

On Teaching a Data Structures and Algorithms Course
through a Rigorous Approach

Favre, Liliana1 Felice, Laura Martinez, Liliana Pereira, Claudia

Departamento de Computación y Sistemas

Universidad Nacional del Centro
de la Provincia de Buenos Aires.

7000 Tandil
Buenos Aires. Argentina.

Abstract

In this paper we describe a methodology for constructing efficient algorithms applied in an elementary course on Data
Structures and Algorithms. This methodology attempts to show the essential steps in a sequential process in software
development from an informally stated problem, via a formal problem specification, to a final efficient program.
Students of the course are expected to have at least a year's experience in programming high level languages and
elementary logic and calculus.
We describe a prototype, AyDA, which assists in the construction of algorithms starting from the proposed
methodology.

Keywords: Data Structures and Algorithms, Algorithm Design Techniques, Formal Specifications, Programming
Teaching.

1 CIC (Comisión de Investigaciones Científicas de
la Pcia. de Buenos Aires
{lfavre, lfelice, lmartine, cpereira}@exa.unicen.edu.ar

1. INTRODUCTION

Often several different algorithms are available to solve
the same problem. The choice of an algorithm for a
particular problem can be a difficult process. Algorithm
design requires to create and combine specifications and
planning their implementations. There are several
advantages of combining specifications:

• It describes the function of a software piece free
from most implementation details.
• Because specifications can have several
implementations with different performance properties,
they can be used in various problems with different
performance requirements.
• It allows one to make a predictive analysis of
temporal and spatial complexity.

In this work a methodology applied in an elementary
course on Data Structures and Algorithms is described.
It integrates algebraic and imperative specifications and

object-oriented languages. The outstanding features of
this methodology are:

• An evolutionary development from specifications
to implementations.
• The symbolic execution of specifications.
• The construction of efficient implementations
reusing previous existing ones.

The methodology is based on a process that includes the
following essential activities:

• Identification of the problem.
• Formalization of the problem.
• Analysis of the formal problem description.
• Construction of efficient implementations in an
object-oriented language.

The formalization language is multiparadigm one,
blending equational and imperative styles into an unique
notation. C++ (Ellis 1990) has been chosen as the
object-oriented language.

The object classes that are involved in the problem are
identified and specified in an algebraic style. This
specification describes object classes in an abstract way,
free from most implementation details. The object
class specifications are constructed from previous
existing ones by applying mechanisms provided by the
algebraic language: generalization, specialization,
parameterization, and instantiation. Two important
relationships between classes can be distinguished: ‘is-
kind-of’ and ‘uses-a’. These relationships are connected
with inheritance and client relationships in the object-
oriented level respectively. The algebraic specifications
are integrated with procedural schemes specified in an
imperative style. They are related to different algorithm
design techniques such as Divide and Conquer, Greedy,
Backtracking, etc. Thus, a first version of the algorithm
that combines procedural and algebraic parts is built.
This version can be symbolically executed allowing us
to make early validations.

Starting from object class specifications and procedural
schemes it is possible to make a predictive analysis of
the temporal and spatial complexity and select an
implementation for each object class. Then,
specifications and procedural schemes must be
transformed in object-oriented code (in particular, we
have experimented with C++). We can distinguish two
types of transformations:

a) transformations of algebraic specifications to
concrete classes in an object-oriented language.
b) transformations of procedural schemes to efficient
code.

With respect to a) there exists a library of behavior
specifications related to those data types most
commonly used in the construction of algorithms: lists,
trees, graphs, etc. The transformation is based on the
application of reuse operators for renaming, restriction,
composition and extension.

With respect to b) the procedural schemes can be
automatically translated into C++ code.

To apply this methodology a prototype, AyDA, was
implemented. AyDA provides an interactive
environment, helping the students in the tasks of editing
specifications, making symbolic execution, performing
transformation and analyzing temporal and spatial
complexity.

The paper is organized as follow. In Section 2, we give
the motivation and related work. Section 3 describes the
specification language LEAD. Section 4 describes the
methodology and Section 5 gives the features of the
implemented prototype. Finally, conclusions are made.

2. MOTIVATION AND RELATED WORK

Algorithms are often described in textbooks (Aho 1995;

Baase 1988; Cormen 1990) in terms of pseudo-code or
particular programming languages (C, Pascal, etc).
Pseudo-codes are clearly not executable and need to be
re-coded by programmers. On the other hand, algorithms
in directly compilable code are closely tied to the
physical structure of data they manipulate and this
would not be likely to yield flexible solutions, moreover
highly optimized algorithms are, in general, hard to
understand.

