

A Design Tool for Novice Programmers

Jo-Mae B. Maris
College of Business Administration, Northern Arizona University

Flagstaff, Arizona 86011-5066
jo-mae.maris@nau.edu

Craig A. VanLengen
College of Business Administration, Northern Arizona University

Flagstaff, Arizona 86011-5066

and

Rick Lucy
College of Business Administration, Northern Arizona University

Flagstaff, Arizona 86011-5066

ABSTRACT
Most program design methods are intended for experienced programmers. Beginner friendly program design methods
date back to procedural languages, such as Pascal and Basic. These methods lack connections to objects and events
since the languages contained neither objects nor events. This paper presents a summary table and a sketch to get
novice programmers started in the process of designing a program. The table organizes information about the program
requirements and aides in creating a design for a program that may contain events and objects. The sketch represents
the calling relationships among the modules in the program. The table and the sketch can be use with an existing
method, such as pseudocode.

The tools enhance existing methods of design. A new method is not proposed. The most important philosophies in
developing the tools were simplicity and guidance. The table guides the student’s design efforts and is simple. The
columns collect data about what the program does, when it does its tasks, and what data it uses. The rows relate tasks,
events, and objects. The table prompts identification of objects and events and makes high-level functionality stand
out. The high-level functional design captured by the table is made explicit in the relations sketch.

Keywords: Program design, design tool, novice programmers, teaching programming

1. PROBLEM

Novice programming students frequently ask, “Where
do I start?” How many times has the question been
asked after the teacher has presented structured-design,
object-oriented design, or the universal modeling
language? Does the problem lie with the teacher or with
the methods?

At least one method did not specify a starting place in its
initial presentation. The method was stepwise design:

In each step, one or several instructions of the given
program are decomposed into more detailed
instructions. This successive decomposition or
refinement of specifications terminates when all
instructions are expressed in terms of an underlying
computer or programming language, … (Wirth,
1971).

Wirth did provide more guidance in his Pascal User
Manual and Report: “In the early stages, attention is
best concentrated on the global problems, and the first
draft of the solution may pay little attention to the
details” (Jensen, 1974).

Most of the methods give starting points:

• “The first step in actual class design is to find
the primary objects” (Arnow, 2000).

• “… make a model that defines the key domain
classes in the system” (Erikkson, 1998).

• “Identify the classes and objects at a given
level of abstraction” (Booch, 1991).

• Investigate the problem domain: observe first-
hand; listen actively; check previous OOA
results; check other systems; read, read, read;
and prototype (Coad, 1991).

• Rules for developing a proof or program:
1. Do the single option available in the

simple case of only one option;
2. Choose the complex option;
3. Start on the most complicated side.
That is start with the hard job first (Dijkstra,
1988).

• The first business of design is therefore to
translate the specifications into the fixed
formats of a set of working documents (Data
Flow Diagrams, Data Dictionary, Transform
Descriptions, and Data Structures Charts…)
(DeMarco, 1979).

The student programmer may be able to recite the
definition of terms used in the preceding guidelines, but
to make use of the concepts may be beyond the level of
learning programming for the student. A programmer
needs experience to grasp the hard job, level of
abstraction, problem domain, and domain classes. For
the novice, all of the jobs are hard. Level of abstraction,
problem domain, and domain classes are terms the
novice has memorized. Two sets of authors discussing
object-oriented design recognized this problem.
Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen
acknowledge the problem directly:

“The content of an object model is a matter of
judgment …” (Rumbaugh, 1991).

Judging is in the problem-solving level of the cognitive
domain of learning (Daniell, 1990). “The knowledge
level forms the base upon which the application level is
built, and the application level forms the base for the
problem-solving level” (Daniell, 1990). Hence,
beginning students, who are still memorizing terms, are
in the knowledge level that includes “define, recite,
repeat, and restate” among its activities (Daniell, 1990).

Coad and Yourdon recognized the problem indirectly by
pointing out that through experience objects become
readily apparent:

 As analysts experienced in applying OOA across
widely divergent problem domains, we recognize
certain patterns across systems. And so at times it
might seem that the Class-&-Objects are ‘just there
for the picking’ (Coad, 1991).

However, student programmers would not have the
experience of Coad and Yourdon.

