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Abstract 

Problem solving involves far more than the ability to plug numbers into a formula and looking to a calculator 
to resolve an answer.  The real world presents problems, described in words, that require creative applications of the 
more fundamental principles taught in physics, mathematics, and business classes.  The unpopularity of “word 
problems” and the difficulty in teaching creative thinking have generally led educators to avoid problem solving in 
favor of equation solving.  This paper demonstrates that methods for finding creative solutions to novel problems can 
be codified and taught within the structure of a programming class.   
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1.  THE UNFULFILLED PROMISE 

 
Approximately twenty-five years ago, educators decided 
to introduce the use of calculators into primary and 
secondary schools.  Calculators were seen as the coming 
technology and teachers recognized the need for 
students to learn to use the tools of the electronic era.  
Calculators brought the promise of taking the drudgery 
out of arithmetic.  Students would certainly be more 
motivated to learn mathematics once long division, 
multi-digit multiplication, and square roots were 
handled by the black box. 

 
But the real benefit would be the timesavings that the 
calculator would bring.  If students no longer spent 
hours, or days, or weeks learning to do by hand the 
operations a calculator could perform in milliseconds, 
there would be more time to learn to solve problems.  
Problem solving was the goal.  Educators argued, 
correctly, that there was little advantage in learning to 
divide, to calculate percentages, or to solve equations if 
the information could not be applied.   Passing 
arithmetic manipulations (and later the solving and 
graphing of equations) to the calculator would not only 
eliminate dulling repetition but would create time for the 
real purpose of studying mathematics.  So the calculator 
came but the problem solving did not. 
 
A significant element that contributes to the avoidance 
of problem solving is the level of difficulty.  Calculating 
19% of 2000 is easy.  Determining how much money 
you will owe at the end of the year if you only pay the 
minimum on your Visa card bill is hard.  Finding the 
sine of 30° is easy.  Determining the height of the tree in 

your backyard is hard.  Plugging numbers into a formula 
then punching those numbers into a calculator is easy.  
Developing the equation that fits the conditions of a 
given problem is hard.  Unfortunately, real world 
problems are seldom stated in ready-for-the-calculator 
form.  Real world problems appear in a series of 
sentences that must be understood and interpreted as a 
sequence of mathematical operations.   

 
Years after the introduction of the calculator we find a 
significant number of college students who cannot 
calculate weighted averages including their own GPA; 
cannot perform unit conversions; cannot determine the 
area of a non-rectangular surface; or cannot determine 
the elapsed time between two events.  Many are in a 
mathematical limbo where problem solving can only 
begin after someone else has developed the equation 
ready for their calculator’s number crunching.  
Ironically after someone else has developed the 
equation, the problem is generally solved by a computer. 
 
We can speculate about the reasons for the current lack 
of problem solving ability in a large fraction of college 
students.  We might decide that the fifth grade teacher 
who taught fractions for years was adept at teaching 
fractions but unable to teach problem solving once 
calculators took over the job of manipulating fractions.  
We might decide that learning to use the calculator took 
just as long as learning to work problems by hand and 
there was no time saving.  We might decide that the 
algebra teacher found that “word problems” were so 
unpopular and so difficult for students that it was easier, 
less troublesome, and provided more job security to 



 

 

have students only learn techniques for solving 
equations.   
 
Regardless of the root of the problem, the situation 
exists.  The question is whether to confront the issue or 
to ignore it for another four years when it will turn into 
an employer’s problem instead of an educator’s 
problem. 
 

2  ADDRESSING THE PROBLEM 
 
The student who learns to use the quadratic formula 
perfectly but cannot construct an equation from the 
information given in a problem has little more than a 
fact suitable for forgetting a week after the final exam.  
Similarly a student who learns to write function calls 
and looping structures perfectly but cannot use these 
tools to solve a problem has missed the point of learning 
to program.  Programming classes are not only an 
excellent venue for teaching problem solving but there is 
little reason to program at all if not to solve a problem.  
Writing conditional statements and constructing classes 
of objects are not objectives in themselves but are tools 
used to solve problems. 
 