The construction of efficient algorithms requires to start
from descriptions satisfying the following conditions
(Meyer 1997):

• They should be precise and unambiguous.
• They should be complete.
• They should not overspecify.

The theory of abstract data types reconciles the need for
precision and completeness with the desire to avoid
overspecification. They provide high-level descriptions,
free of implementations concerns.

The paper (Franch 1993) describes a Programming
Environment “used in teaching” designed to support
symbolic execution of programs written in Merlin
algebraic language. Also, many tools (Brown 1991;
Gloor 1992; Ho 1993) have been developed for creating
animation of algorithms that can be used to improve the
learning of the algorithms. The emphasis in these
approaches is on the algorithms themselves.

In our approach , the study of algorithms is not an end in
itself. We intend to teach these topics in a framework
that emphasizes in factors of software quality such as
correctness, extensibility, reusability, efficiency,
maintainability, etc.

Furthermore, as formal techniques become more and
more used in the computing industry, it is important that
the computing science curricula keep up with the
technology trend.

3. THE SPECIFICATION LEVEL

Algebraic specifications of objects classes
Object classes can be abstractly specified by means of
algebraic specifications of data types. Our approach is
based on this formalism. We have define:

• A specification language LEAD, based on a subset
of CIP-L language (Partsch 1990) and extended with
mechanisms for constructing incomplete algebraic
specifications. This mechanism allows us to specify
abstract classes that will be associated with abstract
classes in the object-oriented level.
• A model of reusable components that integrates
algebraic specifications and concrete classes in an
object-oriented language. A reusable component is a tree

that links algebraic specifications and concrete classes in
an object-oriented language.
• The root is the most abstract specification and the
leaves correspond to concrete classes.

Following, we describe the most relevant
theoretical concepts for this work. The basic idea
of the algebraic approach consists of describing
data structures by just giving the names of the
different set of data, the names of the basic
functions and their properties which are described
by equations in first-order logic. Following, we
describe the syntax of LEAD specifications.

 type T
 export,si,..,cj,...,fk,...(1)
 include Q1,
 based on P1,...(2)
 deferred
 sort si,...(3)
 sj cj,.... (4)
 ...
 function (s1

k,......,sn
k) skfk,.....(5)

 laws Lm
 ... (6)
 effective
 sort si,...(3)
 sj cj,.... (4)
 ...
 function (s1

k,......,sn
k) skfk,.....(5)

 ... (6)
 end of type.

The sequence of identifiers that follows the keyword
export refers to the visible sorts, constants and
operations provided by the type to its environment, i.e.
that they can be used in other types (1).

A type is a hierarchy, i.e. it is based on other types P1
(2). This dependence is expressed by the keyword
based-on. All the sorts, constants and visible operations
of P1 can be used in the specification of T. To protect P1
however, its constituents are not visible for the types
based on T unless they are listed as visible constituents
of T. The primitive relationship is:

• transitive: if a type T is based on a type T’ and T’’
is primitive for T’, then T’’ is primitive for T.
• irreflexive: no type is primitive of itself.

Specifications distinguish two kinds of sections
identified by the keywords deferred and effective. The
deferred section declares operations and sorts that are
not completely defined, i.e. there are not enough
equations to specify the new operations or there are not
enough operations to generate all values of a given sort.
The effective section describes operations completely
defined.

The signature of a type T is a triple <S,C,F> of
identifiers, where:
• S: set of symbols of sorts;
• C: set of symbols of sort constants;
• F: set of symbols of operations, each operation
symbol f belonging to F is associated to a functionality:
f: s1 x s2 x.....x sn→ s. This functionality is expressed in
LEAD as follows:
(s1,s2,.....,sn)s f (5).

The operations can be restricted by preconditions. The
visible constituents of P1 primitive types of T are part
of the signature of T, too. The type axioms (6) are well-
formed formulae of the calculus of first order predicates
that define the type semantics.

The type specification can be based on sorts, constants
and operations that serve as parameters. The type
schemes (generic types) are denoted as the following
form:

 type T=(<<type parameters >>)
 export (<<constituents>>)
 << body >>
 end of type.

The constituents and the type body are described as it is
done for non-parameterized types. The type parameters
are a collection of sorts, constants and operations.

