

Incorporating Problem Solving
into Programming Classes

Robert Lamey
Computer Technology Department, Purdue University

West Lafayette, IN

Abstract

Problem solving involves far more than the ability to plug numbers into a formula and looking to a calculator
to resolve an answer. The real world presents problems, described in words, that require creative applications of the
more fundamental principles taught in physics, mathematics, and business classes. The unpopularity of “word
problems” and the difficulty in teaching creative thinking have generally led educators to avoid problem solving in
favor of equation solving. This paper demonstrates that methods for finding creative solutions to novel problems can
be codified and taught within the structure of a programming class.

Keywords: Problem solving; programming; heuristic; word problems

1. THE UNFULFILLED PROMISE

Approximately twenty-five years ago, educators decided
to introduce the use of calculators into primary and
secondary schools. Calculators were seen as the coming
technology and teachers recognized the need for
students to learn to use the tools of the electronic era.
Calculators brought the promise of taking the drudgery
out of arithmetic. Students would certainly be more
motivated to learn mathematics once long division,
multi-digit multiplication, and square roots were
handled by the black box.

But the real benefit would be the timesavings that the
calculator would bring. If students no longer spent
hours, or days, or weeks learning to do by hand the
operations a calculator could perform in milliseconds,
there would be more time to learn to solve problems.
Problem solving was the goal. Educators argued,
correctly, that there was little advantage in learning to
divide, to calculate percentages, or to solve equations if
the information could not be applied. Passing
arithmetic manipulations (and later the solving and
graphing of equations) to the calculator would not only
eliminate dulling repetition but would create time for the
real purpose of studying mathematics. So the calculator
came but the problem solving did not.

A significant element that contributes to the avoidance
of problem solving is the level of difficulty. Calculating
19% of 2000 is easy. Determining how much money
you will owe at the end of the year if you only pay the
minimum on your Visa card bill is hard. Finding the
sine of 30° is easy. Determining the height of the tree in

your backyard is hard. Plugging numbers into a formula
then punching those numbers into a calculator is easy.
Developing the equation that fits the conditions of a
given problem is hard. Unfortunately, real world
problems are seldom stated in ready-for-the-calculator
form. Real world problems appear in a series of
sentences that must be understood and interpreted as a
sequence of mathematical operations.

Years after the introduction of the calculator we find a
significant number of college students who cannot
calculate weighted averages including their own GPA;
cannot perform unit conversions; cannot determine the
area of a non-rectangular surface; or cannot determine
the elapsed time between two events. Many are in a
mathematical limbo where problem solving can only
begin after someone else has developed the equation
ready for their calculator’s number crunching.
Ironically after someone else has developed the
equation, the problem is generally solved by a computer.

We can speculate about the reasons for the current lack
of problem solving ability in a large fraction of college
students. We might decide that the fifth grade teacher
who taught fractions for years was adept at teaching
fractions but unable to teach problem solving once
calculators took over the job of manipulating fractions.
We might decide that learning to use the calculator took
just as long as learning to work problems by hand and
there was no time saving. We might decide that the
algebra teacher found that “word problems” were so
unpopular and so difficult for students that it was easier,
less troublesome, and provided more job security to

have students only learn techniques for solving
equations.

Regardless of the root of the problem, the situation
exists. The question is whether to confront the issue or
to ignore it for another four years when it will turn into
an employer’s problem instead of an educator’s
problem.

2 ADDRESSING THE PROBLEM

The student who learns to use the quadratic formula
perfectly but cannot construct an equation from the
information given in a problem has little more than a
fact suitable for forgetting a week after the final exam.
Similarly a student who learns to write function calls
and looping structures perfectly but cannot use these
tools to solve a problem has missed the point of learning
to program. Programming classes are not only an
excellent venue for teaching problem solving but there is
little reason to program at all if not to solve a problem.
Writing conditional statements and constructing classes
of objects are not objectives in themselves but are tools
used to solve problems.

Unfortunately the programming instructor is in the same
position as the algebra teacher. It is very easy to teach
the syntax for a while loop; it is more difficult to teach
how the while loop is programmed to do something
useful. It is simple to demonstrate how to print “Hello
World!” on the screen 10 times. It is another matter to
create the simulation of a game that is played 1,000,000
times to determine the odds on an outcome. It is simple
to teach the syntax of an if statement but to use the
conditional to implement a successive approximation
algorithm is more challeng-ing.

