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Abstract 
 

In this paper we describe  a methodology for constructing efficient algorithms applied in an elementary course on Data 
Structures and Algorithms. This methodology attempts to show the essential steps in a sequential process in software 
development from an informally stated problem, via a formal problem specification, to a final efficient program. 
Students of the course are expected to have at least a year's experience in programming high level languages and 
elementary logic and calculus. 
We describe a prototype, AyDA, which assists in the construction of algorithms starting from the proposed 
methodology.  
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1. INTRODUCTION 

 
Often several different algorithms are available to solve 
the same problem. The choice of an algorithm for a 
particular problem can be a difficult process. Algorithm 
design requires to create and combine specifications and 
planning their implementations. There are several 
advantages of combining specifications: 
 
• It describes the function of a software piece free 
from most implementation details. 
• Because specifications can have several 
implementations with different performance properties, 
they can be used in various problems with different 
performance requirements. 
• It allows one to make a predictive analysis of 
temporal and spatial complexity. 
 
In this work a methodology applied in an elementary 
course on Data Structures and Algorithms is described. 
It integrates algebraic and imperative specifications and 

object-oriented languages. The outstanding features of 
this methodology are:  
 
• An evolutionary development from specifications 
to implementations. 
• The symbolic execution of specifications. 
• The construction of efficient implementations 
reusing previous existing ones. 
 
The methodology is based on a process that includes the 
following essential activities: 
 
• Identification of the problem. 
• Formalization  of the problem. 
• Analysis of the formal problem description. 
• Construction of efficient implementations in an 
object-oriented language. 
 
The formalization language is multiparadigm one, 
blending equational and imperative styles into an unique 
notation. C++ (Ellis 1990) has been chosen as the 
object-oriented language. 



The object classes that are involved in the problem are 
identified and specified in an algebraic style. This 
specification describes object classes  in an abstract way, 
free  from most  implementation details. The object  
class specifications are constructed from previous        
existing ones by applying mechanisms provided by the 
algebraic language: generalization, specialization, 
parameterization, and instantiation. Two important 
relationships between classes can be distinguished: ‘is-
kind-of’ and ‘uses-a’. These relationships are connected 
with inheritance and client relationships in the object-
oriented level respectively. The algebraic specifications  
are integrated with procedural schemes specified in an 
imperative style. They are related to different algorithm 
design techniques such as  Divide and Conquer, Greedy, 
Backtracking, etc. Thus, a first version of the algorithm 
that combines procedural and algebraic parts is built.  
This version can be symbolically executed allowing us 
to make early validations. 
 
Starting from object class specifications and  procedural 
schemes it is possible to make a predictive analysis of 
the temporal and spatial complexity and select an 
implementation for each object class. Then,  
specifications and procedural schemes  must be 
transformed in object-oriented code (in particular, we 
have experimented with C++). We can distinguish two 
types of transformations: 
 
a) transformations of algebraic specifications to 
concrete classes in an object-oriented language. 
b) transformations of procedural schemes to efficient 
code.  
 
With respect to a) there exists a library of behavior 
specifications related to those data types most 
commonly used in the construction of algorithms: lists, 
trees, graphs, etc. The transformation is based on the 
application of reuse operators for renaming, restriction, 
composition and extension. 
 
With respect to b) the procedural schemes can be 
automatically translated into C++ code. 
 
To apply this methodology a prototype, AyDA, was 
implemented. AyDA provides an interactive 
environment, helping the students in the tasks of editing 
specifications, making symbolic execution, performing 
transformation and analyzing temporal and spatial 
complexity.  
 
The paper is organized as follow. In Section 2, we give 
the motivation and related work. Section 3 describes the 
specification language LEAD. Section 4 describes the 
methodology and  Section 5 gives the features of the 
implemented prototype. Finally, conclusions are made. 
 

2. MOTIVATION AND RELATED WORK 
 
Algorithms are often described in textbooks (Aho 1995; 

Baase 1988; Cormen 1990) in terms of pseudo-code or 
particular programming languages (C, Pascal, etc). 
Pseudo-codes  are clearly not executable and need to be 
re-coded by programmers. On the other hand, algorithms 
in directly compilable code  are closely tied to the 
physical structure of data they manipulate and this 
would not be likely to yield flexible solutions, moreover 
highly optimized algorithms are, in general, hard  to 
understand.  
 