The language provides facilities to express relationships
‘is-kind-of’ by using the include clause. Many of these
clauses can occur in the body of an instantiation.

The parameterized specifications can be viewed as a
notational abbreviation from which specifications are
generated by supplying a concrete type for the type
parameters. From a parameterized specification special
types can be obtained, by means of the instantiation
mechanism. An instantiation can be denoted by:

 type T=
 ...
 include S (<<argument type>>) as (<<constituents>>)
 ...
 end of type

We make the textual substitution of type parameters in
the body of S by <<arguments type>> and the visible
constituents of S are renamed by <<constituents>>. All
primitive types of S are primitive types in T. All hidden
constituents in S are hidden in T. The new type must be
correct in the instantiation context. Many instantiations
can occur in the body of the type specification. The
occurrence order is arbitrary.

Instantiation allows specialization replacing the visible
constituents of S that are not necessary by a point. Also,

it allows extensions by enriching a type with additional
operations, sorts or equations.
The instantiation concept can be joined to the primitive
type one; the resultant type of an instantiation can be
used like a primitive type. The instantiation is denoted
by:

 based on (<<constituents>>) =
 S(<<type-arguments>>)

Following, we partially depicts specifications of
Container, List and Stack types.

Procedural schemes
The procedural schemes reflect the imperative style in a
C++-like syntax. They are implemented by using a
function-like encapsulation:

Procedural schemes facilitate to express clearer
abstractions related to algorithm design techniques
(Divide and Conquer, Dynamic Programming, Greedy,
Backtracking).

They support mechanisms for expressing modular
design, recursion and polymorphism.

The LEAD language provides constructions for explicit
binding between algebraic specifications and procedural
schemes. We give an example of a function that
computes the reverse of a list L.

function reverse_list (List L):list
 {stack s;
 s=init;
 while (length(L) >0)
 {s=push (s,get(L,1));
 L=delete (L,1);
 }
 while (!is_empty(s))
 {L=insert(L, top(s));
 s= pop(s);
 }
 return L;
 }

type List (sort data_type)
export list, init, add, is_empty, length, first, rest,
insert, delete, get
include Container (data_type) as (list, init, add,
is_empty, length)
deferred
 function(list l: not is_empty(l)) first,

function(list l: not is_empty(l)) list rest
effective

function(list) nat length,
function(list l, data_type, nat p: 1≤p≤
length(1)) list insert,
function(list l, nat p: 1≤p≤ length(1)) list
delete,
function(list l, nat p: 1≤p≤ length(1)) data_type
get
laws data_type d,d1, list l, nat p:
(1)length(init)=0,
(2)length(add(l,d))=1 + length(l),
(3)insert(add(l,d),d1,p)= if(p = length(add(l,d)))
 then add(add(l,d1),d)

else add(insert(l,d1,p),d)
endif,

(4)delete(add(l,d),p)= if (p=length(add(l,d)))
then l

 else add(delete(l,p),d) endif,
(5)get(add(l,d), p)= if (p=length(add(l,d)))

then d
 else get(l,p) endif

end of type.

type Stack(sort data_type)
export stack, init, push, is_empty, length, top,
pop
include Lista (data_type) as (stack, init, push,
is_empty, lenght , top, pop, . , . , .)
effective

sort stack
stack init
function(stack, data_type) stack push,
function(stack s: not is_empty(s)) data_type
top,
function(stack s: not is_empty(s)) stack pop
laws stack s, data_type d:
(1)top(push(s,d)) = d,
(2)pop(push(s,d)) = s

end of type.

type Container (sort data_type)
export container, init, add, is_empty, size
based on Nat, Bool
deferred

sort container
container init
function(container,data_type) container add,
function (container) nat size

effective
function (container) bool is_empty
laws data_type d, container c:
(1)is_empty(init)=true,
(2)is_empty(add(c,d))=false

end of type.
FUNCTION name (<Argument-list>) result type

 <<Body>>
RETURN result
END

4. THE METHODOLOGY

The proposed methodology comprises the following
stages as detailed below:

• The construction of algebraic specifications and
procedural schemes.
• The symbolic execution of abstract specifications.
• The analysis of the temporal and spatial
complexity.
• The transformation of algebraic specifications into
concrete classes in C++.
• The transformation of procedural schemes into an
imperative code C++.