3 BLUEPRINT FOR PROBLEM SOLVING

Once the decision is made that it is necessary for
students to be able to direct the knowledge they have
acquired toward finding solutions to new, real-world
problems, the next question is how can the skill be
taught? Traditionally, if the issue of problem solving is
approached at all, the effort entails the use of Boolean
logic or flowcharting. Each of these has its place but
falls short of leading to a solution to a problem.
Boolean logic is useful in creating a compound test
condition for a while loop but if the question is how fast
must a satellite travel to stay in orbit, the application of
the rules of Boolean algebra is not at all clear.

Flowcharts are useful for describing the solution to a
problem so the solution can be converted into
programming but if a method for determining the
satellite’s speed cannot be found, a flowchart cannot be
constructed. A flowchart is a description of a solution
that has already been discovered. Flowcharts, like
pseudo-code, clarify and organize but are of little use in

developing creative solutions. Another method for
teaching problem solving is needed.

The first rule in problem solving is to be clear in
defining the objective. A vague description of the
objective will generally foil any project. This can be
applied to teaching problem solving as well as any other
problem. Teaching problem solving means teaching a
directed form of creative thinking. Defined more
narrowly, teaching problem solving means teaching
general methods for discovering solutions to
problems that the student has never been taught to
solve.

This proposition opens the debate as to whether
creativity can be taught or whether it is some undefined
and indefinable element of genius that some have and
others do not. While it is obvious that some people are
more creative than others, the suggestion here is that
virtually everyone’s creativity can be enhanced.
Experience makes this proposition intuitively satisfying.
Aspiring writers are told to write. The ability to attack
mathematical problems increases with the amount of
mathematics studied. Beethoven’s early compositions
are good but do not compare to his more mature work.

Creating Experience
Isaac Newton is often quoted as saying, “If I have seen
farther (than you and Descartes), it is by standing upon
the shoulders of Giants.”1 The applicable idea is that the
Philosophiae Naturalis Principia Mathematica did not
suddenly occur to Newton. Instead insight generally
comes in small steps that build on previous work, either
your own or the work of others. Developing the
potential for insight is the goal in teaching problem
solving methods.

This concept can be implemented in a programming
class by having students build a repertoire of solved
problems that begin at an elementary level and grow in
complexity. One way to find the area of a trapezoid is to
frantically search math books or the Internet for a
formula but it is more insightful to realize that a
trapezoid is a combination of a rectangle and two
triangles. Adding the areas of the familiar figures leads
to a solution built on already known principles and
without the formula for a trapezoid. From here it is a
small step to the realization that the areas of many
rectangles can be added to find the area under a curve
and integral calculus becomes a tool for use in future
problems.

Calculating the time required for light from the sun to
reach a planet is daunting unless it is the final problem
in a series of programs that first require unit
conversions, then the more difficult conversion from a
1 Letter from Newton to Robert Hooke, Feb. 5,
1675/1676

large number of seconds to hours, minutes, and seconds.
Finally, adding the fact that distance is equal to rate
multiplied by time, the difficult problem is discovered to
be little more than a new arrangement of simpler,
familiar ideas. There is no substitute for experience and
in problem solving that means a wide background of
previously solved problems of increasing variety,
intricacy, and difficulty.

However an appeal to experience is less useful to a
student with little experience in problem solving. There
is a need for a second method for teaching problem
solving that can be taught to the novice and is used in
parallel with the gradual building of experience. In
teaching programming over the past 10 years I have
found that the techniques that lead to the solutions of
problems can be codified. This is not to imply that
creativity can be reduced to a formula but rather that if
certain steps are followed gaining insight to the solution
of a problem can be enhanced.

The Heuristic
 Rule One: The first and possibly most important
rule in problem solving is to be clear about the
information available for attacking the problem, and to
be clear about the objective. Overlooking this starting
point either leaves students without the necessary
information for solving the problem, or without
direction for lack of a well-defined endpoint. Despite
the obvious importance of this rule, it is often ignored
by students who have developed the habit of searching
the problem description only for numbers that can be
plugged into a formula. This rule is so critical that I
encourage students to rewrite problems in the form of a
list of usable information and objectives. I also create
this list before I begin to program my in-class
demonstrations.

 Rule Two: The second rule is to determine if there
is any relevant additional information required for
solving the problem. This may involve finding a value
not given in the problem such as PI, the radius of the
earth, or Plank’s constant. The required value may be
information that the user of the program should be
prompted to supply.

