

Personal Software Process Technology:
An Experiential Report

Iraj Hirmanpour1
Soheil Khajenoori2

Department of Computing and Mathematics
Embry-Riddle Aeronautical University

600 Clyde Morris Boulevard
Daytona Beach, Florida 32114

ABSTRACT

Process improvements within software development occur at three different levels: the organizational level, the
project/team level, and at the individual engineer -- or personal -- level. The Software Engineering Institute (SEI) of
Carnegie Mellon University has developed process improvement models tailored to each of these levels. The Capability
Maturity Model (CMM)3 deals with organization issues, the Team Software Process (TSP)1, currently under validation
testing, address improvements in project or team development processes, and the Personal Software Process (PSP)1.
The focus of this paper is on individual software engineer’s issues addressed by the PSP. The Personal Software
Process (PSP) provides a framework that individual software engineers can use to define, instrument, and continuously
improve their individual processes.

After five years of experience in teaching PSP in both academic and industry settings, we have gained some insights
into the challenges and rewards of transitioning this technology into an organization’s software development practices.
Our industrial experiences included work with the Motorola Paging Products Group; Boeing Corporation’s Space
Division and the Naval Oceanographic Office (NAVO).

In this paper, we will relate our experiences with the transition of PSP technology into these three organizations. We
will describe various approaches taken with industrial PSP training, and report data to validate the benefits of PSP. We
will further describe some barriers to PSP training, the challenges of post-training activities, and offer conclusions
about the transition process.

Keywords: Personal Software Process (PSP), Defect management, Defect Prevention, CMM, TSP

1 Ih@db.erau.edu

2 soheil@db.erau.edu

3 CMM, TSP, and PSP are service marks of Carnegie Mellon University

1. INTRODUCTION
There is a notion that the cornerstone of the software quality
movement lies in quantitative process management. This
belief has been promulgated by many in the software
development field through the introduction of improvement
models such as CMM [Paulk 1995], SPICE, and Trillium
[Bell 1994], to mention a few. Process improvement,
however, commonly occurs within software development at
three different levels: the organizational level, the

project/team level, and/or at the individual engineer’s level.
The Software Engineering Institute (SEI) of Carnegie
Mellon University has developed process improvement
models for each of the three levels. The Capability Maturity
Model (CMM) deals with organizational issues [Paulk
1995], the Team Software Process (TSP), currently under
test, deals with project/team issues [Humphrey 1999], and
the Personal Software Process (PSP) deals with individual
software engineer’s issues [Humphrey 1995].

The CMM embodies process improvement at the
organizational level, and tends to address quality issues
more from a managerial perspective rather than at the
work level of individual software engineers. However,
the application of CMM has proven effective [Herbsleb
1997] in improving the quality, schedule, and costs of
software [Herbsleb 1997].

The PSP method was developed by Watts Humphrey,
introduced by SEI in 1995, and published in “ A
Discipline for Software Engineering” [Humphrey 1995].
The goal of PSP is to provide individuals with the same
type of tools CMM offers to organizations, in other
words, a roadmap for a disciplined approach to software
development. TSP, also developed by Watts Humphrey
and soon to be released by SEI, will complete the cycle
by providing team-oriented processes for PSP-
practitioners, thereby enabling them to use level five
practices in a team project setting. CMM describes what
software development practices an organization should
implement to reach a higher level of maturity and
effectiveness. PSP shows individual engineers how to
deploy CMM level 5 practices for the same beneficial
outcomes.

Our premise is that further improvements can be
achieved when a personal quality model such as PSP is
used. We hypothesize that the Personal Software
Process provides an effective quality model for
individual software engineers to employ. The notion of
personal quality, new to software development, is not
new in other disciplines. Bob Galvin, a former Motorola
CEO, promoted the practice by espousing, “quality
improvement is not just an institutional assignment-- it
is a daily personal priority obligation.”

In this paper, we share our experiences with the
transition of PSP technology into the aforementioned
organizations, describing various approaches taken with
the industrial PSP training, and reporting data to validate
the benefits of PSP. We go one step further to describe
barriers experienced during the PSP training, the
challenges of post-training activities and summarize
with conclusions.

