

Introducing First-year Students to
Theoretical Computer Science

Favre, Liliana1 Mauco, Virginia2 Barbuzza, Rosana3

Departamento de Computación y Sistemas
Universidad Nacional del Centro

de la Pcia. de Buenos Aires
7000 Tandil

 Buenos Aires. Argentina

Abstract

There is a need to educate students about advances in Computing Theory that are effective for new technologies. This
work describes an introductory course implemented in the Undergraduate Degree Program in Systems Engineering at
U.N.C.P.B.A. (“Universidad Nacional del Centro de la Provincia de Buenos Aires”) in Argentina. This course provides
an introduction to the theory of computing, starting from the study of a hierarchy of formal languages and automata,
and basic concepts of computability and complexity by Turing machines. It has been organized in a way that is
accessible to first-year students.

Keywords: Information Systems Curricula, Theoretical Computer Science, Computability, Formal Language,
Automata

1 CIC (Comisión de Investigaciones Científicas de la Pcia. de Buenos Aires) lfavre@exa.unicen.edu.ar
2 vmauco@exa.unicen.edu.ar
3PLADEMA –ISISTAN rbarbu@exa.unicen.edu.ar

1. INTRODUCTION

The main topics of the theoretical Computer Science
have been included in most Computer Science and
Information Systems (CS/IS) curricula. A traditional
course covers the theory of formal languages and
automata and notions of computational complexity and
computability (ACM 1991; IS’97 1997; MSIS’ 2000).

The scope of Computing Theory has changed over the
last years and it will be continuously influenced by new
applied problems. The emergence of new tools,
techniques and paradigms forces a continuous
reevaluation of the topics covered and pedagogical
approaches used. We believe that topics in Computing
Theory need to be integrated with practical ones in the
curriculum at all levels, beginning with the first courses.

In general, students take a Computing Theory course
when they have already carried out about 50% of the

study program. Then, the contents cannot be presented
as the cornerstone of CS/IS curricula. It also prevents
students from relating early theoretical aspects with
practical ones, developing an engineer attitude. Systems
Engineering students must be able to translate problems
into abstractions using formal models, manipulating
them and reasoning about their properties in a rigorous
way. It is intended that the student does not study these
topics in an isolated course, mainly theoretical, where
formalizing is an end in itself.

The Undergraduate Degree Program in Systems
Engineering in our study program has incorporated
“Computer Science I” as an introductory course in the
theory of languages and automata. The main purpose of
this course is to present an introduction to the study of
computational processes and to explore their scope in
the context of an automata hierarchy, with a suitable
approach for first-year students. This course does not
intend to substitute others with more theoretical focus,

but rather to give students basic concepts in Computer
Science in early stages of their education. The idea is to
motivate the study of the nature and limits of
computation by means of concrete applications along the
curriculum.

This paper has the following structure. Section 2
outlines the proposal. Section 3 describes the course
contents. Section 4 presents the course context. Section
5 describes the methodology of the course and Section 6
an evaluation of the experience. Finally, conclusions are
made.

2. MOTIVATION

Computing Theory should be an essential component of
educational curricula in CS/IS. We believe students need
to understand the laws of computation to make the best
use of computing technology.

With the emergence of new computing paradigms
(Artificial Intelligence, Decision Support Systems,
Communications Networks, Security, DNA Computing,
Molecular Computing, etc) new curricula should be
developed that stress the interactions between
Computing Theory and other disciplines.

Recent research in security has used important
algorithmic questions arisen from both, the design of
networks and their effective use. Modern AI students
should understand the pragmatical implications of
impossibility results and intractability results. With the
growth in volume of online data, for example in
databases and on the Internet, the focus of research in
information retrieval has shifted to new applications in
information management and decision support that
demands asymptotically efficient algorithms. Activities
such as Data Mining, Latent Semantic Indexing, On
Line Processing, open directions for research in
combinatorial algorithms, models, complexity and
computability (Loui 1996).

It is our point of view that CS/IS students should
analyze the nature and limits of computation earlier,
because this analysis exposes students not only to the
rich foundations of Computer Science but also it gives
them a solid basis to address computational problems
related to new technologies.