 Rule Three: After information has been gathered
and listed in a usable form, relationships are sought that
combine the data in ways that lead in the direction of the
final goal. Sometimes this will involve experiments
where the data is combined in any possible manner and
afterward a decision is made whether this produced a
situation closer to the stated goal.

Consider applying these three rules to the problem of
determining the area of a trapezoid. Looking up a
formula would solve the problem but do little for the
development of problem solving skills. An alternative
approach is to examine the information given in the
problem. Here the information is limited: there is a

trapezoid and the objective is to find the area. Rule one
suggests that clarity about the shape of a trapezoid
would help. In this case clarity implies the need for a
sketch of a trapezoid, which in turn shows that a
trapezoid is the joining of three simpler figures. Rule
two indicates that some information about the
dimensions of the trapezoid should be supplied by the
user.

Once the user has been prompted to supply the values
for the height and two bases, this data can be used in
more commonly known formulas for rectangles and
triangles. It is the discovered relationship between
rectangles, triangles, and trapezoids that leads to the
solution of the problem.

 Rule Four: The example of the trapezoid leads
naturally to the fourth rule. Whenever possible a picture
should be drawn. While the advantages are obvious in
problems involving geometric figures the rule applies far
more widely. The process for determining the square
root of a number (or third, fourth, or fifth root) using the
successive approximation method can be made far
clearer by using a number line. If the number is 200, the
picture shows that 100 can be guessed, squared, and
checked. Since 100 squared is too large the next

obvious guess is 50. The process can be repeated as
long as required until a reasonably close solution if
found. (Figure 1)

 The problem of finding the speed necessary to keep a
satellite in orbit simplifies greatly if a picture of the
earth and the orbit is drawn. The picture (Figure 2)
shows that all of the values needed for the use of the
Pythagorean theorem are available. If the time is kept
short, e.g. 30 seconds, the length of the curve of the orbit
is approximately the same as the straight-line distance
the satellite would travel if there were no gravity. The
fall due to gravity for 30 seconds, is easily calculated
using d = .5gt2. The altitude of the orbit is a user-
supplied number.

Figure 1

100 50 25 200

Fall in 30 Sec

Orbit

Earth Radius 3960 miles

Figure 2

Expanding on the experience of one use of the
successive approximation method, students can discover
a method for solving unsolvable equations such as fifth
order equations. The additional information required is
the fundamental theorem of algebra, that is, the number
of solutions to an equation is equal to the order of the
equation. If we assume for the moment that all the
solutions are real, a graph can be drawn of a general
fifth order equation. The picture itself (Figure 3) leads
to the observation or insight that for increasing values of
x, the sign of y will change when we pass a solution to
the equation. Evaluating the equation for values around

each crossing zeros in on the solution by the process of
successive approximation learned while generating
square roots.

Even seemingly intractable problems such as finding the
minimal path connecting a set of points, commonly
called the traveling salesman problem, can be solved
after drawing a picture of a representative path. In this
case the options available at each point, as the
illustration is drawn (Figure 4) give clues to how the
looping structures in the program should be built.

Rule Five: The ability of a modern personal computer
to make many millions of calculations per second
provides the problem solver with incredible power. This
power can be applied in systematic or brute force
fashion. The fifth rule is to search the problem for
repeatable operations that lead to the objective.

In the case of the square root problem the successive
approximation process of guessing at the square root of
a number will eventually lead to the square root of the
number. By strategically guessing, testing whether the
guess is too high or too low, adjusting the guess
accordingly, and then repeating the sequence, a solution
of can be found. Of course it will not produce the exact
value for the square root but the successive
approximation method will determine a root of arbitrary
accuracy.

Determining the solution to an infinite summation
requires mathematical ability beyond that of the ordinary
college student. However it is a simple matter to
program a computer to repeatedly generate numbers in
the series and total those numbers. Only in rare cases
will the true summation differ significantly from the
sum of the first 1000 terms.