Another recognition of the need for experience to design
programs using existing methods comes from DeMarco
in the chapter titled “Transition into the Design Phase”:

“When you’re done with this chapter you won’t
know how to do a Structured Design, unless you
knew that already” (DeMarco, 1979).

Yet, more evidence of the need for experience in the use
of some program-design methods comes from Erikkson
and Penker:

… there is no “right” solution for all circumstances.
Of course, some solutions will prove better than
others, but only experience and hard work will result
in that knowledge (Erikkson, 1998).

We believe the problem is with the methods. Dijkstra
articulates a problem that this and no other method can
overcome: “Not all teachable topics are learned by all
students (enrollees)” (Dijkstra, 1988).

1. PROPOSAL
We believe that a novice programmer needs a simplified
approach to program design. We propose using a find,
list, and order approach. The approach gives the student
a place to start that he understands. The starting place
may be different for each student. This approach does
not propose a new method. Rather the proposal is to
provide a tool that will guide identification of data
needed by existing methods and to classify and organize
that data so it becomes information the student can use
with existing methods. The student should switch to an
existing method when he or she comprehends the
information the existing method uses.

2. DESIGN APPROACH
The driving force behind our approach is the old dictum,
“Keep It Simple, Stupid,” also know as Ockham's
razor.1 Given the complexity of developing programs
for an event-driven environment using an object-
oriented language, keeping it simple is essential. The
simplicity of the approach also answers the novice
programmer’s question, “Where do I start?” Collecting
data and listing data does not require experience.
Sorting data requires classifications and comparison.
Classification is an application level skill. Comparison
is a problem-solving level skill. Using the progression
from knowledge level skills to application level and then
to problem-solving level enables, the student to progress
in understanding so the data manipulated will become
information.

This design approach has few strictly defined
components or rules. The components are objects,
events, tasks, and data. The rule is work with the
summary table and relationship sketches until you have
identified the information needed to use an existing
method, such as pseudocode to specify the low-level

1 “They followed the emperor to Munich (Germany) in
1330, where Ockham wrote fervently against the papacy
in a series of treatises on papal power and civil
sovereignty. The medieval rule of parsimony, or
principle of economy, frequently used by Ockham came
to be known as Ockham's razor. The rule, which said
that plurality should not be assumed without necessity
(or, in modern English, keep it simple, stupid), was used
to eliminate many pseudo-explanatory entities.”
(Bechett, Dave.
http://wotug.ukc.ac.uk/parallel/www/occam/occam-
bio.html University of Kent at Canterbury, UK, 1994.)

functionality. The simplicity in the approach is an
intentional choice to minimize a student’s feeling of
inadequacy and ignorance.

An object is an integrated package or bundle of
properties and behaviors. Objects respond to events.
Properties describe the characteristics, qualities,
appearance, values, or data built-in an object. Behaviors
refer to the actions, methods, processes, operations, or
code built-in an object. The programmer can generate
an object in a visual development environment or
declare an object. The object created has the properties
and methods intrinsic to that object available without
declaring them or coding them separate from the object.

Events are interactions between the user and objects,
objects and objects, or code and objects. The objects are
usually in the user’s interface, but the objects may be
system objects, such as printers. Events send messages
to the controlling module. The controlling module uses
the event’s message (or signal) to determine which
default behaviors and event procedure to execute. The
behaviors and event procedures are blocks of code that
define tasks.

Tasks are work that needs to be done. The tasks may be
performed by objects’ methods or by user-defined code.
When a task is an identifiable block of code, the task
may be called a module, such as methods, event
procedures, or user-defined procedures. In this sense, a
module is a coherent block of code, not just a convenient
container for holding coherent blocks of code, as are the
modules in Visual Basic. In our approach, the term
module has more the meaning of the modules in a
hierarchy diagram or a method of an object. When a
task is small, it may be a program statement or a portion
of the code in a module. Whether a task is large or
small, eventually its performance must be prescribed as
ordered program statements or code.

