

Objects as hypertexts: how to render objects with
HTML for teaching purposes

Andrea Trentini, Daniela Micucci

Andrea.Trentini@disco.unimib.it - Daniela.Micucci@disco.unimib.it
Dipartimento di Informatica Sistemistica e Comunicazione

Università di Milano-Bicocca
Via Bicocca degli Arcimboldi 8, MILANO, Italy
Tel. +39-02-64487856 Fax +39-02-64487839

Abstract

This is a description of a technique (and a tool, called HtmlStream) to visualize Java instances in HTML, Hypertext
Markup Language (W3C 2000), format. It can be used to teach Java by clearly (and automatically) showing the
relationships between class and instance and between classes and subclasses. Some basic knowledge of Java is
required. This article is structured as following: 1) why we did it; 2) the output produced; 3) how to use it; 4) a
consideration about UML, Unified Modeling Language (OMG 2000); 5) usage in actual courses; 6) final comments.

Keywords: object-orientation, visualization, class/instance, teaching, inheritance.

1. INTRODUCTION

We are currently working at CS Dept. of Milan
University (Bicocca). Here, first year students are taught
Java language. These students come from different high-
level Italian schools and not everyone of them has
previous experience with computer programming, alas
very few. They have to face a lot of new basic concepts:
first approach to programming, data types, flow control,
etc. But they also have to face a lot of advanced (for
them) object-oriented concepts: class/instance dualism,
inheritance, binding, polymorphism and some basic
UML syntax. Even the ones that come from technical
high schools, where they usually have been taught (and
should have learnt) at least a procedural language such
as Pascal or C, have big problems in approaching an
object-oriented language (even as simple as Java).
Sometimes the ones that know have even more
difficulties than the pure newcomers, because they try to
map O-O concepts into procedural concepts (Decker
1993). We noticed that the two most difficult concepts,
at least at the beginning of their object-oriented career,
are:

• understanding the difference between class and
instance: they keep declaring attributes and
methods static, thus using Java as a procedural
language (i.e. they don’t create instances at all);

• understanding inheritance: they can’t keep track of
something they don’t see (inherited attributes and

methods) in a source file (in Java there is usually
one class per file). Note that we make them use
SDK by Sun (a command line environment for
developing Java programs) instead of an IDE
(Integrated Development Environment) with a
class/object browser.

When introducing object-oriented concepts we usually
draw circlegrams on a blackboard to show how an
object is allocated in memory: of course this is a logical
representation, not necessarily related with the actual
implementation. In Figure 1 there is a common form of
circlegram: the representation of an instance of class C
with attributes correctly placed in their respective
memory ring and with an example value for every
attribute.

A

c la ss C

e x te n d s B

{ in t i_ c ;}

c la ss B

e x te n d s A

{ flo a t f_ b ; }

c la ss A

{ b o o le a n b _a ; }

BC
b o o lea n b _ a ;

floa t f_ b ;

in t i_ c ;

t ru e

3 .7 6 6 5

2 5

Figure 1 – a circlegram

What we needed was an implemented way of generating
some kind of circlegram to let students use it inside their

programs. So we devised an HTML generator: a piece of
code to create an HTML representation out of an
instance in memory. We chose HTML to take advantage
of all the HTML tools available on the net. At present,
HtmlStream lets you print an object passing only the
object reference to a special streamer object. This way
you obtain HTML text that you can render with a
browser (like Netscape or Internet Explorer). Some may
ask why we did not choose XML (eXtensible Markup
Language (W3C 2000)) as output format, but at the time
we built our package we did not find any useful XML
browser to effectively render that kind of output.

2. HTML REPRESENTATION

When you print an object using HtmlStream you get
some HTML text structured this way:

<internal anchor> <hashcode of object> <class>

<name of field> <value of field>

<name of field> <value of field>

<name of field> <if this field is a pointer, then
this is a link to an internal
anchor>

… …

<if this objects extends another one, here you find a
“table in table” with the same format (recursive)>

We used the HTML TABLE tag to represent an object
instance, with a “recursive table in table” to represent
inheritance. We hope to give the circlegram idea by
directly including one class level into the other. For
example, let’s say that we have an instance of a class
AnotherAgainMyClass, as drawn in Figure 2.

Figure 2 – an instance described with a circlegram

AnotherAgainMyClass inherits from AnotherMyClass
that in turn inherits from DefaultHtmlizable. When
converted into HTML by HtmlStream the result will be
the one shown (already rendered) in Figure 3.

