

How the Object-Oriented Revolution Was Won

Allen Stix, Associate Professor
School of Computer Science & Information Systems

Pace University
Pleasantville, NY 10570-2799

Mary F. Courtney, Associate Professor

School of Computer Science & Information Systems
Pace University

Pleasantville, NY 10570-2799

 Abstract

 The authors conduct a whimsical interview with an historian of computing at ISECON 2050 and learn why it took
Java to vault mainstream systems construction over the barriers to objects.

 The historian explains that for object-oriented systems analysis and design to feel natural, a good amount of direct
experience with objects is requisite. Coding is the only activity that provides actual experience with the nature and
properties of objects. Java, much more than C++, expedites this because: (i) Java's libraries supply enforced
demonstrations, and (ii) Java, because it disallows free functions, requires verbs to be nouns.

 The serious intent of this paper is to explain why the switch to Java, even from C++, is worth the effort.
Programming is the place for acquainting students with objects. This is one of the chief reasons for including
programming in the curriculum for Information Systems.

Keywords: Java, Object-Oriented Programming, Curriculum

 In comparison to the road to structured analysis,
design, and coding; the road to objects has been long
and slow. Remember Tim Rentsch's predictions, made
in 1982? He got things right, except that it took into the
1990's to get where he thought we'd be in the 1980's:

What is object-oriented programming? My
guess is that object-oriented programming
will be in the 1980's what structured
programming was in the 1970's. Everyone
will be in favor of it. Every manufacturer
will promote his products as supporting it.
Every manager will pay lip service to it.
Every programmer will practice it
(differently). And no one will know just
what it is.

[Tim Rentsch; "Object-Oriented Programming"
SIGPLAN Notices, Sept. 1982, v. 17, no. 9, pp.
51-57]

Stories of success with object technology have become
common, and it is clear that objects will one day

dominate the profession of computer information
systems. But what will it take for the transition to be
pervasive?
 To find out, we obtained special authorization for
time travel and non-participatory attendance at ISECON
2050. Thinking "...Intel inside, idiots outside...," the
Dean agreed to foot the bill if we could verify, beyond
all doubt, that we had actually gotten there and
accomplished our investigative goal. We thought that
ironclad proof might lie in becoming the first individuals
in the year 2000 to know what superseded the object-
oriented paradigm.

 The following is a loose reconstruction of our
interview with an historian of computing on how it came
to be that objects prevailed. We had to find an historian
because none of the other Johnny-come-lately educators
and practitioners could believe that systems had ever
been built without objects. We submit the following to
verify our trip to 2050 and get the Dean to pay-up. I did
the talking and the more serious co-author took notes.

* * *

Me: Hey guy! What thrills await Y2K information
technologists? We do objects you know. What's next?

Historian: Objects started in the arena of
programming, and it took the longest time for
Twentieth-Century programmers to understand and use
them. The conceptual underpinning was in place well
before 1975. The first programming language with
objects, Simula, appeared in 1967. The first theoretical
treatise appeared in a slim, 1972 book by three giants,
Dahl, Dijkstra, and Hoare. They described all the
essentials of object-based and object-oriented
programming. Their work was of a formal nature.
Their formal examination of programming did not
uncover techniques beyond abstraction and derivation;
that is, they foresaw nothing beyond objects. It is hard
to call the stark reality exposed through formal inquiry
prescience, but they were right. The final paradigm for
software, as far as we know, is the object-oriented
paradigm.

Me: You say it took us a long time to understand
objects. You've got to remember that serious work was
hampered by daily struggles with Windows. Every
fifteen minutes the program I'm trying to build hangs
with another General Protection Failure.

Historian: The program YOU are building, hummm.
Two obstacles made objects difficult for early
practitioners understand. First of all, like that
proverbial elephant described differently by the blind
men standing at different places, object technology has
different facets. Some descriptions focused on objects as
abstractions or as abstract data types. Others would
focus on objects in terms of inheritance. Thus, people
were hearing different things from different quarters.
The object proselytizers in the 1980's were not
presenting a coherent picture. That their explanations
relied upon analogies made things worse. No analogy
was quite right. But speaking literally was no help
either. Saying that an object is "a record with functions"
did not help non-coders; and coders could not visualize
how or why such operatively dissimilar constructs might
be fused.

 Looking back, it seems that concrete code was the
only effective way to communicate: (i) how classes put
instance variables and functions together, (ii) that
classes are data types for use as type specifiers, (iii) that
objects are instantiations of classes, (iv) how objects
access their members, and (v) how one class inherits
variables and functions from another class. C++ was
very helpful in this regard. More than any other
language, especially Smalltalk, it made the fundamentals
of object-oriented programming accessible to
professional programmers and to students. Of course, it

was a nasty language in which to build real systems.
Too many traps. That's why it was abandoned so
quickly. But, as I said, it was of inestimable value in
displaying an object as a thing that encapsulates both
data and functions and in displaying how objects are put
to work. Incidentally, functions in object parlance are
termed methods.

Me: My colleague and I co-authored an asynchronous
course in C++ that ran many times. We also delivered a
paper on our observations pertaining to learning over the
Internet. It's a lie that we tried to get a grant to research
the Boolean, anti-binary, least squares approach.

Historian: That the fabric of C++ was not object-
oriented was both a benefit and a drawback. Procedural
programmers felt right at home with C++, however the
language itself neither exemplified the use of objects nor
had rules compelling coders to create classes of their
own. The next major language, Java, did both of these.

