

The Teaching of Net-Centric Computing

David Lefkovitz 1

CIS Department, Temple University
Philadelphia, PA 19122

Abstract

This paper presents the subject of net-centric computing as one that spans a spectrum from static html web pages to the
development and control of distributed, multi-tier components. It poses the dilemma of attempting to teach this
important body of knowledge that requires multiple languages and tools in an already tightly packed Computer Science
program, and presents a solution that utilizes three pedagogic devices: (1) A series of lab exercises that incrementally
spans the defined spectrum and that presents Starters that act as models for the languages being learned, (2) Web based
notes and classroom demonstrations, and (3) Online tutorials, reference manuals and white papers. The paper also
discusses the problems inherent in the teaching of methodology vs. specific languages, software systems and tools and
how it is being approached by expansion of Device 2 into Course Technology Modules.

Keywords: Web-deployed applications, client/server processing, distributed components, multi-tier architecture,
middleware

1. INTRODUCTION

Most CS and IS departments are introducing web related
courses or course components into their curricula.
These fall onto a spectrum that spans (1) static web page
(HTML) design, (2) client side processing via scripting,
(3) server side processing via ASP, DHTML, XML, cgi
processes and servlets, (4) distributed, n-tier components
with VB, Java, or other languages using middleware
control via DCOM (Distributed Component Object
Model), CORBA (Common Object Request Broker
Architecture) or EJB (Enterprise Java Beans).
Superimposed upon these technologies are conventional
file and database management systems. Collectively, we
might call these course elements net-centric computing.

The problem facing undergraduate programs, and to
some degree graduate programs, is how best to teach
courses across this spectrum. How many courses should
it comprise? Should any of them be required core
courses, or should existing ones be modified to
accommodate the one or more net-centric courses to
follow? At what level should these courses be
introduced, and thus what is the required pre-requisite
knowledge from traditional core courses like
programming, (usually C++ and/or Java), networks,
operating systems, and database management? The CS
curricula at most Universities are so crowded now that
few major electives can be managed, and the required
core courses have no room to include much new
material that might provide some of the desired pre-
requisite knowledge.

1. lefkovitz@cis.temple.edu

Further compounding the problem is the fact that net-
centric computing requires several languages and tools
that all students may not know beforehand, and finally
there is a question of objective and emphasis. Ideally,
we strive in Computer Science to teach principles and
methodology over the details and nuances of specific
languages and tools; however, in net-centric computing
one cannot go far without actually implementing some
small systems, which means that the student must learn
a working subset of such languages as HTML, ASP,
XML, VB, Java, and PERL plus associated tools. Also,
some curricula do not require database management in
the core, which means that SQL must also be learned.
Greenspun at MIT has also addressed this problem and
has developed a course titled Software Engineering for
Web Applications. (Greenspun 2000)

This paper describes the steps being taken at Temple
University to address these issues. We have started with
a one semester, undergraduate elective course originally
named Distributed Component Development and now
changed to Net-Centric Computing, CIS 309. The goal
was to cover the four point spectrum with a specific
selection of languages and tools, where the outcome was
an ability of the student to implement projects exhibiting
characteristics across the entire spectrum. In addition,
the course was to include as much of the principles and
methodology as time would allow.

Specific languages used were HTML, ASP, VB and VB
script, Jscript (as a student elected option), XML, and
SQL. These were taught through a combination of
lectures, examples and self teaching, as will be
described. Tools, software systems and middleware used

were: (1) VB IDE (Integrated Development
Environment) for forms and component object
development, (2) Visual InterDev for ASP page
development, (3) SQL Server 7 DBMS and the SQL
Server Enterprise Management Console, and (4) DCOM
and Microsoft Transaction Server (MTS) as middleware
control of component deployment. The challenge was
how to teach all of this material in one course and
achieve the desired outcome in the face of having in
place only the traditional pre-requisite structure of
programming, networks and operating systems. In our
case, even database management is an elective.

2. APPROACH

The solution to these problems was approached through
the use of three pedagogic devices.

Device 1: Language teaching by example
Ten lab projects were presented that incrementally
spanned the four-point Net-Centric Computing
spectrum. Each lab comprised 2 parts, a Starter and an
Assignment. The Starter demonstrated the methodology
of the given increment and contained most of the
language elements needed in the Assignment. The
student could run the Starter to see how the elements of
that lesson behaved in the given set of environments
being taught (wired network vs. internet, workstation vs.
remote server, workstation forms vs. browser, text file
vs. relational file system, COM vs. DCOM, 1 vs. 2 vs.
n-tiers, etc.). It was also a means by which the limited
language lectures and the self teaching were made
concrete. A book that was chosen as the required text of
the course contained many of the Starter exercises on
CD plus many others that the student could freely use
(Micro Modeling Associates 1999).