2. WHAT IS PSP?

Personal Software Process (PSP) provides a framework
that individual engineers can use to define, instrument,
and continuously improve, their individual software

development processes. It consists of a family of
defined, measurement-based processes, organized in an
evolutionary path that teaches software engineers to
practice personal quality management and personal
project management. Individuals are introduced to the
PSP through a series of seven process steps. Following
these steps, engineers generate up to ten small programs
and prepare five reports using the evolving PSP
methods. They are also responsible for gathering and
analyzing data from their own work. Thus, the PSP
framework provides a mechanism for software engineers
to apply CMM level-5 process principles to their
individual work. These principles include:

• Time management,
• Defect management,
• Estimation,
• Planning and tracking,
• Establishment and utilization of

standards,
• Data analysis,
• Quantitative process improvement,

Covering principals and practices of 12 of the 18
key process areas of the CMM.

3. BARRIERS TO PSP IMPLEMENTATION

The focus of the PSP technology is on personal work
processes, which traditionally have not been considered
as a part of management business processes. Since there
are, thus far, few quantitative process improvement
experiences at the organizational level, and even fewer
at the personal level, convincing engineers and
managers to learn new practices is a difficult task. A
cultural change of this nature is slow and requires a
long-term commitment from both management and
engineers alike.

Therefore, the education and practice of PSP presents a
considerable challenge both to the individuals and to
their organization. The most common barriers are the
reluctance of many engineers to accept a new method of
developing software and a lack of long-term
commitment by management to support PSP efforts. The
challenge of transition to using PSP is far greater than
just delivering the training course; it is affecting a
cultural and behavioral change from a “common
culture” to a “PSP culture”. The chart below illustrates
the various components related to such a change.

Common Culture
(Engineers favor)

PSP Culture
(PSP-practitioners favor)

• Test over reviews
• Code over design
• "Jumping-in" over

planning
• "Guesstimates" over

estimates
• Opinion over facts

• Reviews over test
• Design over code
• Planning over

“jumping-in”
• Estimates over

guestimates”
• Facts over opinion

“ Personal work processes are rarely even
considered part of the management business
process, let alone analyzed and perfected.”

 Kerry Gleeson

The question arises of how to move from a “common
culture” to a “PSP culture.” Training and education are
the primary components of such a journey. In what
follows, we describe our experiences and share lessons
learned while completing the PSP training sequence.

4. EXPERIENCES WITH PSP TRAINING

The industrial PSP training began in the summer of
1995 at Motorola Paging Product Group with a pilot
course taught to a group of managers and engineers
[Macke 1996]. Since then, four additional courses have
been taught at Motorola PPG, two courses at the Boeing
Corporation at Kennedy Space Center, and one course
at the Naval Oceanographic Office (NAVO).

The first offering of the full PSP course was taught over
twelve weeks, one day per week. During the duration of
the course, engineers completed ten programs and
prepared five reports. Data has shown that students spent
over 150 hours to complete the entire course. This
sizable utilization of resources was deemed excessive by
both management and engineers. As time went on, we
experimented with several different approaches such as
shortening the duration of the course, reducing the
number of programming assignments from ten to seven,
providing additional learning aids to clarify the
assignment requirements, and offering individual
assistance to students in completing their assignments.
These implemented changes have reduced the amount of
time spent by students on the course.

The most effective reduction in time spent by students
was found to occur with a shortened format we call the
"3-3-4 format". This format was most recently
implemented at NAVO. The 3-3-4 format consists of
offering the course three consecutive days one week,
three days several weeks later with a four day “wind up”
several weeks later. Total time spent by students for the
entire course was reduced by almost 50 hours. This
means that students spend approximately 100 hours on
the course, including class time. The data collected from
the shortened version of the course suggests that there is
no reduction in the quality and effectiveness using this
format over the more demanding twelve-week course.
This shortened 3-3-4 format divides the course into three
logical “fragments” as shown below:

• Module I: PSP0 Software Measurement – 3 days
• Module II: PSP1 Planning and Tracking – 3 days
• Module IIIa: PSP2 Quality Management - 3 days
• Module IIIb: Final reports & graduation ceremony

– 1 day

This 3-3-4 format is considered advantageous for the
following reasons. It separates three associated modules.
This provides students with ample opportunity to learn
the concepts of each module and allows them to practice
the concepts of the module for a period of time before
going on to the next one. This logical segmentation of
the course has exhibited benefits to both the learner and

the instructor.