The construction of efficient algorithms requires to start 
from descriptions satisfying the following conditions 
(Meyer 1997): 
 
• They should be precise and unambiguous.  
• They should be complete. 
• They should not overspecify. 
 
The theory of abstract data types reconciles the need for 
precision and completeness with the desire to avoid 
overspecification. They provide high-level descriptions, 
free of implementations concerns.  
 
The paper (Franch 1993) describes a Programming 
Environment “used in teaching” designed to support 
symbolic execution of programs written in Merlin 
algebraic language. Also, many tools (Brown 1991; 
Gloor 1992;  Ho 1993) have been developed for creating 
animation of algorithms that can be used to improve the 
learning of the algorithms. The emphasis in these 
approaches is on the algorithms themselves.  
 
In our approach , the study of algorithms is not an end in 
itself. We intend to teach these topics in a framework 
that emphasizes in factors of software quality such as 
correctness, extensibility, reusability, efficiency, 
maintainability, etc.   
 
Furthermore, as formal techniques become more and 
more used in the computing industry, it is important that 
the computing science curricula keep up with the 
technology trend. 
 

3. THE SPECIFICATION LEVEL 
 
Algebraic specifications of objects classes 
Object classes can be abstractly specified by means of 
algebraic specifications of data types. Our approach is 
based on this formalism. We have define: 
 
• A specification language LEAD, based on a subset 
of CIP-L language (Partsch 1990) and extended with 
mechanisms for constructing incomplete algebraic 
specifications. This mechanism allows us to specify 
abstract classes that will be associated with abstract 
classes in the object-oriented       level.  
• A model of reusable components that integrates 
algebraic specifications and concrete classes in an 
object-oriented language. A reusable component is a tree 



 

 

 

that links algebraic specifications and concrete classes in 
an object-oriented language. 
• The root is the most abstract specification and the 
leaves correspond to concrete classes. 
 
Following, we describe the most relevant 
theoretical concepts for this work. The basic idea 
of the algebraic approach  consists of describing 
data structures by just giving the names of the 
different set of data, the names of the basic 
functions and their properties which are described 
by equations in first-order logic. Following, we 
describe the syntax of LEAD specifications. 
 
    type T  
    export ....,si,..,cj,...,fk,...(1)                      
    include Q1, .... 
    based on P1,...(2)                                                  
    deferred 
      sort si,...(3)                                                              
      sj  cj,.... (4)                                                             
      ... 
      function (s1

k,......,sn
k) skfk,.....(5)                                     

      laws Lm 
      ... (6) 
    effective 
      sort si,...(3)                                                              
      sj  cj,.... (4)                                                             
      ... 
      function (s1

k,......,sn
k) skfk,.....(5)                                     

      ... (6) 
    end of type. 
 
 
The sequence of identifiers that follows the keyword 
export refers to the visible sorts, constants and 
operations provided by the type to its environment, i.e. 
that they can be used in other types (1).  
 
A type is a hierarchy, i.e. it is based on other types P1 
(2). This dependence is expressed by the keyword 
based-on. All the sorts, constants and visible operations 
of P1 can be used in the specification of T. To protect P1 
however, its constituents are not visible for the types 
based on T unless they are listed as visible constituents 
of T. The primitive relationship is:  
 
• transitive: if a type T is based on a type T’ and T’’ 
is primitive for T’, then T’’ is primitive for T. 
• irreflexive: no type is primitive of itself. 
 
Specifications distinguish two kinds of sections 
identified by the keywords deferred and effective. The 
deferred section declares operations and sorts that are 
not completely defined, i.e. there are not enough 
equations to specify the new operations or there are not 
enough operations to generate all values of a given sort. 
The effective section describes operations completely 
defined. 
 

The signature of a type T is a triple <S,C,F> of 
identifiers, where:  
• S: set of symbols of sorts;  
• C: set of symbols of sort constants; 
• F: set of symbols of operations, each operation 
symbol f belonging to F is associated to a functionality: 
f: s1 x s2 x.....x sn→ s. This functionality is expressed in 
LEAD as follows:  
(s1,s2,.....,sn)s f     (5).  
 
The operations can be restricted by preconditions. The 
visible constituents of P1 primitive types of  T are part 
of the signature of  T, too. The type axioms (6) are well-
formed formulae of the calculus of first order predicates 
that define the type semantics. 
 