Construction of algebraic specifications and
procedural schemes
At this stage, a model of the final program is built to
gain insight into its behavior and intended use. Object
classes that are involved in the problem are specified.

For each object class a reusable component is identified.
The identification of a component is correct is renaming,
restriction, extension and compose reuse operators can
modified it to match the object class behavior. Reuse
operators on reusable components are informally
defined as follows:

• Extend: adds sorts, operations or axioms to a
specification.
• Rename: changes the name of sorts or operations.
• Restrict: forgets those parts of a specification that
are not necessary for the actual application.
• Compose: combines two or more specifications in
only one.

Specifications are organized in libraries to enable
their selection and adaptation. This formalization
increases the understanding of a system by revealing
ambiguities, inconsistencies that might otherwise go
undetected.

Symbolic execution
Algebraic specifications are integrated with procedural
schemes, thus achieving a first version that allows us
early validations by a mixed-execution mechanism.

At this stage, executions should be oriented to find out
if the specification holds some properties that we know
the formalization should exhibit. This allows us to
correct mistakes and get a new version that will be
validated again. This refinement process keeps on until
the final program satisfies the initial problem
requirements.

For example, the function reverse_list can be
symbolically executed to validate behavior. Let
L=add(add(add(init,13),12) ,10) be, the symbolic
execution for: while (length_list(l) >0) will be:

 (a) (a) (a) (b)

 1+ 1+1+ 1+1+1+ 1+1+1+0
 length length length length

 (add (add (add init

add 10 add 12 init 13)

add 12 init 13)

init 13)
(a) by axiom (2) of List
(b) by axiom (1) of List

Complexity evaluation
When a specification is going to be implemented, the
first step is determining a proper representation given
the operations and their efficiency constraints. The
efficiency of an algorithm will depend on the choice of
proper data structures. That is why this methodology,
which starts from the specifications, permits to make a
predictive analysis of the temporal and spatial
complexity. It supposes different representations for the
object classes.

The analysis of the cost has two aims: to compare the
space and time requirements of an algorithm with
different implementations, and to compare the
requirements of two or more algorithms that perform the
same function, in order to determine which is more
convenient. This comparison will be made on the basis
of the system resources availability (space and time) and
on the importance of each resource has on the problem
requirements.

The user can select the available implementations
obtaining the predictive cost in space and time for the
algorithm according to the selected implementation.

The C++ translation
The last step in the transformation process is the
translation of formal specifications (algebraic
specifications + procedural schemes) to code. Having
defined formal specifications, we need to generate the
C++ classes that implement the desired behavior. To
achieve this we analyze every clause and relationship
present in LEAD specifications and translate it into
C++ code. The translation of procedural scheme to C++
executable code can be made in a semi-automatic way.

LEAD and C++ support explicit parameterization. Then,
this transformation is reduced to a trivial translation. The
export clause expresses which methods must be public,
i.e. visible to other classes.

The relationship introduced in LEAD by using the
clause based-on will be translated into a client
relationship in C++. The relationship expressed through
the keyword includes in LEAD will become an
inheritance relationship in C++. In both cases we have
to identify an implementation from the library of
reusable components. The selected class will be
transformed to obtain a new one that has exactly the
specified characteristics. Possible transformations are
renaming, restriction, extension and composition. It is
worth pointing that this is done above the class “text”,
not through mechanisms provided by the C++ language.
The includes clause may cause the application of the
composition operator. When we give a list of
superclasses on the algebraic level, we are just
expressing that our class will have the same behavior of
several other classes. This can be solved as multiple
inheritance or as a composition in the implementation
level.

The construction of new classes by transformation of
existing ones implies access redefinition for client
classes and inherited operations and, by this, the creation
of an interface for the new client or superclass. Every
specification can contain functions and axioms that
incorporate new behavior. The application of the
extension operator involves the intervention of the
programmer, who should analyze different
representations and provide the implementation of the
new operations. The deferred operations will be
translated into virtual methods and the effective ones
will be mapped to concrete methods in the object-
oriented level.

5. AyDA: THE PROTOTYPE

To apply the methodology a prototype, AyDA, was
implemented (Martinez 1998). The prototype was
implemented in MathematicaTM (Wolfram 1991). Its
environment combines:

• The underlying methodology
• The algebraic specification language and
procedural schemes.
• Reusable components library.

The AyDA architecture is summarized in Figure 1.