Calculating probabilities can confound even
mathematicians. On the other hand programming a
computer to simulate the rolling of a pair of dice ten
million times and counting the number “sevens” rolled
involves a trivial loop and very little time. Again, the
result is not mathematically pure but we can produce as
much accuracy as we need by adjusting the number of
rolls. Building on the experience of programming the
odds of winning or loosing a game of craps, my students
have found that there is little difficulty in determining
odds that would be quite difficult to handle theoretically.
Calculating by hand the odds of landing on Indiana
Avenue in the first four rolls of a game of Monopoly is
intimidating. Using nested loops to simulate the first
four rolls of one million games of Monopoly is simple
(assuming chance cards that send the player to another
square are ignored).

The traveling salesman problem has no mathematical
solution. On the other hand a computer can be
programmed to try every possible path connecting the
points and to keep track of the shortest path. If the
salesman has to travel to 10 cities there are 362,880
different paths. These represent more calculations than
anyone would like to make by hand but are easily
handled by a Pentium III powered computer. The 1017
different paths for 20 cities is another matter.

 Rule Six: The sixth rule again addresses the need
for clarity but in this case the focus is not the initial
information or the objective. Instead rule six requires
the problem solver to be clear about how many times a
given operation is performed. When constructing
repeated operations, the problem solver must decide
whether the operation should be placed inside or outside
of the loop.

In calculating the square root of a number by successive
approximation, the initial guess for the square root and
the generation of the initial increment for raising or
lowering the guess is performed only once. This

Figure 4

Figure 3

D

E

A B

C

indicates that the operation is outside of the loop. The
testing of the guess to determine whether it is
sufficiently close to the correct number, and the
generation of new guesses and new increments are
handled inside the loop.

This rule takes on added weight when nested loops are
involved. Consider a program that will investigate the
results of perfectly shuffling a deck of cards several
times. The outer loop controls the number of times the
deck is to be shuffled. The inner loop performs the
shuffling of the cards. Before entering the outer loop it
is necessary to order the cards. This ordering takes
place only once and is written outside of the nested
loops. The outer loop counts the number of times the
deck has been shuffled, displays the order of the cards
after each shuffle, and asks the user whether to shuffle
again. The inner loop performs the perfect shuffle. This
involves dividing the deck in half, alternately taking the
top card from each half, and generating a new deck from
the interleaving of the cards.

 Rule Seven: Solutions to complex problems can
often be determined by limiting the original problem and
searching for a solution to a special case. This approach
may lead to a partial solution but a limited solution is
usually better than no solution at all. Often the creation
of a special case solution generates the insight for a
more general solution.

Again the square root problem provides an example.
The method for generating the new guess for the square
root in each cycle that works for the numbers one and
greater may not work for numbers from zero to one and
quite likely will not work for negative numbers.
However, writing a program that will solve the limited
problem for numbers greater than one, can suggest
where the routine needs to be adapted for the zero to one
case.

This technique is commonly used in physics classes
where problems are simplified by limiting the forces
allowed to impact an experiment. A program that
calculates the distance traveled by a falling object can
have many levels of complexity. If only a constant force
of gravity is considered the solution is to plug the free-
fall time into the equation d = .5 gt2. This limited
solution provides some information about the problem
but it ignores wind resistance and is more properly the
solution for an object falling through an evacuated tube.
It also ignores the fact that the acceleration due to
gravity is not constant but varies with altitude.

The seven rules listed above are not ordered by any
perceived importance. Instead they are listed in the
order that they are usually needed in solving a series of
problems of steadily increasing difficulty. Similarly
there is no implication that these seven represent a
complete list. The list could be expanded to include
advice to work with a concrete example before

attempting a general solution. Rules for handling
probability problems could be added. The rules could
include the use of approximations, as in substituting a
straight line for the orbital curve in the satellite problem.
The intention is to show that likelihood of discovering a
solution to a previously unseen problem can be
enhanced by a proper approach to the problem.

4. IMPLEMENTING THE SOLUTION

Once a plan for teaching problem solving has been
developed the next step is to integrate that plan into a
course that has the teaching of a programming language
as its primary objective. Fortunately the two objectives
mesh well together and can be taught in parallel. The
technique that I have used for the past ten years requires
a computer for the instructor and some means for
allowing the class to view the instructor’s monitor.
Typically this involves either a projection system or a
link system to export the instructor’s monitor image to
the students’ computers.

Each class centers on a single feature of the language
and an example that uses the feature in solving a
problem. If the topic of the day is construction of a for
loop, the class begins with an explanation of what a for
loop does and the syntax for implementing a for loop.
Then a problem is presented that can be solved by the
use of a for loop. The question of whether it is better to
take $1,000,000 or a penny the first day and each day for
a month getting double the money of the previous day
would be a typical example.