The type specification can be based on sorts, constants 
and operations that serve as parameters.  The type 
schemes (generic types) are denoted as the following                
form: 
  
           type T=(<<type parameters >>)         
           export   (<<constituents>> ) 
           << body >> 
           end of type. 
 
The constituents and the type body are described as it is 
done for non-parameterized types. The type parameters 
are a collection of sorts, constants and operations. 
 
The language provides facilities to express relationships 
‘is-kind-of’ by using the include clause. Many of these 
clauses can occur in the body of an instantiation.    
 
The parameterized specifications can be viewed as a 
notational abbreviation from which specifications are 
generated by supplying a concrete type for the type 
parameters. From a parameterized specification special 
types can be obtained, by means of the instantiation 
mechanism. An instantiation can be denoted by:  
 
 
 type T= 
   ... 
 include S (<<argument type>>) as (<<constituents>>) 
   ... 
 end of type 
 
 
We make the textual substitution of type parameters in 
the body of S by <<arguments type>> and the visible 
constituents of S are renamed by <<constituents>>.  All 
primitive types of S are primitive types in T.  All hidden 
constituents in S are hidden in T. The new type must be 
correct in the instantiation context. Many instantiations 
can occur in the body of the type specification. The 
occurrence order is arbitrary.  
 
Instantiation allows specialization replacing the visible 
constituents of S that are not necessary by a point. Also, 



it allows  extensions by enriching a type with additional 
operations, sorts or equations. 
The instantiation concept can be joined to the primitive 
type one; the resultant type of an instantiation can be 
used like a primitive type. The instantiation is denoted 
by: 
 
         based on (<<constituents>>) =  
         S(<<type-arguments>>) 
 
Following, we partially depicts specifications of 
Container, List and Stack types. 

               
 

 
Procedural schemes  
The procedural schemes reflect the imperative style in a 
C++-like syntax. They are implemented by using a 
function-like encapsulation:  
 

 
Procedural schemes facilitate to express clearer 
abstractions related to algorithm design techniques 
(Divide and Conquer, Dynamic Programming, Greedy, 
Backtracking). 
 
They support mechanisms for expressing modular 
design, recursion and polymorphism. 
 
The LEAD language provides constructions for explicit 
binding between algebraic specifications and procedural 
schemes. We give an example of a function that 
computes the reverse of a list L.   
 

 
function reverse_list (List L):list  
 {stack s; 
   s=init; 
   while (length(L) >0) 
      {s=push (s,get(L,1)); 
        L=delete (L,1); 
       } 
   while (!is_empty(s)) 
     {L=insert(L, top(s)); 
       s= pop(s); 
      } 
  return L; 
  } 

type List (sort data_type)  
export  list, init, add, is_empty, length, first, rest,
insert, delete, get 
include Container (data_type) as ( list, init, add,
is_empty, length) 
deferred                       
   function(list l: not is_empty(l)) first, 

function(list l: not is_empty(l)) list rest 
effective 

function(list) nat length, 
function(list l, data_type, nat p: 1≤p≤
length(1)) list insert, 
function(list l, nat p: 1≤p≤ length(1)) list
delete,  
function(list l, nat p: 1≤p≤ length(1)) data_type
get 
laws data_type d,d1, list l, nat p: 
(1)length(init)=0,  
(2)length(add(l,d))=1 + length(l), 
(3)insert(add(l,d),d1,p)= if(p = length(add(l,d)))
                            then add(add(l,d1),d) 

else add(insert(l,d1,p),d)  
endif, 

(4)delete(add(l,d),p)= if (p=length(add(l,d)))  
then l 

  else add(delete(l,p),d) endif, 
(5)get(add(l,d), p)= if (p=length(add(l,d))) 

then d 
  else get(l,p) endif 

end of type. 

type Stack(sort data_type) 
export stack, init, push, is_empty, length, top,
pop 
include Lista (data_type) as (stack, init, push,
is_empty, lenght , top, pop, . , . , .) 
effective 

sort stack 
stack init 
function(stack, data_type) stack push, 
function(stack s: not is_empty(s)) data_type      
top, 
function(stack s: not is_empty(s)) stack pop 
laws stack s, data_type d: 
(1)top(push(s,d)) = d, 
(2)pop(push(s,d)) = s 

end of type. 

