declared without
specifying the number of elements. Dim students() is an
example. During program execution, when you know
the size of the array you use a ReDim statement to
change the size of the array, such as ReDim
students(100). VBScript allows multidimensional arrays
with up to 60 dimensions.

Arrays in JScript are created by defining a variable and
adding square brackets to it like Student[0] = “Joe
Cool”. JScript allows you to mix data types in the same
dimension of the array. Arrays in JScript are referred to
as being sparse. Sparse means that only the elements of
the array that are assigned a value occupy memory. So if
we declare Student[1], Student[2], Student[10], we have
only three elements in our array that require memory
space. However, the .length method would report the
array length to be 10 and not 3.

JScript like VBScript allows implicit and explicit
declaration of variables. Again the better technique is to
explicitly declare your variables with the var statement.
A variable can be implicitly declared by initializing the
value of a variable. An interesting fact is that when a
variable is declared in this manner it becomes a global
variable and its use and value are available to the entire
script, but only after the line of code initializing it is
executed. The scope of an implicitly declared variable in
VBScript maintains the scope of where it is created.

JScript does not force the programmer to initialize the
value of the variable. However, trying to extract a value
from a variable prior to it being initialized will result in
an error. VBScript does not force the programmer to
initialize the value of the variable.

Like VBScript a variable in JScript is not declared to be
of any data type. The type is determined when you set
the value of the variable. JScript has the following data
types: number, boolean, string, function, and object. The
single data type of number can hold integer or real
numbers. Another interesting feature is that the data type
of a variable can be switched or converted from one type
to another by assigning it data of a different type. The
lack of strong data typing and easy conversion from one
type to another can be problematic. A typeof operator is
available that returns the type of data held by the
variable. JScript has two explicit functions to convert a
string that is a numeric character to either an integer
(parseInt()) and (parseFloat()) to convert text to a real
number.

Another feature of JScript that programmers should be
aware of is that JScript is case-sensitive. So a variable
named Student is not the same as student. This feature
has confused many former BASIC and COBOL
programmers.

VBScript supports user-defined constants. Instead of the
DIM statement to declare a variable you use the Const
statement. For example Const ConRate = .05 would
create a constant with a value of .05. JScript does not
support constants in the normal programming sense.
Constants in most languages are assigned a value when
they are created and cannot have the value changed
anywhere in the program. In JScript the programmer can
still declare a variable and use it as a constant, however,

the system will not prevent the programmer from
changing the value elsewhere in the code.

Comparing the formatting of currency fields

In VBScript, formatting as currency is a fairly simple
process. The following statement would format a field
named Price and write it to the Web page:

<%= FormatCurrency(Price) %>

To accomplish the same functionality in JScript,
however, a user-defined function is necessary. If the
name of the function defined in JScript is the same as
the function in VBScript, then the code to write to the
Web page remains the same.

<%= FormatCurrency(Price) %>

However, the following programmer defined function
must be written:

function FormatCurrency(valuein) {

var GetIt = "" + valuein;
var FormatStr="";
var OutDollars="";
var tDollars="";
var Decipos=GetIt.indexOf(".");
if (Decipos == -1)
{
 Decipos = GetIt.length
}
var Dollars = GetIt.substring(0,Decipos);
var DollarLen = Dollars.length;
if (DollarLen > 3)
{
 while (DollarLen > 0)
 {

tDollars = Dollars.substring(DollarLen -
3, DollarLen);

 if (tDollars.length == 3)
 {

OutDollars = "," + tDollars +
OutDollars;

 DollarLen = DollarLen - 3;
 }
 else
 {
 OutDollars = tDollars + OutDollars;
 DollarLen = 0;
 }
 }

 }
 else
 {

 OutDollars = Dollars;
}
if (OutDollars.substring(0,1) == ",")
{

Dollars = OutDollars.substring (1,
OutDollars.length);

}
 else

{
 Dollars = OutDollars;
}
Cents = GetIt.substring(Decipos + 1, Decipos + 3);
if (Cents == "")
{
 Cents = "00";
}
if (Cents.length == 1)
{
 Cents = Cents + "0";
}
var FormatStr = "$" + Dollars + "." + Cents;
return FormatStr;
}

Classroom Usage: The use of Active Server Pages

was applied to both a Web development class and an
MIS class. In the Web development class each student
developed a fully interactive Web site in a Client/Server
environment. By using Active Server Pages, an Oracle
database was updated by adding, changing, and deleting
records. The students were primarily senior level
Computer Information majors.