5. PSP TRAINING BENEFITS

As most software engineers are aware, the most
troublesome issue of software engineering research is
collection and analysis of accurate data that will show
the effectiveness of a new method or tool. In an effort to
study the effectiveness of PSP training, three sets of data
were analyzed: 1) Data collected from the first two
classes taught at Motorola in Summer 95 and Winter 96
consisting of 24 engineers1, 2) Data drawn from actual
post-training projects by six of the above 24 engineers;
and, 3) Data collected from a survey instrument
administered six months after each Motorola class to
evaluate the respondents attitudes toward the concepts
learned. While this type of research effort is more
similar to a case study than a statistical sampling, an
effort is being made after each course is completed to
validate whether concepts taught are being learned and
then finally implemented. We realize the further study
and validation of this type of data by other colleagues in
the discipline is sorely needed.

PSP practices are designed to assist software engineers
with quality and predictability issues. The quality
component of the PSP strategy focuses on managing the
defects in the software being produced. It is assumed
that by improving defect management, engineers can
produce more consistently reliable components of their
software [Humphrey 95]. Using this limited definition
of quality, one of the research questions became “Do
PSP- practitioners produce higher quality software?”
To answer this question, we can examine the data
collected by PSP-students during the two Motorola
classes and from the post-training projects.

Class data:

The population of the group under study included the
previously mentioned 24 Motorola engineers enrolled in
the first two of twelve training classes. The data
presented compares the student engineers' work at the
beginning of the course (the first three programming
assignments) and at the end of the course (the last three
programming assignments).

Table 1 shows data for in-process defects per thousand
line of code (KLOC) from both classes. The average
defect rate during the first three PSP programming
assignments (where students are still relying heavily on
their past software process) are compared to the last
three PSP programming assignments (where students are
now more effectively using the PSP processes they have
learned).

1 This type of data is a by-product of the course and its
collection

 Def/KLOC
Prog. 1, 2, 3

Def/KLOC
Prog. 8, 9, 10

% I

Class#1 93 66 29
Class#2 50 40 20
Total (∆∆∆∆) 72 52 27.7

I = Improvement

Table 1: Total Defects

As shown in Table 1, the defect rates declined in both
classes. The average number of defects of the two
classes represented in KLOC for the first three
assignments in two classes was 72 and the average
defects per KLOC for the last three assignments was 52;
this represents over 27% improvement in overall
defects. This trend, by the way, is consistent in all
classes we have analyzed.

Table 2 shows compile defects found for the same two
classes as in Table I.

 Comp. Defects
Prog. 1, 2, 3

Comp. Defects
Prog. 8, 9, 10

% I

Class#1 32 20 37.5
Class#2 40 8 80
Total (∆∆∆∆) 36 14 61

I = Improvement

Table 2: Compile Defects

As shown in Table 2, the average of the compile defects
for the two classes was found to be 36 KLOC at the
beginning of the course after the first three assignments
and only 14 KLOC at the end of the course while
completing the last three assignments. This is an
improvement in early compile defect removal of over
60%. Since the compile defect rate is an early indicator
of the quality of the software under development,
obtaining such information early on is a valuable tool in
deciding whether to proceed onto testing or to return to a
previous phase for re-work which would avoid being
bogged down in the testing phase.

Finally, Table 3 shows the test defect rate for the same
two classes.

 Test Defects
Prog. 1, 2, 3

Test Defects
Prog. 8, 9, 10

% I

Class#1 44 16 63.6
Class#2 32 12 62.5
Total (∆∆∆∆) 38 14 63.2

I = Improvement

Table 3: Test Defects

As shown in Table 3, the average of the test defects
found for the two classes was 38 KLOC at the beginning
of the course, reducing to 14 KLOC at the end of the
course; this represents an improvement of 63.2%.

If one agrees with the premise that there is a direct
relationship between the in-process defect rate and the
post-deployment defect rate, such as the higher in-
process defect rate correlates with the higher probability
of post-deployment difficulties, then one can conclude
from the results presented in the tables that PSP teaches
a set of practices that enable engineers to build higher
quality (lower defect) software. In other words, they
learn to build quality into the software instead of relying
on testing to remove existing defects. Considering the
sample size of the data, it is evident that there is a
necessity for further studies. However, the notion of
substantial improvement as observed in the present data
can be further confirmed by a second set of data
collected from real software projects at the conclusion of
the training.

Project Data:

Six Motorola engineers from the two classes in this
study volunteered to collect and share data on their
current software projects. The data collected from these
six engineers comes from one or two-person small
software projects, mostly in a maintenance environment,
giving a total of 18 projects. These projects collectively
consisted of 25,114 lines of code (LOC) using 2,597
hours of engineer time, as shown in Table 4.