A module can be a child (or called module) or it can be a
parent module. There are two types of parent modules:
a controlling module and a calling module. A
controlling module could be referred to as a controller,
kernel, core unit, primary logic, main module, or any
similar term that conveys a software entity that is in
control of when subordinate modules are called.
Frequently, the controlling module is predefined, such
as the controlling logic built into Visual Basic, the script
interpretation features of an Internet browser, or services
of an Internet server that interprets ASP pages or
invokes CGI programs. However, the controlling
module could be user-defined, such as the primary logic
module in a procedural language program. A calling
module launches or invokes another module. A calling
module may be a controlling module or a user-defined
module.

Data are the numbers, details, specifics, or
representations of facts manipulated in the performance
of the work.

Now that the terms have been defined, we present our
approach in the stages of the system development life
cycle. Hoffer, George, and Valacich list the stages of
the SDLC, as “Project Identification and Selection,
Project Initiation and Planning, Analysis, Logical
Design, Physical Design, Implementation, and
Maintenance” (Hoffer, 1998). Our approach
concentrates on selected portions of the SDLC:

• Problem definition from the Project Identification
and Selection stage,

• Initial program and GUI design from the Logical
Design stage,

• Program and GUI design refinement from the
Physical Design stage,

• Program and GUI construction from the
Implementation stage, and

• Testing and debugging from the Implementation
stage.

The approach we propose is for learning to design
programs and their interactions with their interfaces. It
is not intended to cover the entire SDLC. The programs
students develop tend to be small and rarely if ever used
or evaluated in the context of a changing business
environment, so Project Initiation and Planning,
Analysis2, and Maintenance would not be relevant to the
programming projects of novice programmers.

Problem Definition
In our approach, the problem definition is primarily a
scaled down combination of Project Identification and
Selection, Project Initiation and Planning, Analysis
stages performed by the teacher. The teacher provides
the requirements for the program. A simplified
requirements document is the central tool for this stage.
The emphasis is on providing the students with the
information necessary for developing a program. Using
simplified requirements documents for assignments
allows the students to experience working from
requirements documents. The document used in our
approach is called a formal problem definition as
described in class notes during the early 1980’s from
Computer Science Department, University of
Wisconsin—La Crosse.

A formal problem definition consists of five parts:
Overview, Input Expected, Output Required, Normal
Example, and Unusual and Error Conditions. More
information on the Formal Problem Definition is
available upon request.

Initial Design
The purpose of the initial program design is to give the
student programmer a place to start. During this stage of

2 “Analysis” in the sense of developing the system
requirements is not relevant to the design of novices’
programs. In our approach, the instructor would supply
the system requirements, so the students would begin
working in the Logical Design stage.

the design, the student studies the formal problem
definition to recognize and record the tasks (high-level
functionality) and objects described in the formal
problem definition. The tasks and objects are recorded
in a Summary Table. This stage could begin with listing
the output required, and then identifying the data

necessary to produce the output. The Summary Table
includes columns for listing the major tasks the program
is to perform, the data manipulated by the tasks, and the
major objects. One layout of the Summary Table is
shown in Figure 1.

Figure 1: Summary Table

Program’s Major Tasks Input Data Get Output Data Put Trigger
Obj/Event

Item A GUI Item A GUI &
File

New record
command
button /click

{Cryptic description of task}

Item B Ask user Item C Print

{Another cryptic description} Item D GUI or
File

 Form/load

{Last cryptic description} Item D File Called by
Form/unload
and new record
command
button/click

Summary Table: The summary table is composed
of three areas: tasks, data, and triggers. The tasks’
column is labeled “Program’s Major Tasks” in Figure 1.
The tasks column gives students a place to list the tasks,
behaviors, or operations described in the formal problem
definition. The label for this and any column in the
table could be changed, if a different label would be
more useful to the student using the table. For example,
if a student finds the label “Model’s Behaviors” more
descriptive than “Program’s Major Tasks,” then the
student should be encouraged to use the revised label.
The triggers area of the summary table is labeled
“Triggers, Obj/Event” in Figure 1. The triggers’ column
provides an area for accumulating the object and event
combinations that trigger behaviors or event procedures
that perform the tasks listed in the “Program’s Major
Tasks” column. That is the triggers represent the
messages or signals used by the controlling module to
select what behaviors and event procedure to execute. If
a student finds identifying objects easier than identifying
tasks or events, this column could be split into two
columns: (1) Objects and (2) Events. The new objects’
column could be the first column filled. The student
would then need to identify the behaviors (tasks) and
events associated with the objects.