Unfortunately the programming instructor is in the same 
position as the algebra teacher.  It is very easy to teach 
the syntax for a while loop; it is more difficult to teach 
how the while loop is programmed to do something 
useful.  It is simple to demonstrate how to print “Hello 
World!” on the screen 10 times.  It is another matter to 
create the simulation of a game that is played 1,000,000 
times to determine the odds on an outcome.  It is simple 
to teach the syntax of an if statement but to use the 
conditional to implement a successive approximation 
algorithm is more challeng-ing. 
 

3  BLUEPRINT FOR PROBLEM SOLVING 
 
Once the decision is made that it is necessary for 
students to be able to direct the knowledge they have 
acquired toward finding solutions to new, real-world 
problems, the next question is how can the skill be 
taught?  Traditionally, if the issue of problem solving is 
approached at all, the effort entails the use of Boolean 
logic or flowcharting.  Each of these has its place but 
falls short of leading to a solution to a problem.  
Boolean logic is useful in creating a compound test 
condition for a while loop but if the question is how fast 
must a satellite travel to stay in orbit, the application of 
the rules of Boolean algebra is not at all clear. 
 
Flowcharts are useful for describing the solution to a 
problem so the solution can be converted into 
programming but if a method for determining the 
satellite’s speed cannot be found, a flowchart cannot be 
constructed.  A flowchart is a description of a solution 
that has already been discovered.  Flowcharts, like 
pseudo-code, clarify and organize but are of little use in 

developing creative solutions.  Another method for 
teaching problem solving is needed. 
 
The first rule in problem solving is to be clear in 
defining the objective.  A vague description of the 
objective will generally foil any project.  This can be 
applied to teaching problem solving as well as any other 
problem.  Teaching problem solving means teaching a 
directed form of creative thinking.  Defined more 
narrowly, teaching problem solving means teaching 
general methods for discovering solutions to 
problems that the student has never been taught to 
solve. 
 
This proposition opens the debate as to whether 
creativity can be taught or whether it is some undefined 
and indefinable element of genius that some have and 
others do not.  While it is obvious that some people are 
more creative than others, the suggestion here is that 
virtually everyone’s creativity can be enhanced.  
Experience makes this proposition intuitively satisfying.  
Aspiring writers are told to write.  The ability to attack 
mathematical problems increases with the amount of 
mathematics studied.  Beethoven’s early compositions 
are good but do not compare to his more mature work. 

 
Creating Experience 
Isaac Newton is often quoted as saying, “If I have seen 
farther (than you and Descartes), it is by standing upon 
the shoulders of Giants.”1  The applicable idea is that the 
Philosophiae Naturalis Principia Mathematica did not 
suddenly occur to Newton.  Instead insight generally 
comes in small steps that build on previous work, either 
your own or the work of others.  Developing the 
potential for insight is the goal in teaching problem 
solving methods. 
 
This concept can be implemented in a programming 
class by having students build a repertoire of solved 
problems that begin at an elementary level and grow in 
complexity.  One way to find the area of a trapezoid is to 
frantically search math books or the Internet for a 
formula but it is more insightful to realize that a 
trapezoid is a combination of a rectangle and two 
triangles.  Adding the areas of the familiar figures leads 
to a solution built on already known principles and 
without the formula for a trapezoid.  From here it is a 
small step to the realization that the areas of many 
rectangles can be added to find the area under a curve 
and integral calculus becomes a tool for use in future 
problems. 
 
Calculating the time required for light from the sun to 
reach a planet is daunting unless it is the final problem 
in a series of programs that first require unit 
conversions, then the more difficult conversion from a 
1 Letter from Newton to Robert Hooke, Feb. 5,
1675/1676 
 



 

 

large number of seconds to hours, minutes, and seconds.  
Finally, adding the fact that distance is equal to rate 
multiplied by time, the difficult problem is discovered to 
be little more than a new arrangement of simpler, 
familiar ideas.  There is no substitute for experience and 
in problem solving that means a wide background of 
previously solved problems of increasing variety, 
intricacy, and difficulty. 
 