Proj. LOC

Develop.

Hours
Test

Defects
Total

Defects

18 25,114 2,597 136 575
Total Defect Density 22.8 defects/KLOC
Test Defect Density 5.4 defects/KLOC
Productivity 9.6 LOC/hour

Table 4: Profile of 24 Projects by 6 Engineers

Table 4 shows that the defect rate for eighteen actual
projects as 22.8 defects/KLOC at the beginning of the
project compared to 52 defects/KLOC at the end of the
class (Table 1). This represents over a 60%
improvement. Also, the test defect rate at the end of
class was 14 defects/KLOC (Table 2), whereas the test
defect rate over the eighteen projects is 5.4; again, over
a 60% improvement. Both sets of data suggest
significant improvement in quality taking place as
engineers’ master PSP practices and use them repeatedly
in their software practices.

Survey Data:

In order to determine the effect of PSP education on
attitude and work habits of engineers, a survey was
conducted six months after completion of each class.
The population surveyed consisted of the same 24
Motorola engineers who provided the data reported in
Tables 1, 2, and 3 for the first two classes, including the
six engineers who volunteered the project data reported
in Table 4. The survey instrument was designed to
query the engineers' opinion about the value of the

course and to gauge behavioral changes in their work
habits. Table 5 shows partial results from this opinion
survey.

Sample Survey Questions Agree %
I have better quantitative knowledge of
how to improve my work habits.

21/24 87

I pay more attention to defect
management than before

19/24 79

I conduct personal code reviews 21/24 87
I have better insight into how my
projects are progressing

17/24 70

Table 5: Engineer’s Observations and Opinions

As shown in Table 5, 87% of the PSP-trained engineers
polled in the survey stated that they have acquired a
better understanding of the value of quantitative
software engineering. A similar percentage indicated
that they practice personal code reviews. Seventy
percent of the surveyed engineers report better insight
into project progress, while 79% report they paid more
attention to defect management, after the course, than
they did before taking part in the course. These reported
increases suggest that PSP-trained engineers are
adopting more of software “best practices,” with a
potential concomitant increase in efficiency and quality.

6. SUCCESS FACTORS

As mentioned earlier, industrial implementation of PSP
is difficult and there are many barriers to overcome.
Through experience, we have learned a number of
factors that contributes to successful training and
transition. These include training support, coaching and
follow-ups after the training, as well as visibility and
management support for continued use of the learned
practices.

Training support means availability of equipment and
software tools, allocation of sufficient time for
completing course assignments, and mentoring and
coaching support. A measure of successful training is
the student completion rate. A student is considered to
have completed the course when he/she has completed
all programming assignments, prepared all reports
requested, and been evaluated by the instructor as
“satisfactory”. Only completed assignments are
accepted; incomplete assignments are returned to the
student for re-work. Interestingly, regardless of course
format, we have seen no significant differences in the
completion rate of the course across the three
organizations studied. We have consistently achieved
over 90% completion rate, irrespective of the format
used or the type of organization in which the training
took place. We attribute this success rate to the process
model used to implement the training/education
program. The model consists of a detailed plan prepared
in coordination with the managers of the corporate
sponsors, an awareness seminar conducted with the
prospective students, establishing expectations,
requiring commitments from both managers and

engineers, and finally not accepting incomplete work.
Management plays an intregal part during the entire
training course. They are briefed regularly on the
engineers’ progress and asked to intervene when
assignments are not handed in on time. During the last
day of the class, the trained engineers present their data
before the entire class and management and are asked to
reflect upon their learning experiences and describe how
they intend to utilize the PSP concepts they have learned
in their future individual projects.

In some cases, we continue to work with the trained
engineers via coaching and community building.
Coaching is conducted to encourage and assist the
engineers to continue to use the PSP concepts in
developing software. A pro-active coaching strategy
promotes adaptation of the PSP concepts in the work
environment. PSP graduates are contacted on a regular
basis to determine the extent to which they are using the
PSP concepts and to suggest new approaches for
improving their work processes.

Visibility and management support is another success
factor. In order to ensure continued interaction and the
exchange of information among PSP-trained engineers
and managers, a PSP users’ group is formed by PSP
graduates in an effort to build a community of PSP
practitioners. In this case, the group meets once a month
for lunch to share their experiences and the lessons they
have learned. Often an engineer who has just completed
a project using PSP makes a presentation and shares
his/her data, experiences, and success/failures. The
management supports these activities by attending,
providing refreshments, and giving letters of
commendation for exemplary work. As more engineers
complete the course, this cycle of “train and join”
eventually builds the community, and as a final end
product, the “new culture”.

