
 Constructivist Implications of Preconceptions in
Computing

Kris D. Powers1

Computer Science Department, University of Illinois at Springfield
Springfield, IL 62794-9243, U.S.A.

and

Daniel T. Powers2
836 N. Cooper St.

Peoria, IL 61606, U.S.A.

Abstract

The theory of constructivism has several important implications for methods of teaching. One of these is the need to
explicitly confront student preconceptions. In this paper we explain how preconceptions effect student learning,
according to the constructivist view, present an initial collection of preconceptions which computer science educators
must address, and discuss how identifying these preconceptions can help improve student learning in CSIS.

Keywords: Teaching methods, constructivism, preconceptions.

1 powers.kris@uis.edu
2 dtp@hotbot.com

1. INTRODUCTION

The theory of constructivism has several important
implications for methods of teaching. One of these is the
need to explicitly confront student preconceptions. In
other disciplines, extensive research has been devoted to
uncovering the student preconceptions which educators
must address. Indeed, numerous volumes have been
dedicated to expositions on student preconceptions
within particular disciplines, such as physics and
mathematics. We believe that uncovering student
preconceptions about computing is a vital step for
improving Computer Science and Information Systems
(CSIS) education along constructivist lines. As has been
demonstrated in other disciplines, once student ideas are
identified and understood, they can be used to improve
student learning by helping to guide what concepts are
taught and at what point in the curriculum, and how the
learning experiences for particular concepts may be
adapted. (Driver 1985) In this paper we explain how
preconceptions effect student learning, according to the

constructivist view, present an initial collection of
preconceptions which CSIS educators must address, and
discuss how identifying these preconceptions can help
improve student learning.

Context
Little work has focused on identifying the initial ideas
that students bring with them to the door of their first
computing class. Some related work on student
conceptions has been done, but it differs from ours in the
following important ways. First, these works primarily
consider the conceptions that students construct once in
the CSIS classroom, not the conceptions that they bring
with them to the door. Also, most of this work is limited
in scope to programming per se, as opposed to CSIS
generally. (See, e.g., Chang 1994.)

The research most closely related to this would be the
work of Ben-Ari, which appeared when this work was in
its infancy (Ben-Ari 1998). Ben-Ari surveyed the theory
of constructivism generally, and showed how it could be
used to analyze particular issues in CSIS education (e.g.,

"GUI and WYSIWIG Angst"), and naturally included
some discussion of student conceptions. Our work has a
more narrow focus. The need to address preconceptions
is only one of several implications for methods of
teaching that result from the theory of constructivism.
We discuss a set of preconceptions which are
fundamental to CSIS education and consider their
impact on classroom teaching and curriculum
development. While the difficulties presented by many
of these preconceptions are not new to seasoned CSIS
educators, the techniques and implications for
addressing them along constructivist lines often are.

Finally, the discussion of student preconceptions is an
important recurring issue in CSIS education. In other
disciplines, such discussions are not subject to the rapid
pace of technology. For example, student
preconceptions of Newtonian mechanics have probably
not changed drastically in the last twenty-five years. In
contrast, most of us would probably agree that student
conceptions of computing have varied greatly over the
same time period. Much existing work on student
conceptions was performed a decade or more ago, and
our hope is to help reinvigorate this strand of research.

The Theory Of Constructivism
For more than a decade, educators and psychologists
have been using the theory of constructivism to explain
learning. Do they know the real truth? No – because
according to constructivism, no one can. Constructivism
holds that while there is a physical reality, we can never
say that what we know is the truth because all of our
knowledge has been constructed from our own personal
experiences and social interactions in a particular
cultural setting. Since no one’s experience is complete,
no one’s knowledge is complete.

 “Free knowledge – bring your own container.” This
little maxim is more than just a classic classroom poster;
it’s the way we like to think that we teach. We dispense
wisdom, and the wise will soak it up. The students are
empty receptacles, or, if not, what we tell them is so
shiny and new that it will undoubtedly replace all of
those childish notions that they brought with them. But
constructivists tell us that it is just not so. The old
knowledge affects the new. Any new knowledge our
students construct in response to new experience will be
incorporated into the framework of knowledge they have
already constructed.