In the MIS class, comprised of a cross section of
Business majors, the students were placed in groups of
five to eight members. Each group was given a pseudo
Web site of about fifty Web pages, with a storefront
presence. The interaction with the database was fully
functional. The pages were modified to present a Web-
based company for each group.

In both of these experiences the learning process was
extremely positive given the student population of each
of the classes. In the case of the Web development
class, a complete information system was developed
with a Web interface. For the MIS class, even non-CIS
majors were able to develop a fully functional Web
based company.

6. SUMMARY

When developing server-side scripting using
Microsoft’s Active Server Pages and their Internet
Information Server, either VBScript or JScript are
available. The language of choice for most developers
is VBScript since it is similar to Visual Basic and Visual
Basic for Applications. However, for those developers
that are more familiar with Java and JavaScript, JScript
is a comfortable alternative.

As this paper has demonstrated, the primary differences
between VBScript and JScript lie in the syntax and not
in the functionality. The example used which interacts
with an Oracle database for connecting to the database;

creating record sets; and adding, changing, and deleting
records shows identical logic structure.

Where the use of JScript rather than VBScript can
become rather tedious is the scarcity of functions in
JScript that are available in VBScript. The solution is to
write comparable user-defined functions in JScript as
demonstrated by the FormatCurrency function.

7. REFERENCES

Danesh, Arman, 1996, Teach Yourself JavaScript 1.1 in

a Week, 2nd ed. Indianapolis: Sams.Net.

Danesh, Arman and Wes Tatters, 1996, JavaScript 1.1,

Developer’s Guide. Indianapolis: Sams.Net.

Mansfield, Richard, 1997, The Comprehensive Guide to

VBScript, The Encyclopedic Reference for
VBScript, HTML & Active X. Chapel Hill: Ventana
Press.

Microsoft Windows Script Technologies. VBScript.

http://msdn.microsoft.com/scripting/vbscript/ (31
Aug. 2000).

Microsoft Windows Script Technologies. jscript.

http://msdn.microsoft.com/scripting/jscript/ (31
Aug. 2000).

Shelly, Gary B., Thomas J. Cashman, William

J. Dorin, , and Jeffery J. Quasnay, 2000,
JavaScript, Complete Concepts and
Techniques. Cambridge: Course
Technology:.

Walther, Stephen, Steven Banick, Aaron Bertrand, Craig

Eddy, Christian Gross, Keith McIntyre, and Jeff
Spotts, 1999, Active Server Pages 2.0. Indianapolis:
Sams.

Wyke, R. Allen, Jason D. Gilliam, and Charlton Ting,

1999, Pure JavaScript, a Code-Intensive Premium
Reference. Indianapolis: Sams.

	ABSTRACT
	1
	1. INTRODUCTION
	2. DEVELOPMENT ENVIRONMENT
	3. SERVER-SIDE SCRIPTING VERSUS CLIENT-SIDE SCRIPTING
	Server-side scripts must be used for database interaction, when accessing other programs that are on the server and whenever it is necessary to store data from user interaction. When security is an issue server-side scripting would be used to make the ap
	4. SERVER-SIDE SCRIPTING EXAMPLES USING VBSCRIPT AND JSCRIPT
	
	Connecting to the Database
	Jscript: In JScript the syntax varies only slightly but the effect is the same. The Set verb is not used in JScript but the rest of the statement of the creation of the connection object is the same. In JScript the syntax of the open statement uses par

	Opening a Recordset
	
	Jscript: The comparison between VBScript and JScript again depicts very similar syntax. In JScript a Set verb is not used on the CreateObject statement and parenthesis are used to surround the arguments on the Open statement.
	VBScript: In the following example a record will be changed in the Catalog table by using the recordset. First a determination will be made as to whether the record exists or not. If the record does not exist then a redirection is made to a Web page th
	sql = "Select * From Catalog Where (Cat_ID= '" + fCat_ID + "')";
	RS = Server.CreateObject("ADODB.Recordset");
	RS.Open (sql, conn, 3, 2);
	FPrice = Request.Form(“Price”);
	RS("Description") = Request.Form("Description");
	RS("Price") = 0;
	RS("Qty_OnHand") = Request.Form("Quantity");
	RS("Pur_Date") = Request.Form("PDate");
	RS.Update();
	RS.Close();
	sql = "Update Catalog Set Price = " + fPrice + " Where Cat_ID = " + "'" + fCat_ID + "'";
	conn.Execute(sql);
	VBScript:
	fCat_ID = Request.Form(“Cat_ID”)
	Jscript:
	5. COMPARISON OF SCRIPTING LANGUAGES

	7. REFERENCES