7. CONCLUSIONS

Our experience and the limited data collected thus far
suggests that applying PSP practices improves product
quality and reduces cycle time. This assertion is further
verified by a study conducted and published by SEI
[Hays 1997]. Our survey data also suggests the trend of
acceptance of the PSP methods by software engineers. It
indicates improvement in the quality of work habits
deployed by the PSP-trained engineers and suggests that
engineers who learn PSP are better able to follow and
reap the benefits of a defined, measured process.

However, as noted, introducing the PSP technology into
the software development practices of an organization
often proves to be a difficult task. It requires extensive
resources and a long-term commitment in order to see a
tangible benefit.

Further studies are needed to answer questions such as:
What can be done to reduce the effort required in
learning PSP? How can PSP be deployed into an
organization’s present software development practices?

What is the Return on Investment (ROI), among others?

8. ACKNOWLEDGEMENT

We would like to acknowledge influence, guidance and
inspiration of Watts Humphrey. We have had the
privilege of working closely with Dr. Humphrey Watts
and have benefited from his insights into the software
development process.

9. REFERENCES

Bell Canada, 1994, Trillium: Model for Telecom
Product Development & Support Process
Capability, Bell Canada.

Gleeson, K., 1994, The Personal Efficiency Program.
John Wiley & Sons, New York.

Hayes, Will and James, W. Over, 1997, The Personal
Software Process (PSP): An Empirical study of the
Impact of PSP on Individual Engineers,
(CMU/SEI-97-TR-001), Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

Herbsleb, T., 1997, Benefits of CMM-Based Software
Process Improvement, (CMU/SEI-97-TR-001),
Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University.

Humphrey, W.S., 1989, Managing the Software Process,
Addison Wesley, Reading, MA.

Humphrey, W.S., 1995, A Discipline for Software
Engineering, Addison Wesley, Reading MA.

Humphrey, W.S., May, 1996, Using a Defined and
Measured Personal Process, IEEE Software.

Humphrey, W.S., 1999, Introduction to Team Software
Process, Addison Wesley, Reading, MA.

Khajenoori, S and I. Hirmanpour, April, 1995, "Personal
Software Process: An Experimental Report,"
Proceedings of 8th Conference on Software
Engineering Education, New Orleans, LA.

Khajenoori, S and I. Hirmanpour, October, 1995, "An
Experiential Report On The Implications of
Personal Software Process For Software Quality
Improvement," Proceedings of the Fifth
International Conference on Software Quality,
Austin, TX.

Macke, S., Khajenoori, S and I. Hirmanpour, April,
1996, .An Industry/Academic Partnership that
Worked: An In-Progress Report, Proceedings of
9th Conference on Software Engineering
Education, Daytona Beach, FL.

Paulk, M.C., C.V. Weber, B. Curtis and M.B. Chrissis,
1995, The Capability maturity Model: Guidelines
for Improving the Software Process, Addison-
Wesley, Reading, MA.

Roberst, H.V. and B.F. Sergesketter, 1993, Quality is
Personal, The Free Press, New York, NY.

	ABSTRACT
	INTRODUCTION
	WHAT IS PSP?
	BARRIERS TO PSP IMPLEMENTATION
	Common Culture
	4.	EXPERIENCES WITH PSP TRAINING
	5. 	PSP TRAINING BENEFITS
	PSP practices are designed to assist software engineers with quality and predictability issues. The quality component of the PSP strategy focuses on managing the defects in the software being produced. It is assumed that by improving defect management, e
	Class data:
	The population of the group under study included the previously mentioned 24 Motorola engineers enrolled in the first two of twelve training classes. The data presented compares the student engineers' work at the beginning of the course (the first three
	Def/KLOC
	Class#1
	Class#2
	Total (()
	I = Improvement
	Comp. Defects
	Class#1
	Class#2
	Total (()
	I = Improvement
	Table 2: Compile Defects
	
	
	
	
	Finally, Table 3 shows the test defect rate for the same two classes.

	Test Defects
	Class#1
	Class#2
	Total (()
	I = Improvement
	Proj.
	18
	Total Defect Density
	Test Defect Density
	Productivity
	6. SUCCESS FACTORS
	7. CONCLUSIONS
	8. 	ACKNOWLEDGEMENT
	9.	REFERENCES