type Container (sort data_type)   
export container, init, add, is_empty, size 
based on Nat, Bool 
deferred 

sort container  
container init 
function(container,data_type) container add, 
function (container) nat size 

effective 
function (container) bool is_empty  
laws data_type d, container c: 
(1)is_empty(init)=true, 
(2)is_empty(add(c,d))=false 

end of type. 
FUNCTION name (<Argument-list>) result type 

        <<Body>> 
RETURN result 
END 



 
 

4. THE METHODOLOGY 
 
The proposed methodology comprises the following 
stages as detailed below: 
 
• The construction of algebraic specifications and 
procedural schemes. 
• The symbolic execution of abstract specifications. 
• The analysis of the temporal and spatial 
complexity. 
• The transformation of algebraic specifications into 
concrete classes in C++. 
• The transformation of procedural schemes into an 
imperative code C++. 
 
Construction of algebraic specifications and 
procedural schemes 
At  this  stage, a model of the final program is built to 
gain insight into its behavior and intended use.  Object 
classes that are involved in the problem are specified.  
 
For each object class a reusable component is identified. 
The identification of a component is correct is renaming, 
restriction, extension and compose reuse operators can 
modified it to match the object class behavior. Reuse 
operators on reusable components are informally 
defined as follows: 
 
• Extend: adds sorts, operations or axioms to a 
specification. 
• Rename: changes the name of sorts or operations. 
• Restrict: forgets those parts of a specification that 
are not necessary for the actual application.  
• Compose: combines two or more specifications in 
only one. 
 
Specifications are organized  in libraries to enable    
their selection and adaptation. This formalization 
increases the understanding of a system by revealing 
ambiguities, inconsistencies that might otherwise go 
undetected.  
 
Symbolic execution 
Algebraic specifications are integrated with procedural 
schemes, thus achieving a first version that allows us 
early validations by a mixed-execution mechanism.  
 
At this stage, executions should be oriented to find out  
if the specification holds some properties that we know  
the formalization should exhibit.  This allows us to 
correct mistakes and get a new version that will be 
validated again. This refinement process keeps on until 
the final program satisfies the initial problem    
requirements.  
 
For example, the function reverse_list  can be 
symbolically executed to validate behavior. Let 
L=add(add(add(init,13),12) ,10) be, the symbolic 
execution for:  while (length_list(l) >0) will be: 

  
 
              (a)             (a)               (a)                      (b) 
  
                       1+              1+1+             1+1+1+         1+1+1+0 
  length        length          length          length          
  
  (add     (add            (add           init  
  
add    10        add   12       init   13) 
 
add     12       init  13) 
 
init     13)  
(a) by axiom (2) of List    
(b)  by axiom (1) of List  
 
 
 
 
Complexity evaluation 
When a specification is going to be implemented, the 
first step is determining  a proper representation given 
the operations and their efficiency constraints. The 
efficiency of an algorithm will  depend on the  choice of 
proper data structures. That is why this methodology, 
which starts from the specifications, permits to make a 
predictive analysis of the temporal and spatial 
complexity. It supposes different representations for the 
object classes. 
 
The analysis of the cost has two aims: to compare the 
space and time requirements of an algorithm with 
different implementations, and to compare the 
requirements of two or more algorithms that perform the 
same function, in order to determine which is more 
convenient. This comparison will be made on the basis 
of the system resources availability (space and time) and 
on the importance of each resource has on the problem 
requirements. 
 
The user can select the available implementations 
obtaining the predictive cost in space and time for the 
algorithm  according to the selected implementation.  
 
The C++ translation 
The last step in the transformation process is the  
translation of formal specifications (algebraic 
specifications + procedural schemes)  to code. Having 
defined formal specifications, we need to generate the 
C++ classes that implement the desired behavior. To 
achieve this we analyze every clause and relationship 
present in LEAD specifications  and translate it into 
C++ code. The translation of procedural scheme to C++ 
executable code can be made in a semi-automatic way.  
 
LEAD and C++ support explicit parameterization. Then, 
this transformation is reduced to a trivial translation. The 
export clause expresses which methods must be public, 
i.e. visible to other classes. 
 