 But let me complete what I was saying about why
objects were hard for early programmers to key into.
Basically, early programmers were electrical
engineering types or, at least, oriented toward bits and
bytes. That, anyway, was the culture. The result was
trouble dissociating the operation of the machine, at the
hardware and assembler level, from the essence of a
program as the symbolic manifestation of a process.

 On the machine, computation takes place with
instructions such as load, store, add, branch on zero, and
the like. Notice that machine instructions are verbs;
each instruction signifies an action. Values, on the other
hand, are inert bit strings. They sit passively in registers,
in memory, or in storage. They can neither modify
themselves nor, like the machine, be asked to do things.

 Early languages like FORTRAN built upon this
paradigm with no explicit awareness that there could be
other options. Subroutines operationalized the high
level instructions one might have wished the machine
had offered. Whatever a subroutine did, it was always
to act: to compute a square root, to sort an array, to
print a report. Data types were still inert, though the
language managed them in particularized ways. A float,
for instance, was stored as two separate bit strings, a
value and a scaling factor. A character was an eight-bit
integer that was displayed as a letter instead of as a
number.

 Later languages, like PL/I, Pascal, and C, offered
more sophisticated subroutines and more sophisticated
data types than FORTRAN; but they did not diverge
from the machine language model of computation.
Instructions acted; subroutines acted. Bit strings were
acted upon; variables and records were acted upon.

Programmers internalized this model. So did system
analysts and system designers. Software systems were
built on the basis of the actions they would have to
perform; and when an action entailed too much
processing to be coded on a single page, it was
decomposed into subordinate actions. Tens of
thousands of otherwise fine minds were mutilated by
this procedural model.

Me: With all due respect, the Y2K bug was the biggest
non-event of the last millennium, right? If we were
cognitively deficient, the culprit was Jolt. You know,
"all the sugar and twice the caffeine." I am always
wired.

Historian: The reverence for caffeine among
computing professionals was immortalized by the name
of the language that turned things around, Java. In much
the way that C++ was "a better C," Java was an
improved C++. Probably the greatest improvements
were the simplifications owing to the fact that all objects
were dynamically allocated and garbage was collected
automatically. Along with this, all variables for objects
were references (i.e. pointers that did not need to be
dereferenced); assignment meant "copying an address";
and it was always the address of an object, passed by
value, that was transmitted to actual arguments in
methods. Also, templets were unnecessary because all
classes were "Objects"; and by that I mean derived from
the class at the top of the hierarchy. Apologies if I'm
getting too technical.

 While this is what attracted many C++ developers to
Java, other aspects of the language made it attractive to
forward-thinking educators.

 Firstly, Java provided numerous illustrations of
objects at work. To take apart a string, for example,
students could instantiate a StringTokenizer object. The
instantiated object would be dedicated to the string
passed to its constructor, such as the three word string,
"See Spot run." The programmer could access the
object's method countTokens() which would return, in
this case, the integer 3. Then, to capture the leftmost
sub-string, the programmer could access the object's
nextToken() method. This would return the string "See"
and clip it from the string held within the object. After
this, countTokens() would report that two strings
remained. The next time that nextToken() was called on
this object, "Spot" would be returned and removed from
the contained data member.

 More important than the StringTokenizer as a tool
was the fact that it exemplified the nature of objects. A
program could have any number of StringTokenizer
objects. Each such object contained its own internal
string about which it could answer the question, "How

many 'tokens' does your string currently hold?" And
each object could operate upon its internal string.
Students were immersed in objects from early on.
Through hands-on use, they intuitively understood that
an object could be a software mechanism that held data
(e.g. a string) and performed a specialized job (enabled
its substrings to be culled for processing). Random was
another class from which students instantiated objects.
Each one of these could be asked for its nextDouble(),
which it computed from the values it stored for its own
sequence of pseudo-randoms.

 Added to this, Java forced beginning students to
create similar objects of their own. It did this by
disallowing free functions. In FORTRAN, Pascal, or C
where you'd have written a subroutine called sort(), in
Java you'd have to design a class from which you'd
declare a sorter object. This is how "verbs" became
"nouns." Instead of thinking in terms of sort,
getCustomerName, printReport you'd think in terms of
sorters, nameGetters, and reportPrinters. Little software
mechanisms that performed specialized jobs.

 And the more of objects students experienced, the
more apparent their versatility. An array in Java is an
object. To adhere to tradition, arrays perform writes and
reads from specified compartments with the bracket
operator. But each array object supplements its
sequence of elements with a scalar named length. Thus,
when an array is passed to a method, its size goes right
along as part of its corpus. This was an impressive
application of encapsulation, that objects allow nouns to
be better nouns.

Me: I, myself, would have named that language
Szechuan, or possibly General Tso's Chicken. You're
quite a Java proponent; mind telling me how you are
related to James Gosling?!

Historian: Java had a tremendous impact. The age of
modern computing dawned around the year 2000, when
colleges and universities in large numbers began
adopting Java as their backbone language. By the time
students were sophomores, they were indoctrinated.
That marvelous book by David Bellin and Susan
Suchman Simone, The CRC Card Book (Addison-
Wesley, 1997), was the bridge to OO analysis and
design in the large. As the wave of Java-schooled
students moved into industry, the software profession
was transformed. Functional decomposition gave way
to thinking about systems in terms of their parts, and
catalogs of reusable and customizable parts became
standard.

Me: Say no more! I'm getting tired of this, but our
colleagues will be pleased to learn that in switching to
Java from C++ they are doing the right thing.