The theory of constructivism has several important
implications for methods of teaching. The knowledge
the students have already constructed is based upon
previous experiences. If the learning we attempt to
provide has no basis in experience, it has little chance of
modifying that which the students already “know.” So
one implication is that our teaching must be experiential
to be effective. Also, because their perceptions explain
what they have experienced, students believe that this
knowledge is correct. Constructivists agree. Even if the

ideas seem ludicrous, they are merely naive – based on
incomplete experience and a lack of social interactions
that would challenge them. Inaccurate ideas “may
persist ... despite formal teaching” (Driver 1994, p. 2) It
is not enough to teach the correct idea. We as educators
must explicitly confront our students' inaccurate
preconceptions before they can be dispelled. Finally,
knowledge is constructed in a social setting influenced
by the instructor. Within this setting students must be
provided with an opportunity to form new knowledge in
cooperation and interaction with their peers.

Of these implications for methods of teaching, the
importance of experiential, hands-on learning in CSIS is
well accepted and is integrated, in some form or another,
in many curricula. The principle of experiential learning
also provides theoretical support for a number of formal
teaching methods. For example, “discovery learning” is
a broadly applied term that has been used to describe
any activity in which the learners are free to make there
own discoveries about a certain phenomenon. Baldwin
describes the successful application of discovery
learning in two courses in computer science, one
graphics and the other a C/UNIX programming course
(Baldwin 1996). A more pervasive teaching method
termed “problem-based learning” presents students with
an ill-structured problem and puts them in the role of
problem-solvers while the teacher serves as coach. The
most obvious potential for problem-based learning in
computing lies in the proliferation of design problems
encountered throughout the curriculum.

Of the other implications for methods of teaching, the
importance of social interaction is also well recognized
within the CSIS discipline. In particular, working in
teams is a part of educational experiences advocated by
Computing Curricula 91, and our students’ inability to
work in teams has been one of the main criticisms
against computing education. However, this recognition
is based on the importance of the activity as an end, not
as a means to an end. According to the constructivist
approach, students must assimilate new scientific
knowledge into their existing frameworks in order to
effectively form and express their own opinions, and
engage their classmates in discussion. The social
interaction is the catalyst for acquiring new knowledge;
it is not the knowledge itself.

The constructivist view that new knowledge is formed
through social interaction is the basis for another major,
well-studied teaching method: “cooperative learning.”
Sabin and Sabin described a successful application of
cooperative learning for teaching introductory
programming. (Sabin 1994) In this application students
worked cooperatively in class to solve smaller problems,
typically related to newly introduced material. The work
of Daigle, et. al. (Daigle 1996) described exercises for
collaborative learning throughout the curriculum. The
constructivist view has also been used for other less
pervasive teaching methods, like the Science-

Technology-Society theme (Bybee 1987). This method
holds that students are motivated by the interaction
between science, technology and society, and that these
areas are necessarily intertwined. Students are asked to
consider the ramifications of a particular technology on
their lives or on society as a whole. For CSIS, this
approach implies that addressing the social and
professional contexts of computing, as outlined in
Computing Curricula 1991, is doubly important. Not
only do students engage the social issues important to
their field, but in doing so they also crystallize their
knowledge of the underlying computing science. For
example, a discussion about the social implications of
various types of encryption (e.g., strong versus
escrowed) can be used as a highly effective springboard
for reinforcing the students’ knowledge of the related
algorithms.

The final implication for methods of teaching which
results from the theory of constructivism is the problem
of preconceptions. We focus our attention on it in the
next section.

2. PRECONCEPTIONS OF COMPUTING

Considerable research has focused on the erroneous
ideas that beginners develop in the process of learning to
program. But to our knowledge, the idea of considering
the intellectual framework that existed before the learner
engaged the subject has not been explored. To what
extent might their erroneous ideas be the result of
general knowledge, formed in the general social setting,
which is either inaccurate or misapplied? CSIS
educators must confront the erroneous preconceptions
that students bring to the discipline from general society,
and these preconceptions cannot be confronted until they
are identified. In this section, we present a collection of
fundamental preconceptions in CSIS as a first step in
this task. We do not pretend to identify new hurdles
which CSIS educators must face, but rather propose how
certain ones may be viewed through the constructivist
prism.