Part 2 of each lab was the student Assignment. Here the
student was required to extend the Starter in a significant
way. Table 1 lists the 10 labs in terms of the distributed
layers (Presentation, Business, Data Service) and tiers.

Device 2: Web Notes for lectures and student
reference
All lectures were presented via web notes with extensive
use of diagrams for explaining architectures and high
level concepts. The primary objective of the lectures
was to teach the underlying principles and methods of
the net-centric computing spectrum. The secondary
objective was to teach the needed languages and tools.
A smart classroom was used, so that the lecturer could
project the web notes and demonstrate use of the
software tools. Outside of class, students had access to
the notes at any time. They could also print them before
coming to class and annotate them by hand during the
lecture. The notes were developed in course units that
could play a future role in other course developments,
described in Section 4, Course Technology Modules.

Device 3: On-Line references for self instruction
The textbook was used primarily for theory and
methodology, though it did provide rudimentary
chapters on ASP and XML. A bibliography of books
for learning the various languages was provided, but this
would subject the students to considerable expense.
Instead, a list of urls provided tutorials, reference
manuals and white papers for each language and tool
used in the course.

The reader is referred to the course url for further
elaboration, where the actual lab exercises, lecture notes,
and Online references are to be found. The url is
ww2.cis.temple.edu/cis309.

3. LESSONS LEARNED

¾ The course started with 19 students. Nearly all of

them knew some HTML but most not ASP, XML,
VBScript and SQL, nor the Visual Studio tools
used for VB and ASP. None knew DCOM or
MTS. Fourteen students finished the course. All
but 3 students completed the 10 assignments; the
other 3 completed 8 of them. This provided ample
evidence that the 3 devices are able to teach these 4
languages, some database theory and the associated
tools, in the absence of specific pre-requisite
knowledge. The students said that the 10 Starter
examples were crucial to their ability to begin
coding immediately. Much of the remainder of the
specific knowledge to produce workable code came
from the OnLine References and from the Help
systems of the two major tools, VB Integrated
Development Environment and Visual InterDev.
The Lectures and Web Notes relating to the
languages also helped, but these were more
summary in nature.

¾ The course requires considerable self-instruction

and discipline on the part of the student. It should
work well with motivated and interested students in
an elective course. It may not work so well in a
required course.

¾ This single course still left some gaps that we felt
needed to be addressed, if not filled. As stated, we
had to be selective in the choice of languages,
software systems and tools. For example, the
course taught DCOM as middleware, not CORBA
or EJB. It emphasized VB for component
generation as opposed to Java or some other
language like C++, and the course used SQL
Server, not Oracle or another DBMS. Were the
omissions important? Some argue that only
methodology is important, not the specific
languages, systems and tools, because the latter can
be learned on the job and may change rapidly.
Others argue that students should have exposure to
both Microsoft and the Java/CORBA/Oracle
technologies. As a practical matter, the

methodology cannot adequately be understood
without actual implementation, and there is
insufficient time in one course to teach more than
one set of languages, tools and middleware
technologies. It may be desirable, though, for a CS
curriculum to have the flexibility to offer variant
courses on net-centric methodology using different
languages, tools and systems. This flexibility is all
the more important when considering a mix of
undergraduate and graduate courses. This led us to
the concept of Course Technology Modules
(CTM). These are intended to be fairly self-
contained teaching components from the web notes,
that can be combined to teach the same net-centric
methodology using different languages, tools and
systems and coordinated with their own set of
Starter labs. The concept is being applied to some
other courses.

4. COURSE TECHNOLOGY MODULES

A Course Technology Module is a set of web notes,
possibly with associated lab exercises, that teaches a unit
within the general area of net-centric computing and
associated areas like database theory. A module usually
comprises 1 to 4 hours of lecturing. The intent is that
the work of one instructor in developing a net-centric
course can be utilized by him/herself or another, in the
development of other or variant courses by selecting an
appropriate set of such modules. The author has, to
date, developed 2 courses in this manner, with 4 variants
for undergraduate and graduate use. One course is CIS
309, discussed in this paper. The other is an Oracle
course. This Fall our graduate software engineering
course, CIS580, will be adapted to a combination of
Oracle and DCOM. Development of these CTMs is still
at an early stage, but the reader can get some idea of
them by visiting the course WebNotes at
ww2.cis.temple.edu/cis309 and
ww2.cis.temple.edu/cis595.