Figure 3 – a complex object

Another important feature of HtmlStream is that if you
convert a graph of objects into HTML, you are in fact
creating a large page with internal links. This happens
when some class has reference attributes. In this case we
use hyperlinks to link every attribute value (a hashcode)
with its actual value, i.e. the referenced object. This way
every reference attribute is represented as a hyperlink
that, when clicked, brings you to the actual pointed
object representation in the same page (see Figure 4). So
that on the same page you can have more than a single
object, all of them linked (as in memory) by clickable
internal hyperlinks (anchors). This representation lets
you interactively follow the actual referentiation
between in-memory objects.

Figure 4 - screenshot of an htmlized stream

3. USING HTMLSTREAM

To use this package you must first download it
(HtmlStream 2000). HtmlStream can be used only by
instrumentating source code: to htmlize objects, you
must put special println statements inside source code.
When in need to htmlize an object instance you must
follow this checklist:

• create an instance of an object called HtmlStream;

• pass the reference of the printable object to the
HtmlStream, using the grow() method (see later in
the examples);

• print the HtmlStream object in the usual Java way
(System.out.println…), optionally redirecting the
standard output to a file for later viewing; the
output can also be piped to a command line HTML
viewer, there are plenty on the Internet.

The only noticeable constraint for our user is that an
object must be printable to be printable. In this
htmlization environment an object is printable if it
implements the HtmlizableI interface. That is because
HtmlStream can work only on HtmlizableI objects. For
this purpose we included in our package not only the
HTML-converter (the HtmlStream class) but also a
default implementation of a HtmlizableI class, called
DefaultHtmlizable. Thus, any HtmlStream user can
choose as preferred: a) implement from scratch his own
HtmlizableI objects; b) inherit from DefaultHtmlizable.

An instance of HtmlStream, when passed an object to be
htmlized, can automatically follow and convert every
object reference inside the root one (the one passed
initially), in a tree descending manner. This is very
similar to the serialization mechanism available in Java
where an object must be Serializable to be passed
through an ObjectOutputStream and every link (except
transient ones) is automatically followed.

Some example code
Here you can find a definition of an example class
MyClass that extends DefaultHtmlizable (methods have
been removed for clarity, they are present in the
downloadable package file).

public class MyClass
extends DefaultHtmlizable {

protected int num;
protected Date date;
protected float fl;
protected AnotherMyClass

o1,o2,o3,o4,o5;
}

Suppose the following code placed somewhere inside a
main() method: we create an instance, we pass it to the
HtmlStream and then we print it.

/* MUST be a HtmlizableI object */
MyClass toBePrinted =

new MyClass();

// "the printer"
HtmlStream hStream =

new HtmlStream(toBePrinted);

// print the HTML representation
System.out.println(hStream);

The result should look like the one shown in Figure 5.

Figure 5 – htmlized object

HtmlStream is also useful if you want to add other
objects at a later time:

/* assume that we still have
hStream in scope */

/* adding a new object */
AnotherHtmlizable

anotherToBePrinted =
new AnotherHtmlizable();

hStream.grow(anotherToBePrinted);

/* again adding a new object */
hStream.grow(
new AgainAnotherHtmlizableI());

/* print the HTML representation,
this time includes the
new objects */

System.out.println(hStream);

The result is shown in Figure 4. This last example is one
reason for HtmlStream class existence: it is useful when
you need to queue more than one object for printing and
there is no linking between them. A thinking aid when
using HtmlStream this way is the "printing queue"
metaphor: you submit objects to the stream (and the
stream is able to follow every other referenced object),
when you are satisfied you can start the actual printing
of the stream itself.

4. UML PROXIMITY

Our students meet UML very early. We believe that our
HTML format could help them grasp better the
connections between class diagrams, source code and a
runtime situation (a sort of instance diagram). The table
representation should in fact be familiar to someone
accustomed with UML class symbols. In our format
inherited attributes are embedded inside the object
instead of having an arrow that points to the extended

class. As an example take a look at the UML class
diagram shown in Figure 6. This diagram is the actual
class diagram of our example classes.

Figure 6 - UML class diagram

5. FEEDBACK ON USE

We tested our tool in two different learning
environments: a University programming course and
some business short Java courses.

At University we had a tough situation. As we
mentioned at the beginning of this article, we have
students coming from very different environments. The
programming course is their first one, they have to learn
how to login, how to edit and save files (knowing where
they have saved... yes, we had students who almost lost
their work because they didn’t know where their files
where!). They had to battle against operating system
annoyances (e.g. not showing filenames completely i.e.
extension hiding) and development environment (a
command line one) syntax. Given this situation, we tried
at first to explain them basic object-oriented concepts,
but we reverted to a simpler procedural use of Java to let
them absorb at least the basic programming concepts
(variable types, scope, parameter passing, etc.).