The lesson continues on the whiteboard using the rules
described above. The information given in the problem
description and the objective are itemized. Then it is
noted that the solution requires a repeated operation,
namely the doubling of the number of pennies received
on the previous day and the addition of that amount to a
running sum. By being clear about which actions are
repeated and which actions occur only once, it can be
determined that the first day’s money must be initialized
only once to a single penny and the variable used to hold
the running sum must be initialized to zero.

Once the pseudo-code is written the focus changes to the
computer and the code is written in real-time to
implement the already developed plan. Writing the
program in class ensures that every feature of syntax to
the smallest punctuation must be included and
explained. It also demonstrates the implementation of
the pseudo-code in the language being studied. There
are further advantages in that previous lessons are
reviewed in the writing of the program. In this example
the use of variables and mathematical operators is
required. Another advantage is the opportunity to
examine the “what if” scenario. What if the doubling is
continued for three months instead of one? What if the
amount is tripled each day instead of doubled? What if
the initial penny is replaced by the value of a bank

account and doubling is replaced by the daily
compounding of interest?

Finally the program becomes part of the repertoire of
problems that the student has encountered and solved or
has seen solved. These solutions serve as a base for
solving similar but more complex problems. For
example, determining the odds of winning a game of
craps on the first roll become a launching point for the
more general problem of calculating the odds of winning
if the game is played to conclusion.

5. EVALUATION

If it is accepted that:

1. problem solving skills are valuable and should be
part of a student’s education,

2. problem solving skills can be enhanced by
building experience and applying a set of rules,

3. that a programming class is a reasonable venue for
teaching these skills,

the next issue is how to evaluate whether the skills have
been learned. Unfortunately the evaluation of problem
solving skills does not lend itself well to standard time-
based testing. Instructors who include problem solving
as part of a lab practical exam often find that students
who discover the method for the solution score 100%
and those who don’t score zero. The problem is solved
or it is not. If the problem involves multiple steps the
student who cannot discover the solution to the first step
has no opportunity to attack later steps. Time-based
testing tends to leave instructors with no gradient.

The alternative is to remove the time requirement.
Rather than using lab assignments I have developed
several sets of problems that are combination
homework/lab assignments. The problems are
published on the class website and students have
unlimited time to work on the programs with the
condition that at least one program must be completed
each week. Completed programs are demonstrated to
the instructor in lab. Experience has shown that this
creates an even split between the time the instructor
spends evaluating students’ work and helping students
over problems of syntax and logic. For the student this
means that there is no time lag between the time a
program is submitted and the evaluation of his work.
Students receive instant feedback regarding improve-
ments that could be made or how alternative strategies
could be used. This one-on-one interaction also
provides an interesting advantage for the instructor. I
have found that by the fourth lab session I know all my
students by name.

The initial programs are quite simple and usually
involve unit conversions or the calculation of
percentages. Later programs can involve parsing
sentences or determining probabilities. Programs are

accepted as complete when they correctly perform the
required task. Until that time the program is in progress
with no penalty for a program that is demonstrated but
does not work correctly. Scoring is based on the
percentage of the assignments that are completed in the
semester. This allows students a great deal of control
over their lab grade. Students who find programming
difficult can match students who already have some skill
at problem solving or programming by merely
dedicating more time to the problems.

6. CONCLUSIONS

If students are to be properly prepared not only for jobs
in the information technology sector but for dealing with
a wide variety of everyday situations, their ability to
creatively apply basic principles to novel problems must
be advanced. There would be significant advantages to
addressing this issue in both primary and secondary
schools. The argument can reasonably be made that
there is little advantage to calculating percentages or
solving equations if these principles are not applied to
everyday problems. Nonetheless “word problems” are
avoided because of their difficulty and are unpopular
with both students and teachers.

 Students have difficulty in dealing with the frustration
of finding their calculators ineffective. Even at the
collegiate level students are often at a loss as to how to
begin to solve a problem if they are not provided an
equation. Teachers find that teaching problem solving is
no less difficult than learning the skill. Books to guide
the process are few and generally rely on flowcharts and
Boolean logic that are of little aid in the creative
process. On the other hand teaching one more method
for solving simultaneous equations is straight forward,
mechanical, and produces much less resistance from
students.