CSIS == coding
The difficulty of preconceptions is all too readily
demonstrated by many students’ preconception of what
the computing discipline is: coding. Pop culture
endorses an image of an archtypical computer "geek”
that is all too readily accepted: a solitary hacker too
obsessed with writing code to be bothered with social
interaction. But even the most discerning individuals,
who reject the stereotypical dress and behavior of this
image, still accept the notion that computing
professionals do nothing but write code. The high
visibility of current recruitment efforts for programmers
has reinforced this notion. We are all well aware of the
efforts that have been made to dispel this myth, but as is
classic in the theory of constructivism, inaccurate ideas
are not easily dispelled.

Computers as analogue devices
As was noted by Dijkstra, another problem encountered
by those engaging computing for the first time is
expecting the behavior of computers to mirror that of
familiar analogue devices (Dijkstra 1989). Students are
accustomed to devices that respond linearly with
variances in their input. For instance, the accelerator or
brake in a car changes the speed of the car in response to
the degree of pressure on the pedal. Based on this type
of experience, a novice programming student would
expect that a program that is “nearly” correct will
produce output that is likewise “nearly” correct. The fact
that changing a single line of code, indeed even just
changing a single bit in certain cases, can drastically
alter the output runs counter to their analogue
experiences. Demonstrating the reality of such a
possibility can helps students deal with debugging down
the road.

Computing through trial and error
Since the presence of computers has become ubiquitous
in our society, the young have been more successful and
comfortable using computers precisely because they
eagerly engage in trial and error. "How do I make a table
in MS Word? Oooo.. Let's try THAT button!" Adults are
more likely to sit and read the user manual before trying.
The idea that finding the most successful ways to use a
computer occurs through trial and error seems pervasive,
and may well be correct. However, students are then apt
to try the same approach with every activity involving
the computer, in particular coding. Computer use as a
trial and error activity leads to coding as a trial and error
activity - i.e., hacking.

Technological details are primary knowledge
Those regarded as most technologically literate in
everyday culture seem to be those who are most facile
with the details of currently available products. As a
result, students tend to attribute an artificial importance
to the ephemeral details of technology dependent
information. The knowledge of the processes and
concepts of the field that transcend those details may
become obscured. Driver, et. al. point out that one
implication of preconceptions is that "pupils may
reinterpret the intentions of the teacher in terms of their
own understanding." (Driver 1985, p. 7) For example, an
instructor's use of a sample architecture to teach a
computer organization class may be misinterpreted by
her students. Unless the purpose is clear, a student may
well miss the big picture, and end up focused on the
details of the particular system.

Algebra class math == computer math

"When is X+1 not 1 bigger than X? Never, of
course!"
"X = X + 1? Don't be silly!"

Obviously our students bring with them years of
mathematics education in which they have built complex

models and frameworks for their understanding. Many
of these frameworks have a high degree of functional
accuracy. But it is precisely this accuracy that can
stymie learning efforts. For example, after weeks
studying data representations and two's complement
numbers, a student was baffled by a negative number in
his program. "My variable starts out with a positive
value, and I only ever add 1 to it! How could its value
become negative?" Also, the meaning of many
seemingly mathematical expressions (e.g., assignment
statements) can be different in the context of computing.

Complexity and levels of abstraction
Teaching students to deal with the complexity of
computing systems through top-down design and step-
wise refinement are standard fare in introductory
programming courses. But few students ever truly grasp
the degree of complexity of computing systems and the
absolute necessity for levels of abstraction throughout
computing. Indeed, students often equate the complexity
of computers with other much simpler digital devices,
such as telephones and stereos. Dijkstra asserts that such
student conceptions of the complexity of computers are
“orders of magnitude worse than comparing ... the
supersonic jet plane with a crawling baby...” (Dijkstra
1990, p. 1400) When confronted with the differential in
complexity, a computer architecture students remarked
“I used to get [angry] when my computer crashed. But,
the more I find out about what’s going on inside, the
more amazed I am that it doesn’t just crash all the time.”
Failure to confront our students’ conceptions may well
be what prevents them from embracing the techniques of
abstraction we are trying to impart.