However an appeal to experience is less useful to a 
student with little experience in problem solving.  There 
is a need for a second method for teaching problem 
solving that can be taught to the novice and is used in 
parallel with the gradual building of experience.  In 
teaching programming over the past 10 years I have 
found that the techniques that lead to the solutions of 
problems can be codified.  This is not to imply that 
creativity can be reduced to a formula but rather that if 
certain steps are followed gaining insight to the solution 
of a problem can be enhanced.   

 
The Heuristic 
 Rule One:  The first and possibly most important 
rule in problem solving is to be clear about the 
information available for attacking the problem, and to 
be clear about the objective.  Overlooking this starting 
point either leaves students without the necessary 
information for solving the problem, or without 
direction for lack of a well-defined endpoint.  Despite 
the obvious importance of this rule, it is often ignored 
by students who have developed the habit of searching 
the problem description only for numbers that can be 
plugged into a formula.  This rule is so critical that I 
encourage students to rewrite problems in the form of a 
list of usable information and objectives.  I also create 
this list before I begin to program my in-class 
demonstrations.  
 
 Rule Two:  The second rule is to determine if there 
is any relevant additional information required for 
solving the problem.  This may involve finding a value 
not given in the problem such as PI, the radius of the 
earth, or Plank’s constant.  The required value may be 
information that the user of the program should be 
prompted to supply. 
 
 Rule Three:  After information has been gathered 
and listed in a usable form, relationships are sought that 
combine the data in ways that lead in the direction of the 
final goal.  Sometimes this will involve experiments 
where the data is combined in any possible manner and 
afterward a decision is made whether this produced a 
situation closer to the stated goal. 
 
Consider applying these three rules to the problem of 
determining the area of a trapezoid.  Looking up a 
formula would solve the problem but do little for the 
development of problem solving skills.  An alternative 
approach is to examine the information given in the 
problem.  Here the information is limited:  there is a 

trapezoid and the objective is to find the area.  Rule one 
suggests that clarity about the shape of a trapezoid 
would help.  In this case clarity implies the need for a 
sketch of a trapezoid, which in turn shows that a 
trapezoid is the joining of three simpler figures.  Rule 
two indicates that some information about the 
dimensions of the trapezoid should be supplied by the 
user.   
 
Once the user has been prompted to supply the values 
for the height and two bases, this data can be used in 
more commonly known formulas for rectangles and 
triangles.  It is the discovered relationship between 
rectangles, triangles, and trapezoids that leads to the 
solution of the problem. 
 
 Rule Four:  The example of the trapezoid leads 
naturally to the fourth rule.  Whenever possible a picture 
should be drawn.  While the advantages are obvious in 
problems involving geometric figures the rule applies far 
more widely.  The process for determining the square 
root of a number (or third, fourth, or fifth root) using the 
successive approximation method can be made far 
clearer by using a number line.  If the number is 200, the 
picture shows that 100 can be guessed, squared, and 
checked.  Since 100 squared is too large the next 

obvious guess is 50.  The process can be repeated as 
long as required until a reasonably close solution if 
found.  (Figure 1) 
 
 The problem of finding the speed necessary to keep a 
satellite in orbit simplifies greatly if a picture of the 
earth and the orbit is drawn.  The picture (Figure 2) 
shows that all of the values needed for the use of the 
Pythagorean theorem are available.  If the time is kept 
short, e.g. 30 seconds, the length of the curve of the orbit 
is approximately the same as the straight-line distance 
the satellite would travel if there were no gravity.  The 
fall due to gravity for 30 seconds, is easily calculated 
using d = .5gt2.  The altitude of the orbit is a user-
supplied number. 

Figure 1 
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Expanding on the experience of one use of the 
successive approximation method, students can discover 
a method for solving unsolvable equations such as fifth 
order equations.  The additional information required is 
the fundamental theorem of algebra, that is, the number 
of solutions to an equation is equal to the order of the 
equation.  If we assume for the moment that all the 
solutions are real, a graph can be drawn of a general 
fifth order equation.  The picture itself (Figure 3) leads 
to the observation or insight that for increasing values of 
x, the sign of y will change when we pass a solution to 
the equation.  Evaluating the equation for values around 

each crossing zeros in on the solution by the process of 
successive approximation learned while generating 
square roots. 
 