The main components are:

Editor: It allows specifications edition
Analyzer: It allows the syntactic analysis of LEAD
specifications.
Executor System: It combines symbolic execution of
procedural schemes and specifications.
Cost Evaluator: It has two sub-modules: Temporal
Cost Evaluator and Spatial Cost Evaluator:

Translator: It has two sub-modules: Procedural
Schemes Translator and Abstract Data Types
Translator.

The system can register the ‘design history’ in order to
give a good documentation so as to modify intermediate
design decisions and maintenance. Developments are
recorded automatically and they can be replay in order
to accommodate changes in a reliable way.

6. CONCLUSIONS

In this paper we describe a methodology defined to
support programming with abstract data types. It
integrates algebraic specifications, procedural schemes
and code in a rigorous framework. Specifications can be
incrementally transformed into a C++ program and
symbolically executed in all intermediate stages of its
transformation.

We have developed a prototype, AyDA, for
experimenting with this methodology. AyDA allows
editing specifications, making symbolic execution,
performing transformation and analyzing temporal and
spatial complexity.

The methodology is applied in an elementary course on
Data Structures and Algorithms and attempts to achieve
the following broad aims:

• Understanding techniques to design and analyze
data structures.
• Understanding algorithm design techniques (divide
and conquer, greedy, dynamic programming,
backtracking).
• Understanding the basis of formal specification
notions.
• Learning and designing efficient algorithms for
problems that use basic abstract data types (list, stack,
tree, graph, etc).

Our goal is to communicate in an effective manner
recurring concepts that are fundamental in Computing:
levels of abstraction, reuse, complexity of large
problems, conceptual and formal methods, consistency
and completeness, efficiency, evolution, etc.

Our experience has shown that when students learn
software quality factors early in their education, they are
able to apply them along the curriculum.

Programming projects related to the course topics were
developed. Empirical evaluations of our approach to
teach algorithms showed that students learned
algorithms better if they had hands-on experience. It is
worth considering that students had submitted their
projects in special tracks of conferences and some of
them had been awarded.

Figure 1. AyDA Architecture

Besides, we have observed that the number of promoted
students in this course is high and this figure is similar to
that in other second-year courses. We think that the
effort to teach and introduce formal methods and object
specifications is valuable, since in our approach, formal
specifications are not an end in itself, they allow one to
introduce abstraction mechanisms that inspire and
permeate all of the curriculum and, in particular, other
more practical courses such as Software Design
Methodology and Object Oriented Programming.

The experience has been satisfactory. We consider that
it could be reproduced in any CS/IS study program. The
necessary prerequisites can be provided by introductory
courses on programming, computer science, and
mathematics.

7. REFERENCES

Aho, A. and J. Ullman, 1995, Foundations of Computer
Science, C Edition, Computer Science Press.

Baase, S. 1988, Computer Algorithms: Introduction to

Design and Analysis, 2nd Edition, Addison-Wesley.

Brown, M. 1991, “ZEUS: A System for Algorithm

Animation and Multi-view Editing”, Proceedings
of the IEEE, Workshop on Visual Languages, pp.
4-9, Kobe, Japan.

Cormen, T.; C. Lierserson, and R. Rivest, 1990,

Introduction to Algorithms, MIT Press, Cambridge,
MA.

Ellis, M. and B. Stroustrup, 1990, The Annotated C++.

Reference Manual, AT&T Bell Laboratories,
Murray Hill, New Jersey.

Franch, X. and X. Burgues, 1993, “A case study on

prototyping with specifications”. ERCIM
Workshop on “Development and Transformation of
Programmig”, Nancy, France.

Gloor, P. 1992, “AACE-Algorithm Animation for

Computer Science Education”, IEEE Workshop on
Visual Languages, pp. 25-31.

Ho, F., C. Morgan and I. Simon, 1993, “An Advanced

classroom computing environment and its
applications”, 24 th SIGCSE Technical Symposium
on Computer Science Education, pp. 228-231.

Martinez, L. and C. Pereira, 1998, Análisis y Diseño de

Algoritmos: Un enfoque a partir del paradigma
transformacional, UNCPBA. Tandil. Argentina.

Meyer, B. 1997, Object Oriented Software Construction,

Prentice Hall.

Partsch, H. 1990, Specification and Transformation of

Programs. A Formal Approach to Software
Development, Springer-Verlag.

Wolfram, 1991, Mathematica. A System for Doing

Mathematics by Computer, Addison-Wesley.