Computer concept
Because computers are increasingly commonplace, most
students have some concept of what a computer is.
However, these concepts range from those that are very
accurate to those more akin to a box of monkeys (as
seen in cartoons) or a giant brain. The simplest of these
preconceptions, like the giant brain, oftentimes seem to
be a direct reflection of the student's perception of the
capabilities of the machine. For instance, the
sophistication of today's user interfaces inspires a
myriad of preconceptions regarding the capabilities of
the machine. Consider screen images which
concurrently present information from multiple
applications. The reality that this information is distinct
and not necessarily shared within the computer is not
apparent to students. The result may be a "giant brain"
conceptualization of the machine, in which all parts are
"aware" of all the information available. "Why do I
need to write code in my program to determine the date?
The computer already knows that!"

As the range of possible preconceptions is considered, a
critical factor becomes the extent to which student
concepts may be considered "effective" or “viable” for
explaining the totality of their (limited) experiences. For
example, Harvard University’s Project Star found that

most students, alumni and faculty members questioned
about seasonal variations in temperature asserted the
belief that they were caused by the Earth’s position in its
elliptical orbit (Schneps 1987). These same individuals
were probably quite well aware that the temperature
near the equator remains almost constant year-round.
Thus, their model was not “effective,” as it did not
incorporate all of their pertinent knowledge. Ben-Ari
contends that most of our students, in fact, lack an
effective concept of what a computer is. “If
misconceptions are essential to the construction of new
knowledge, the lack of an effective, if flawed, model of
a computer is a serious obstacle to learning CS." (Ben-
Ari 1998, p. 259) The current absence of an “effective
model” is certainly a debatable and dynamic point.
However, it seems clear that this situation is changing.
Ben-Ari agrees: "As computer literacy becomes
common, if not universal, students will begin their
academic studies with an effective model of a
computer." (Ben-Ari 1998, p. 261) Identifying when we
have reached this juncture, and what model is commonly
held is critical to computing education.

However, the impact that a student's "computer concept"
has on their learning is not limited to whether or not it is
effective; non-effective preconceptions can significantly
hamper student learning as well. While the models for
seasonal variations in temperature held by the
participants in the previously mentioned Project Star
(Schneps 1987) were ineffective, this does not mean that
these models did not have to be addressed in teaching.
Dijkstra asserts the situation in CSIS is particularly
troublesome. He begins by stating that “one has to
approach a radical novelty with a blank mind,
consciously refusing to try to link history with what is
already familiar...” (Dijkstra 1989, p. 1398), and goes on
to contend that “computers represent a radical novelty,
and that only by identifying them as such can we
identify all the nonsense, the misconception, and
mythology that surround them” (Dijkstra 1989, p. 1399).
In other words, students must first be forced to abandon
the totality of their preconceptions in order to learn
CSIS.

3. IMPROVING STUDENT LEARNING

In the previous section we presented an initial collection
of the preconceptions which may hamper students new
to the computer science discipline. How can efforts to
identify and understand student preconceptions help
improve student learning? Driver, et. al summarize how
knowledge of students' preconceptions can help guide
the educator in a number of critical pedagogical choices:
which concepts to teach and when, what learning
experiences to use, and how to present the goals of
proposed activities (Driver 1985).

Which concepts to teach and when
"Possible teaching sequences are prepared by analyzing
which are the most basic ideas, from a scientific
perspective, and building the curriculum from there.
...[such] schemes may make assumptions that [our
students] have already constructed certain basic ideas
and this may well not be the case. ... in curriculum
planning it is necessary not only to consider the
structure of the subject but also to take into account the
learner's ideas. This may mean revising what we
consider to be the starting points in our teaching – the
ideas we can assume pupils have available to them."
(Driver 1985, p. 199) For example, a constructivist
solution to the student perception that CSIS == coding
is to adopt a curriculum beginning with a breadth-first
introduction which defines the field. The instructor must
actively and explicitly teach that CSIS != Coding. That
is, the instructor must not merely teach what CSIS is,
but also teach what it is not. In another example, Ben-
Ari claims that students enter the classroom with no
effective model of a computer, and that this is major
hurdle to getting started in CSIS (Ben-Ari 1998). If we
accept this hypothesis, then teaching what a computer is,
before launching into other curricula topics may aid
student learning.