Even seemingly intractable problems such as finding the 
minimal path connecting a set of points, commonly 
called the traveling salesman problem, can be solved 
after drawing a picture of a representative path.  In this 
case the options available at each point, as the 
illustration is drawn (Figure 4) give clues to how the 
looping structures in the program should be built. 

 
Rule Five:  The ability of a modern personal computer 
to make many millions of calculations per second 
provides the problem solver with incredible power.  This 
power can be applied in systematic or brute force 
fashion.  The fifth rule is to search the problem for 
repeatable operations that lead to the objective.   
 

In the case of the square root problem the successive 
approximation process of guessing at the square root of 
a number will eventually lead to the square root of the 
number.  By strategically guessing, testing whether the 
guess is too high or too low, adjusting the guess 
accordingly, and then repeating the sequence, a solution 
of can be found.  Of course it will not produce the exact 
value for the square root but the successive 
approximation method will determine a root of arbitrary 
accuracy. 
 
Determining the solution to an infinite summation 
requires mathematical ability beyond that of the ordinary 
college student.  However it is a simple matter to 
program a computer to repeatedly generate numbers in 
the series and total those numbers.  Only in rare cases 
will the true summation differ significantly from the 
sum of the first 1000 terms. 
 
Calculating probabilities can confound even 
mathematicians.  On the other hand programming a 
computer to simulate the rolling of a pair of dice ten 
million times and counting the number “sevens” rolled 
involves a trivial loop and very little time.  Again, the 
result is not mathematically pure but we can produce as 
much accuracy as we need by adjusting the number of 
rolls.  Building on the experience of programming the 
odds of winning or loosing a game of craps, my students 
have found that there is little difficulty in determining 
odds that would be quite difficult to handle theoretically.  
Calculating by hand the odds of landing on Indiana 
Avenue in the first four rolls of a game of Monopoly is 
intimidating.  Using nested loops to simulate the first 
four rolls of one million games of Monopoly is simple 
(assuming chance cards that send the player to another 
square are ignored). 
 
The traveling salesman problem has no mathematical 
solution.  On the other hand a computer can be 
programmed to try every possible path connecting the 
points and to keep track of the shortest path.  If the 
salesman has to travel to 10 cities there are 362,880 
different paths.  These represent more calculations than 
anyone would like to make by hand but are easily 
handled by a Pentium III powered computer.  The 1017 
different paths for 20 cities is another matter. 
 
 Rule Six:  The sixth rule again addresses the need 
for clarity but in this case the focus is not the initial 
information or the objective.  Instead rule six requires 
the problem solver to be clear about how many times a 
given operation is performed.  When constructing 
repeated operations, the problem solver must decide 
whether the operation should be placed inside or outside 
of the loop.  
 
In calculating the square root of a number by successive 
approximation, the initial guess for the square root and 
the generation of the initial increment for raising or 
lowering the guess is performed only once.  This 

Figure 4 

Figure 3 

D 

E 

A B 

C 



 

 

indicates that the operation is outside of the loop.  The 
testing of the guess to determine whether it is 
sufficiently close to the correct number, and the 
generation of new guesses and new increments are 
handled inside the loop. 
 
This rule takes on added weight when nested loops are 
involved.  Consider a program that will investigate the 
results of perfectly shuffling a deck of cards several 
times.  The outer loop controls the number of times the 
deck is to be shuffled.  The inner loop performs the 
shuffling of the cards.  Before entering the outer loop it 
is necessary to order the cards.  This ordering takes 
place only once and is written outside of the nested 
loops.  The outer loop counts the number of times the 
deck has been shuffled, displays the order of the cards 
after each shuffle, and asks the user whether to shuffle 
again.  The inner loop performs the perfect shuffle.  This 
involves dividing the deck in half, alternately taking the 
top card from each half, and generating a new deck from 
the interleaving of the cards. 
 