In business courses life is somewhat easier. Learners
usually come from other languages, at least they
(should) know the basic principles of classic
programming and they also know how to use a
computer. In these environment HtmlStream has been
useful, we succeded in shifting people from procedural
to object-oriented programming. The most common
misconception we could correct was the “state
inheritance problem”: programmers trying to access
fields in an instantiated object by inheriting from that
object class! At least we could easily show that class and
object are not the same thing and that a class has many
instances with different state.

6. CONCLUSION

The HtmlStream package lets you graph objects (even
complex ones, recursively) by converting them to
HTML text. This representation can be used to teach
object-oriented basic concepts (class/instance,
inheritance) by letting students print their own objects
instead of (or complementary with) classroom
blackboard drawings.

With HtmlStream there is no need to use a
commercial/free IDE (Integrated Development
Environment) with a graphical class browser or
debugger. The only program needed is an HTML
browser (nowadays omnipresent!). Students can thus use
something they (should) know: an Internet browser
(with the now common hypertext metaphor). Before
creating HtmlStream we searched for ready-to-use tools
for our purpose: the closest match was BlueJ (BlueJ
2000), but it doesn’t show inheritance clearly in its
object browser. Another close match is the JBuilder
(Borland 2000) visual debugger that shows every
variable in scope using a tree metaphor. The big
problem with such a tree browser is that it doesn’t avoid
looping: if the user browses through a pointer to an
already expanded branch, the branch will be expanded
again, unbounded. Also, a lot of work about software
visualization (both static and runtime) has been done
((Stasko 2000), (Domingue 1998) and (Mulholland
1998)), but we didn’t find any object rendering
mechanism as simple as ours.

We recently found an article (Dershem 1998) describing
a tool very similar to our HtmlStream. The tool, called
Object Visualizer, creates a GUI (Graphical User
Interface) extracting properties from a given class using
java reflection. Then the user can play with instances of
that class by setting field values or calling methods. Our
evaluation, based only on the article (the link to the
Object Visualizer site was broken at the time of writing),
is that HtmlStream may be better for educational
purposes in the following aspects:

• it clearly shows every field at the respective class
level while Object Visualizer makes you switch
explicitly from one class level to the other

• it shows the complete state graph of an object (i.e.
by following every reference to other objects)

• it also uses reflection, but HtmlStream shows every
field (even private ones). We did it on purpose, to
make students understand every detail of a class
they are defining. Infact there is no purpose in
information hiding if they have to understand what
they (themselves) are doing...

Moreover, all the tools mentioned must be “graphically”
used, they hide source code from the user/learner. We
think that a novice should be kept very close to the
language he is tryng to learn, even at the cost of a more
steep learning curve (but in the right direction).

HtmlStream is written in Java, but the algorithm is very

simple. It can be ported to other object-oriented
languages without great effort.

Finally, we built this tool/package only as a teaching
aid. You can’t use it as a production tool for visualizing
objects, since you must extend a class to have HTML-
printability, thus loosing the chance to extend from any
other class (at least in Java).

7. REFERENCES

BlueJ, 2000, “Teaching oriented Java IDE”, web site:
http://www.sd.monash.edu.au/bluej/index.html

Borland, 2000, web site: http://www.borland.com

Decker R. and St. Hirsfield, 1993, “Top-Down
Teaching: Object-Oriented Programming in CS1”
ACM SIGCSE 1993, pp 270-273

Dershem, Herbert L. and James Vanderhyde, 1998,
“Java Class Visualization for Teaching Object-
Oriented Concepts”, SIGSCE 98, pp. 53-57

Domingue, J. and P. Mulholland, 1998, “An effective
web based Software Visualization learning
environment”, Journal of Visual Languages and
Computing, 9 (5), pp. 485-508

HtmlStream, 2000, web site:
http://www.sal.disco.unimib.it/~atrent/htmlstream.htm

Mulholland, P. and M. Eisenstadt, 1998, “Using
Software to Teach Computer Programming: Past,
Present and Future.” In J. Stasko, J. Domingue, M.
Brown and B. Price (Eds.), Software Visualization:
Programming as a mutli-media experience. MIT
Press: Cambridge, MA

OMG (Object Management Group), 2000, web site:
http://www.omg.org

Stasko J., 2000, web site: http://www.cc.gatech.edu

W3C (WWW Consortium), 2000, web site:
http://www.w3.org

	Abstract
	INTRODUCTION
	HTML REPRESENTATION
	USING HTMLSTREAM
	Some example code

	UML PROXIMITY
	FEEDBACK ON USE
	CONCLUSION
	REFERENCES