What learning experiences to use
Research in other disciplines has shown that there are
prevalent preconceptions among students, and that
educators can address these common preconceptions
through careful selection of appropriate learning
experiences. (Tobin 1993) Strategies for accounting for
preconceptions in specific learning tasks have been
suggested by a number of research studies (Driver
1985):
 provide students with opportunities to make their

ideas explicit
Students' mathematical backgrounds make early,
fundamental topics like assignments statements
difficult to understand. Sequences of code like:

x = 1; y = 2; x = 3;
have been known to baffle students. When
students are asked to verbalize their own accounts
of how such statements operate, the confounding
preconceptions are made clear. (Chang 1994)

 introduce discrepant events
For instance, hackers not only need laboratories
guiding them in structured program development,
but also laboratories demonstrating the relative
ineffectiveness of ad hoc approaches to problem
solving. Or, an obvious way to challenge students
regard for computer arithmetic is to have them
explain the output of:

x = 1;
while (x > 0) x++;
cout << “x = “ << x << endl;

 encourage the generation of a range of conceptual
schemes
Instead of presenting students with a correct
computer concept as a fait accompli, it is more

effective for the instructor to develop with students
a range of possible concepts, effective and not.
Improved learning occurs as the instructor and
students examine the viability of the concepts
together.

 practice using ideas in a range of situations
The importance students tend to attribute to
technology dependent information can be
demonstrated as secondary to knowledge of the
processes and concepts of the field by applying the
latter in a variety of contexts. Two areas that are
particularly appropriate are computer organization
and operating systems. In both areas, students are
likely to become too absorbed by the details of a
certain example, and fail to generalize the concepts
under study.

How to present the goals of proposed activities
This strategy was alluded to previously in the context of
preventing technological details from obscuring more
important concepts. It can also be applied to presenting
the goal of programming exercises. Student fixation on
coding tends to equate correct output with satisfactory
performance. Addressing this preconception requires
explicitly addressing the importance of features other
than correctness: style, documentation, etcetera.
Exercises that force students to deal with ill-structured
and undocumented code may be effective at clarifying
the multiplicity of programming goals.

4. FUTURE WORK

As previously stated, CSIS educators must carefully
address student preconceptions. Obviously, this cannot
be accomplished until these preconceptions are
identified. While we have suggested an initial collection,
there are certainly many more. Some of these may be
readily evidenced by other instructors’ experiences.
Identifying others will require specialized research.

Of the preconceptions effecting CSIS education, the
most important is certainly that of our students’
“computer concept.” Its precise nature, however, is also
one of the most difficult to discern. In order to identify
this preconception more accurately, we are currently
engaged in a qualitative research study. The first step,
already completed, has been a limited interview study of
high school seniors, focused on gathering initial insights
into student conceptualization of the computer. For
instance, one insight garnered from this step supports
the notion that the predominant conceptualization of a
computer has evolved significantly as its predominant
use has changed. In the mid-seventies, computers were
equated with numerical calculators and business
machines. By the eighties, PC’s and word processing
changed the view to that of a fancy typewriter. In our
current qualitative interview study, the predominant
view seems to equate computers with information. One
participant of the interview study described a computer

as like “having a twenty-four hour, seven day a week
library.” From the range of insights provided by these
initial interviews, a WWW-based survey will be
developed to obtain a more expansive data set. The
conjectures that result from this data will be the basis for
a final, more thorough interview series.

It should be clearly noted that the end goal is certainly
not the mere identification of preconceptions. Once
preconceptions are identified, discrepant events and/or
other appropriate learning experiences must be
developed and disseminated. We hope that others will
join in this effort by participating in a WWW repository
currently in creation. This repository will disseminate
not only those preconceptions we have discussed, but
also those contributed by other CSIS instructors. It will
likewise serve as a warehouse for specific learning
experiences developed to address them, by both the
authors and contributing educators.