 Rule Seven:  Solutions to complex problems can 
often be determined by limiting the original problem and 
searching for a solution to a special case.  This approach 
may lead to a partial solution but a limited solution is 
usually better than no solution at all.  Often the creation 
of a special case solution generates the insight for a 
more general solution. 
 
Again the square root problem provides an example.  
The method for generating the new guess for the square 
root in each cycle that works for the numbers one and 
greater may not work for numbers from zero to one and 
quite likely will not work for negative numbers.  
However, writing a program that will solve the limited 
problem for numbers greater than one, can suggest 
where the routine needs to be adapted for the zero to one 
case. 
 
This technique is commonly used in physics classes 
where problems are simplified by limiting the forces 
allowed to impact an experiment.  A program that 
calculates the distance traveled by a falling object can 
have many levels of complexity.  If only a constant force 
of gravity is considered the solution is to plug the free-
fall time into the equation d = .5 gt2.  This limited 
solution provides some information about the problem 
but it ignores wind resistance and is more properly the 
solution for an object falling through an evacuated tube.  
It also ignores the fact that the acceleration due to 
gravity is not constant but varies with altitude.   

 
The seven rules listed above are not ordered by any 
perceived importance.  Instead they are listed in the 
order that they are usually needed in solving a series of 
problems of steadily increasing difficulty.  Similarly 
there is no implication that these seven represent a 
complete list.  The list could be expanded to include 
advice to work with a concrete example before 

attempting a general solution.  Rules for handling 
probability problems could be added.  The  rules could 
include the use of approximations, as in substituting a 
straight line for the orbital curve in the satellite problem. 
The intention is to show that likelihood of discovering a 
solution to a previously unseen problem can be 
enhanced by a proper approach to the problem.   
 

4.  IMPLEMENTING THE SOLUTION 
 

Once a plan for teaching problem solving has been 
developed the next step is to integrate that plan into a 
course that has the teaching of a programming language 
as its primary objective.  Fortunately the two objectives 
mesh well together and can be taught in parallel.  The 
technique that I have used for the past ten years requires 
a computer for the instructor and some means for 
allowing the class to view the instructor’s monitor.  
Typically this involves either a projection system or a 
link system to export the instructor’s monitor image to 
the students’ computers.   
 
Each class centers on a single feature of the language 
and an example that uses the feature in solving a 
problem.  If the topic of the day is construction of a for 
loop, the class begins with an explanation of what a for 
loop does and the syntax for implementing a for loop.  
Then a problem is presented that can be solved by the 
use of a for loop.  The question of whether it is better to 
take $1,000,000 or a penny the first day and each day for 
a month getting double the money of the previous day 
would be a typical example. 
 
The lesson continues on the whiteboard using the rules 
described above.  The information given in the problem 
description and the objective are itemized.  Then it is 
noted that the solution requires a repeated operation, 
namely the doubling of the number of pennies received 
on the previous day and the addition of that amount to a 
running sum.  By being clear about which actions are 
repeated and which actions occur only once, it can be 
determined that the first day’s money must be initialized 
only once to a single penny and the variable used to hold 
the running sum must be initialized to zero. 
 
Once the pseudo-code is written the focus changes to the 
computer and the code is written in real-time to 
implement the already developed plan.  Writing the 
program in class ensures that every feature of syntax to 
the smallest punctuation must be included and 
explained.  It also demonstrates the implementation of 
the pseudo-code in the language being studied.  There 
are further advantages in that previous lessons are 
reviewed in the writing of the program.  In this example 
the use of variables and mathematical operators is 
required.  Another advantage is the opportunity to 
examine the “what if” scenario.  What if the doubling is 
continued for three months instead of one?  What if the 
amount is tripled each day instead of doubled?  What if 
the initial penny is replaced by the value of a bank 



 

 

account and doubling is replaced by the daily 
compounding of interest? 
 