Similarly, teaching students to write looping structures,
function calls, and conditional statements is straight
forward, mechanical, easy to learn, and easy to teach.
However, if these programming constructs are not
applied to solving problems there is little reason for
including programming in the curriculum. Without the
applications the syntax for a while loop is merely a fact
without purpose to be forgotten as soon as possible after
the final exam.

Fortunately some structure can be brought to the vague
area of creative thinking. By applying the heuristic rules
described above the chances for discovering a solution
to a previously unseen problem can be improved
dramatically. By generating a repertoire of previously
solved problems, new problems can often be found to be
variations on a familiar theme.

7 REFERENCES

Arzarello, F., Bazzini, L., Chiappini, G., 1993,
“Cognitive processes in algebraic thinking: towards
a theoretical framework”, Proc. PME XVII,
Tsukuba, Japan, I, 138-145.

Baclace, Paul E., 1992, “Competitive Agents for

Information Filtering”, Commun. ACM 35(12,
December), 50.

Chiappini, G., Lemut, E., 1991, “Construction and

interpretation of algebraic models”, Proc. PME XV,
Assisi, I, 199-206.

Cypher, Allen, 1991, “Eager: Programming Repetitive

Tasks by Example”, CHI '91 Conference
Proceedings. (Eds: Robertson, Scott P; Olson,

Frensch, Peter A, Funke, Joachim, 1995, Complex

Problem Solving: The European Perspective,
Hillsdale, NJ

Langley, P., Simon, H.A., Bradshaw, G.L., & Zytkow,
J.M., 1987, “Scientific Discovery: Computational
Explorations of the Creative Processes”,
Cambridge, MA: The MIT Press.

Larkin, J.H., & Simon, H.A., 1987, “Why a diagram is
(sometimes) worth 10,000 words”, Cognitive
Science, 11, 65-100.

Okada, T., & Simon, H.A., 1997, “Collaborative
discovery in a scientific domain”, Cognitive
Science, 21 (2), 109-146.

Zhu, X., & Simon, H.A., 1987, “Learning mathematics
from examples and by doing”, Cognition and
Instruction, 4, 137-166.

	Robert Lamey
	Computer Technology Department, Purdue University
	1. THE UNFULFILLED PROMISE
	2 ADDRESSING THE PROBLEM
	3 BLUEPRINT FOR PROBLEM SOLVING
	
	
	The Heuristic
	Rule One: The first and possibly most important rule in problem solving is to be clear about the information available for attacking the problem, and to be clear about the objective. Overlooking this starting point either leaves students without the ne
	Rule Two: The second rule is to determine if there is any relevant additional information required for solving the problem. This may involve finding a value not given in the problem such as PI, the radius of the earth, or Plank’s constant. The require
	Rule Three: After information has been gathered and listed in a usable form, relationships are sought that combine the data in ways that lead in the direction of the final goal. Sometimes this will involve experiments where the data is combined in any
	Rule Four: The example of the trapezoid leads naturally to the fourth rule. Whenever possible a picture should be drawn. While the advantages are obvious in problems involving geometric figures the rule applies far more widely. The process for determ
	The problem of finding the speed necessary to keep a satellite in orbit simplifies greatly if a picture of the earth and the orbit is drawn. The picture (Figure 2) shows that all of the values needed for the use of the Pythagorean theorem are available.
	Rule Five: The ability of a modern personal computer to make many millions of calculations per second provides the problem solver with incredible power. This power can be applied in systematic or brute force fashion. The fifth rule is to search the pr
	Rule Six: The sixth rule again addresses the need for clarity but in this case the focus is not the initial information or the objective. Instead rule six requires the problem solver to be clear about how many times a given operation is performed. Whe
	Rule Seven: Solutions to complex problems can often be determined by limiting the original problem and searching for a solution to a special case. This approach may lead to a partial solution but a limited solution is usually better than no solution at

	5. EVALUATION
	Arzarello, F., Bazzini, L., Chiappini, G., 1993, “Cognitive processes in algebraic thinking: towards a theoretical framework”, Proc. PME XVII, Tsukuba, Japan, I, 138-145.
	Cypher, Allen, 1991, “Eager: Programming Repetitive Tasks by Example”, CHI '91 Conference Proceedings. (Eds: Robertson, Scott P; Olson,
	Frensch, Peter A, Funke, Joachim, 1995, Complex Problem Solving: The European Perspective, Hillsdale, NJ