5. CONCLUSIONS

In this work, we have proposed an initial collection of
fundamental preconceptions which CSIS educators must
address. We are certainly not proposing that this
collection includes the entirety of what may arguably be
considered a "fundamental" preconception. For instance,
there is a host of preconceptions related to networks and
the Internet that could have easily been included in our
collection. Our choices were prejudiced toward those
ideas that seemed both fundamental and best suited for
providing examples in this limited discourse. Because
preconceptions tend to be immutable, CSIS educators
must explicitly confront erroneous ones in order to
prevent students from reverting to them after formal
instruction. We have also presented strategies that can
be used to address these inaccurate models and others
that impede our students' learning. We believe that
uncovering student preconceptions about computing is a
vital step for improving computing education along
constructivist lines.

6. REFERENCES

Baldwin, D., 1996, “Discovery Learning in Computer

Science,” Proceedings of SIGCSE '96, March 1996,
pp. 222-226.

Ben-Ari, M., 1998, “Constructivism in Computer
Science Education,” Proceedings of SIGCSE '98,
March 1998, pp. 257-261.

Bybee, R., 1987, “Science Education and the Science-
Technlogy-Society (S-T-S) Theme,” Science
Education, 71(5), 667-683.

Chang, B., 1994, "A Study on the Analysis of Error
Patterns and Misconceptions for BASIC
Programming of Novice College Students in
Taiwan," Proceedings of the 3rd International
Seminar on Misconceptions and Education
Strategies in Science and Mathematics, published

online at URL:
http://www2.ucsc.edu/mlrg/proc3abstract.html.

Computing Curricula 1991: Report of the ACM/IEEE-
CS Joint Curriculum Task Force, 1991, ACM
Press/IEEE Computer Society Press.

Daigle R., M. Doran and J. Pardue, 1996, “Integrating
Collaborative Problem Solving Throughout the
Curriculum,” Proceedings of SIGCSE '96, March
1996, pp. 237-241.

Davis, R., C. Maher, and N. Noddings (editors), 1990,
“Constructivist Views on the Teaching and
Learning of Science,” J. for Research in
Mathematics Education, Monograph No. 4,
National Council for Teachers of Mathematics,
1990.

Dijkstra, E., 1985, “On the Cruelty of Really Teaching
Computer Science,” Communications of the ACM,
32(12), 1398-1404.

Driver, R., E. Guesne, and A. Tiberghien (editors),
1985, Children's Ideas in Science, Open University
Press, Philadelphia.

Driver, R., A. Squires, P. Rushworth, and V. Wood-
Robinson, 1994, Making Sense of Secondary
Science, Routledge, London.

Gabel, D. (editor), 1994, Handbook of Research on
Science Teaching and Learning, Simon and
Schuster Macmillan, New York.

Pearsall, M. (editor), Volume II: Relevant Research,
1992, National Science Teachers Association,
Washington.

Schneps, M., and P. Sadler, 1987, A Private Universe,
video, Harvard-Smithsonian Center for
Astrophysics Washington, D.C.: Annenberg/CPB
Collections.

Sabin, E. and R. Sabin, 1994, “Collaborative Learning
in an Introductory Computer Science Course,”
Proceedings of SIGCSE '9, March 1994, pp. 304-
308.

Steffe, L. and J. Gale, 1995, Constructivism in
Education, Lawrence Erlbaum Associates,
Hillsdale, NJ.

Tobin, K. (editor), 1993, The Practice of Constructivism
in Science Education, Lawrence Erlbaum
Associates, Hillsdale, NJ.

Wandersee, J., J. Mintzes, and J. Novak, 1994,
"Research on Alternative Conceptions in Science,"
in (Gabel, 1994), pp. 177-210.

	Abstract
	1. INTRODUCTION
	Context
	The Theory Of Constructivism

	2. PRECONCEPTIONS OF COMPUTING
	3. IMPROVING STUDENT LEARNING
	4. FUTURE WORK
	5. CONCLUSIONS
	6. REFERENCES