Finally the program becomes part of the repertoire of 
problems that the student has encountered and solved or 
has seen solved.  These solutions serve as a base for 
solving similar but more complex problems.   For 
example, determining the odds of winning a game of 
craps on the first roll become a launching point for the 
more general problem of calculating the odds of winning 
if the game is played to conclusion. 
 

5.  EVALUATION 
 
If it is accepted that: 
 

1. problem solving skills are valuable and should be 
part of a student’s education, 

2. problem solving skills can be enhanced by 
building experience and applying a set of rules, 

3. that a programming class is a reasonable venue for 
teaching these skills, 

 
the next issue is how to evaluate whether the skills have 
been learned.  Unfortunately the evaluation of problem 
solving skills does not lend itself well to standard time-
based testing.  Instructors who include problem solving 
as part of a lab practical exam often find that students 
who discover the method for the solution score 100% 
and those who don’t score zero.  The problem is solved 
or it is not.  If the problem involves multiple steps the 
student who cannot discover the solution to the first step 
has no opportunity to attack later steps.  Time-based 
testing tends to leave instructors with no gradient. 
 
The alternative is to remove the time requirement.  
Rather than using lab assignments I have developed 
several sets of problems that are combination 
homework/lab assignments.  The problems are 
published on the class website and students have 
unlimited time to work on the programs with the 
condition that at least one program must be completed 
each week.  Completed programs are demonstrated to 
the instructor in lab.  Experience has shown that this 
creates an even split between the time the instructor 
spends evaluating students’ work and helping students 
over problems of syntax and logic.  For the student this 
means that there is no time lag between the time a 
program is submitted and the evaluation of his work.  
Students receive instant feedback regarding  improve-
ments that could be made or how alternative strategies 
could be used.  This one-on-one interaction also 
provides an interesting advantage for the instructor.  I 
have found that by the fourth lab session I know all my 
students by name.  
 
The initial programs are quite simple and usually 
involve unit conversions or the calculation of 
percentages.  Later programs can involve parsing 
sentences or determining probabilities.  Programs are 

accepted as complete when they correctly perform the 
required task.  Until that time the program is in progress 
with no penalty for a program that is demonstrated but 
does not work correctly.  Scoring is based on the 
percentage of the assignments that are completed in the 
semester.  This allows students a great deal of control 
over their lab grade.  Students who find programming 
difficult can match students who already have some skill 
at problem solving or programming by merely 
dedicating more time to the problems. 
 

6.  CONCLUSIONS 
 

If students are to be properly prepared not only for jobs 
in the information technology sector but for dealing with 
a wide variety of everyday situations, their ability to 
creatively apply basic principles to novel problems must 
be advanced.  There would be significant advantages to 
addressing this issue in both primary and secondary 
schools.  The argument can reasonably be made that 
there is little advantage to calculating percentages or 
solving equations if these principles are not applied to 
everyday problems.  Nonetheless  “word problems” are 
avoided because of their difficulty and are unpopular 
with both students and teachers.  
 
 Students have difficulty in dealing with the frustration 
of finding their calculators ineffective.  Even at the 
collegiate level students are often at a loss as to how to 
begin to solve a problem if they are not provided an 
equation.  Teachers find that teaching problem solving is 
no less difficult than learning the skill.  Books to guide 
the process are few and generally rely on flowcharts and 
Boolean logic that are of little aid in the creative 
process.  On the other hand teaching one more method 
for solving simultaneous equations is straight forward, 
mechanical, and produces much less resistance from 
students. 
 
Similarly, teaching students to write looping structures, 
function calls, and conditional statements is straight 
forward, mechanical, easy to learn, and easy to teach.  
However, if these programming constructs are not 
applied to solving problems there is little reason for 
including programming in the curriculum.  Without the 
applications the syntax for a while loop is merely a fact 
without purpose to be forgotten as soon as possible after 
the final exam. 
 
Fortunately some structure can be brought to the vague 
area of creative thinking.  By applying the heuristic rules 
described above the chances for discovering a solution 
to a previously unseen problem can be improved 
dramatically.  By generating a repertoire of previously 
solved problems, new problems can often be found to be 
variations on a familiar theme.   
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