The data area contains four columns in Figure 1. The
columns are “Input Data,” “Get,” “Output Data,” and
“Put.” The “Input Data” column provides a location for
noting the data required to perform a task. The “Get”
column gives the source of the data used to perform a
task, “Input Data.” The “Output Data” column provides
a location for noting the data produced by a task. The
“Put” column specifies destination of the data produced
by a task, “Output Data.” The labels “Get” and “Put”
were chosen because the labels are short. If a student

prefers the labels “Source” and “Destination,” then use
“Source” and “Destination.” Some students may find
the data area the easiest to complete first since the
formal problem definition contains sections for input
and output. Again, the student should start with the
easiest column.

Process Used with Summary Table: The process
described in this section is not rigidly structured. At any
time during this process, the student may switch to an
existing design method. The purpose of the tool is to
provide the student a means for collecting data and
converting the data to information that is useful in using
existing methods. Thus, once the student has obtained
sufficient information to use an existing design method,
the student should switch to developing the program’s
design with that method’s tools.

The first step in completing the table is to fill-in one
column. The column would be the one the student finds
the easiest to identify its contents in the formal problem
definition. For example, the students might find
identifying tasks the easiest column to complete. Figure
2 shows an example of a student starting with the
“Program’s Major Tasks” column.

Once the one column is completed, then the students
would identify the content of another column. The data
entered in the second column should relate to the data in
the completed column by row. For example, the student
might identify the output of each task. The data about
the output would also be available in the formal problem
definition. For example, the user may want to be able to
either enter a client’s address or have it retrieved from a
file.

The trigger column may be the most difficult for the
students to complete because it may not be included in

the formal problem definition. The possible objects in
some interfaces are limited, such as loading of a Web
page for some JavaScripts, or extensive, such as the
wide array of controls and events that can trigger event
procedures in Visual Basic.

After completing the table, the user’s interface can be
designed. Once the table is completed, the student has
identified the major objects to appear in the program and
on the user’s interface. Then the user’s interface design
becomes a matter of arranging the objects in a
productive and attractive manner.

Design Refinement
Once the user’s interface is designed, the student is
ready to concentrate on the details of performing the
tasks. During the design refinement stage, the student
moves from modeling the system as an abstraction to
modeling the details of the system. The tools used to
develop this detail model may be pseudocode and a
graphical representation of the modules similar to a
hierarchy chart, but modules may occur in the chart
more than once and at different levels in the tree. Figure
4 shows an example of a relation sketch that resembles a
hierarchy chart, but is not a hierarchy chart. Recall this
graphic is a sketch to help a student visualize the calling
relations among the modules or behaviors. Some
students may want to color a module that repeats, so the
repeated module becomes more obvious. Granted,
repeating modules in a hierarchy chart is not allowed.
However, this is not a hierarchy chart.

The sketch is to help the student. If a graphic similar to
an object diagram, a systems diagram, or a data flow
diagram does a better job of enlightening the student,
then use it. However, do not let rules of a tool hinder
the student’s understanding. At this point the student is
still trying to understand the relationships, so those
relationships can be represented in a more rigorous
manner. It is important not to impose rigor before the
student understands the relationship.

The activities in this stage begin with identifying each
module and its relationships with other modules. This
procedure was begun in the initial design stage by
identifying the tasks and their triggers. Now the tasks
and the triggers need names. The names will become
module, method, or subroutine names. The names can
be written on the Major Tasks’ Information form.

To clarify each module’s relationship with other
modules, a chart or map of the modules can be drawn.
For a Web-based program, the drawing might resemble
a site map that included code modules. For a single-
form Visual Basic program, the drawing would resemble
a hierarchy chart. However, the graphic should
emphasize the relationships among task modules and
controlling modules. Therefore, the graphic should
include representations of controlling modules, event
procedures, and user-defined code. If the relationships
are most easily represented and understood by including
a module more than once and at different levels of the

tree, then do it. See the “Example” section for an
illustration of one possible graphic representation of the
relationships among modules. The precise appearance
and presentation is not the important part of this step.
The importance of this step is to solidify the
relationships among the task modules and controlling
modules.