Table 2 presents a projected list of such modules. At
present they are organized into a 2 level hierarchic
classification, but as the courses and their modules
develop, the classification may be deepened and new
classes added at each level. The numbers in parentheses
following Module Numbers identify courses in which
the modules have been used:

1. CIS308: Net-Centric Computing (with Java/CORBA)
2. CIS309: Net-Centric Computing (with VB/DCOM)
3. CIS331: Principles of Database Management
4. CIS350: Software Engineering (with Oracle tools)
5. CIS580: Software Engineering (with DCOM and
Oracle)
6. CIS585: E-Commerce Site Development
7. CIS595: Software Engineering (with Oracle and web
deployment)

Unused modules are planned for inclusion in courses to
be developed over the next two years.

5. REFERENCES

Greenspun, Philip, 2000, Software Engineering for Web
Applications, http://philip.greenspun.com/teaching/one-
term-web.html.

Micro Modeling Associates, 1999, Microsoft Commerce
Solutions Web Technology, Microsoft Press, 1999.
ISBN: 0-7356-0579-3.

Table 1: Ten Graduated Labs for Net-Centric Computing
Layer Lab

No. Tiers Presentation Business Data Service
1

1 T1: Browser: HTML,
VBScript

2 3 T1: Browser: HTML,
VBScript

T2: Server 1: ASP T3: Server 1: NT File System

3 3 T1: Browser: HTML,
VBScript

T2: Server 1: ASP T3: Server 1: SQL Server

4 2 T1:Workstation: VB Form T1:Workstation: VB Standard
Module

T2: Server 1: SQL Server

5 3 T1:Workstation: VB Form T2:Workstation: COM Object T3: Server 1: SQL Server
6 3 T1:Workstation: VB Form T2: Server 1: DCOM Object T3: Server 1: SQL Server

7 4 T1:Browser: HTML T2: Server 1: ASP
T3: Server 1: DCOM Object

T4: Server 1: SQL Server

8 4 T1:Browser, HTML T2: Server 1: ASP
T3: Server 2: DCOM object

T4: Server 1: SQL Server

9 5 T1:Browser: HTML with
Form

T2: Server 1: ASP
T3: Server 1: 1 DCOM object
T4: Server 2: 3DCOMobjects

T5: Server 1: SQL Server

10 3 T1: Browser: HTML table,
XML, DHTML

T2: Server 1: DHTML download T3: Server 1:
XML file is accessed by NT
File system

Table 2: Course Technology Modules

No Module No Module
1 Oracle Technology 3 Java
1.1 (4,5,7) 8i Database Server (RDB) 3.1(1) Applets, Servlets, Applications, JSP
1.2 (4,5,7) PL/SQL and SQL*Plus 3.2 (1) JDBC
1.3 (5) 8i Database Server (ORDB)
1.4 (4,7) Developer 2 tier 4 CORBA
1.5 (7) Developer 3 tier (web deployed) 4.1 (1) ORB, IDL, and Name Service
1.6 (4,5,7) Designer – Basic 4.2 (1) Oracle Application Server (CORBA)
1.7 Designer – Advanced 4.3 (1) EJB (Enterprise Java Beans)
1.8 (7) Oracle Application Server (Cartridges)
1.9 Discoverer and WebDB (High level

Information Retrieval and Web
Reporting)

5 Database and Information Retrieval

1.10 WebDB: DDL and Web Forms 5.1 (All) SQL – Basic
1.11 Data Warehousing, Data Mining and

OLAP
5.2 SQL – Advanced

1.12 ERP (Enterprise Resource Planning) 5.3 (2,5) XML – Basic
 5.4 XML – Advanced
2 Microsoft Technology 5.5 Web Search Engines
2.1 (3) Access 2000
2.2 (2,5) VB – Basic (Form and standard modules)
2.3 (2,5) VB - Advanced (Class modules, compts)
2.4 (2,5,7) ADO (ActiveX Data Objects)
2.5 (2) SQL Server
2.6 (2,5) COM, DCOM and MTS
2.7 (2,5,7) ASP
2.8 (2,5) Visual InterDev
2.9 (7) Front Page
2.10 (6) E-Commerce Site Development

	Abstract
	
	
	
	
	Device 3: On-Line references for self instruction

	T
	Table 1: Ten Graduated Labs for Net-Centric Computing

	Layer