The relationship introduced in LEAD by using the 
clause based-on will be translated into a client 
relationship in C++. The relationship expressed through 
the keyword includes in LEAD will become an 
inheritance relationship in C++.  In both cases we have 
to identify an implementation from the library of 
reusable components. The selected class will be 
transformed to obtain a new one that has exactly the 
specified characteristics. Possible transformations are 
renaming, restriction, extension and composition. It is 
worth pointing that this is done above the class “text”, 
not through mechanisms provided by the C++ language. 
The includes clause may cause the application of the 
composition operator. When we give a list of 
superclasses on the algebraic level, we are just 
expressing that our class will have the same behavior of 
several other classes. This can be solved as multiple 
inheritance or as a composition in the implementation 
level.  
 
The construction of new classes by transformation of 
existing ones implies access redefinition for client 
classes and inherited operations and, by this, the creation 
of an interface for the new client or superclass. Every 
specification can contain functions and axioms that 
incorporate new behavior. The application of the 
extension operator involves the intervention of the 
programmer, who should analyze different 
representations and provide the implementation of the 
new operations. The deferred operations will be 
translated into virtual methods and the effective ones 
will be mapped to concrete methods in the object-
oriented level. 
 

5. AyDA: THE PROTOTYPE 
 
To apply the methodology a prototype, AyDA,  was 
implemented (Martinez 1998). The prototype was 
implemented in MathematicaTM (Wolfram 1991).  Its 
environment combines: 
 
• The underlying methodology 
• The algebraic specification language  and 
procedural schemes. 
• Reusable components library.  
 
The AyDA architecture is summarized in Figure 1. 
 
The main components are:  
 
Editor: It allows  specifications edition 
Analyzer: It allows the syntactic analysis of LEAD 
specifications. 
Executor System: It combines symbolic execution of 
procedural schemes and  specifications. 
Cost Evaluator: It has two sub-modules: Temporal 
Cost Evaluator and Spatial Cost Evaluator:  

Translator: It has two sub-modules: Procedural 
Schemes Translator and Abstract Data Types 
Translator. 
 
The system can  register the ‘design history’ in order to 
give a good documentation so as to modify intermediate 
design decisions and maintenance. Developments are 
recorded automatically and they can be replay in order 
to accommodate changes in a reliable way. 
 

6.   CONCLUSIONS 
 
In this paper we describe a methodology defined to 
support programming with abstract data types. It 
integrates algebraic specifications, procedural schemes 
and code in a rigorous framework. Specifications can be 
incrementally transformed into a C++ program and 
symbolically executed in all intermediate stages of its 
transformation. 
 
We have developed a prototype, AyDA, for 
experimenting with this methodology. AyDA allows  
editing specifications, making symbolic execution, 
performing transformation and analyzing temporal and 
spatial complexity.  
 
The methodology is applied in an elementary course on 
Data Structures and Algorithms and attempts to achieve 
the following broad aims: 
 
• Understanding techniques to design and analyze 
data structures. 
• Understanding algorithm design techniques  (divide 
and conquer, greedy, dynamic programming, 
backtracking). 
• Understanding the basis of formal specification 
notions. 
• Learning and designing efficient algorithms for 
problems that use basic abstract data types (list, stack, 
tree, graph, etc). 
 
Our goal is to communicate in an effective manner 
recurring concepts that are fundamental in Computing: 
levels of abstraction, reuse, complexity of large 
problems, conceptual and formal methods, consistency 
and completeness, efficiency, evolution,  etc.  
 
Our experience has shown that when students learn 
software quality factors early in their education, they are 
able to apply them along the curriculum.  
 
Programming projects related to the course topics were 
developed. Empirical evaluations of our approach to 
teach algorithms showed that students learned 
algorithms better if they had hands-on experience. It is 
worth considering that students had submitted their 
projects in special tracks of conferences and  some of 
them had been awarded. 



Figure 1. AyDA Architecture       
 
Besides, we have observed that the number of promoted 
students in this course is high and this figure is similar to 
that in other  second-year courses. We think that the 
effort to teach and introduce formal methods and object 
specifications is valuable, since in our approach, formal 
specifications are not an end in itself, they allow one to 
introduce abstraction mechanisms that inspire and 
permeate all of the curriculum and, in particular, other 
more practical courses such as Software Design 
Methodology and Object Oriented Programming. 
 
The experience has been satisfactory. We consider  that 
it could be reproduced in any CS/IS study program. The 
necessary prerequisites can be provided by introductory 
courses on programming, computer science, and 
mathematics. 
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