After establishing the relationships among modules,
each module should be refined using pseudocode and
stepwise refinement. As new subroutines are identified,
they should be added to the graphic. The utility
subroutines could be put in the relationships sketch a
number of times or be represented as modules at the
bottom of the sketch with lines from calling modules
leading to the utilities. These utility constructs are
sometimes called octopuses because the lines leading to
a utility resemble tentacles reaching into the orderly
structure of a hierarchy chart. Once all of the modules
are fully specified in pseudocode, the student is ready to
proceed to the next stage, program construction.

Program Construction
Constructing the program refers to creating the user’s
interface and writing the code. The primary concern of
this method in this stage is the translation of design into
language-specific and presentation-specific constructs.
For example, in Visual Basic a scrollable output area
would be constructed using a text box control tool and
setting the text box properties so that Multiline is True,
Scrollbars equals 2, and Locked is True. Another
example of the conversion would be to select the correct
instruction syntax to construct a loop planned in the
pseudocode while keeping the code structured.

Testing and Debugging
This modeling approach does not have specific
recommendations for testing and debugging.

3. CONCLUDING REMARKS
Most program design methods are intended for
experienced programmers rather than beginners. The
summary table and graphic relationships tools presented
give the instructor additional means to help novice
programmers collect and organize the data used in
existing design methods. Since the tools do not assume
programming experience, the instructor can assign
students knowledge level tasks before requiring
application or problem-solving level tasks. By making,
the tasks commensurate with the students’ level in
learning frustration in learning programming should be
reduced. Thus, we posit that the tools presented herein
improve instruction of programming by facilitating
students’ learning processes.

4. REFERENCES
Arnow, David M. and Gerald Weiss, 2000, Introduction

to Programming Using javaTM: An Object-Oriented
Approach. Menlo Park, Addison-Wesley, p.142.

Booch, Grady, 1991, Object Oriented Design with
Applications, Fort Collins, Benjamin/Cummings
Publishing Company, Inc., p.190.

Coad, Peter and Edward Yourdon, 1991, Object-

Oriented Analysis,2nd ed. Englewood Cliffs,
YOURDON Press, p.58.

Daniell, Elizabeth O., 1990, TIPS: Teaching

Improvement Project Systems for Health Care
Educators. Lexington, Kentucky, Center for
Learning Resources, College of Health Professions,
University of Kentucky, p.34 & p.46.

DeMarco, Tom 1979, Structured Analysis and System

Specifications. Englewood Cliffs, Prentice-Hall,
p.24 & p.297.

Dijkstra, Edsger W., 1988, “Formal Derivation of

Programs,” Notes from a workshop in Monroe, LA,
May 16-20, p.1 & p.9.

Erikkson, Hans-Erik and Magnus Penker, 1998, “Design

Java Apps with UML,” JavaPro, June/July, pp.1-2.

Hoffer, Jeffrey A., Joey F. George, and Joseph S.

Valacich, 1998, Modern Systems Analysis and
Design. Menlo Park, Addison-Wesley, p.25.

Jensen, Kathleen and Niklaus Wirth, 1974, Pascal, 2nd

ed. New York: Springer-Verlag, p.52.

Rumbaugh, James, Michael Blaha, William Premerlani,

Frederick Eddy, and William Lorensen, 1991,
Object-Oriented Modeling and Design. Englewood
Cliffs, Prentice Hall, p.47.

Wirth, Niklaus, 1971, “Program Development by

Stepwise Refinement,” Communications of the
ACM, Vol. 14, No. 4, pp.221-227.

	ABSTRACT
	PROBLEM
	PROPOSAL
	DESIGN APPROACH
	Problem Definition
	Initial Design
	S
	Summary Table: The summary table is composed of three areas: tasks, data, and triggers. The tasks’ column is labeled “Program’s Major Tasks” in Figure 1. The tasks column gives students a place to list the tasks, behaviors, or operations described in
	Process Used with Summary Table: The process described in this section is not rigidly structured. At any time during this process, the student may switch to an existing design method. The purpose of the tool is to provide the student a means for colle

	Design Refinement
	Program Construction
	Testing and Debugging

	CONCLUDING REMARKS
	REFERENCES