Based on the previous considerations, it was thought of
implementing a first-year introductory course that
included the bases of the theory of formal languages and
automata, studying in depth and interrelating them in
following courses. The intention of the course is to
provide insights on essential questions about the nature
of computation: What is an algorithm? What can be
computed? When is a given algorithm intractable?.

Students learn how to create abstract models, to reason
about their properties and to be able to apply them to

practical problems. Models of languages and computers
are developed to discover fundamental laws of
computation and to provide abstractions for the design
and implementation of algorithms. In summary, the
course gathers and teaches recurrent concepts, which are
fundamental to Computer Science in such a way that
these concepts could be reused along students’
formation.

Although the contents are the standard of any Computer
Science course, this proposal is original in the level in
which they are focused. The goal is to transmit these
concepts to students whose mathematical background is
still elementary, so that they can understand them at the
same time they develop their mathematical skills.

Theoretical Computer Science is an interesting
discipline with a wide range of applications. Usually,
this is often hidden among definitions, theorems and
demonstrations. This course intends to give students
early basic concepts in Computer Science in a rigorous
way without tedious demonstrations.

3. THE COURSE CONTENTS

The focus of the course is mainly practical. A hierarchy
of abstract machines (finite automata, pushdown
automata and Turing machines) and their computational
power as language recognizers are analyzed. Grammars
are also introduced as language generators.

The first unit introduces the mathematics of strings of
symbols and languages. The second unit studies the
regular languages. Formalisms associated to them are
defined: finite automata, finite-state transducers, regular
grammars and regular expressions. The notion of
nondeterminism is also introduced together with the
conversions of languages from one formalism to
another. The conversions are nondeterministic finite
automata (NFA) to deterministic finite automata (DFA),
DFA to minimum state DFA, DFA to regular
expression, regular expression to NFA, NFA to regular
grammar and regular grammar to NFA. Besides, some
properties of regular languages are studied. In addition,
some problems outside programming languages
processing scope are presented to enable students to
widen the range of application of these automata and
understand the utility of formal models as a tool for the
design of solutions to practical problems.

The third unit considers the context-free languages and
their relation with the pushdown automata (PDA) and
the context-free grammars. PDA are defined, the design
of deterministic and nondeterministic PDA is proposed,
and the fact that both models are not equivalent is
shown. The context-free grammars are introduced as a
mechanism to generate the same languages that PDA
can recognize. The notation BNF (Backus-Naur-Form)
is also presented in order to familiarize students with it,
since it will be possibly used in other courses to

introduce the syntax of different programming
languages, such as Pascal in the first year of the study
program. Closure properties of context-free languages
are investigated. In the forth unit the main topics are the
Turing machines and the languages that they can
recognize. This unit contains basic definitions and
different versions of the deterministic Turing machines
to translate languages or calculate functions (one-tape
machine, multitape machine, and linear bounded
automaton). The context-sensitive languages are
presented as the ones recognized by the linear bounded
automata and generated by the context-sensitive
grammars.

In order to integrate the studied classes of languages,
unit five introduces the hierarchy of languages and its
correspondence with the hierarchy of the automata
analyzed. It is intended that a student, given an arbitrary
language, should design the most restrictive automaton
and its corresponding grammar.

The last unit deals with computability in an introductory
way. It is devoted to the inherent limitations of
effectively executable algorithms, and hence of the
computers that implement them. Basic concepts of
temporal and spatial complexity are introduced with
empirical evaluation of some theoretical results. Only
basic definitions and examples are given.

4. THE CONTEX

The Undergraduate Degree Program in Systems

Engineering lasts five years. The first three years
correspond to the kernel of the basic formation and the
remaining ones to the specialization period. The latter is
organized in subject areas that represent specific
domains of knowledge (Software Engineering, Signal
Processing, Advanced Computer Architectures, etc).

Figure 1 shows the undergraduate study program. The
course “Computer Science I” is dictated in the second
semester of the first year. The necessary mathematical
knowledge is provided in the compulsory Admission
Course established in the curriculum. This course is
aimed at providing students with basic mathematical
background.

A course with these features should obviously be
integrated with advanced courses that motivate a deeper
analysis in a determined domain. The contents of
“Computer Science I” are integrated with other courses.
For example:

• During the second year, in “Analysis and Design of

Algorithms I” and “Analysis and Design of
Algorithms II” efficient algorithms related to
languages processing are implemented. For
example, algorithms that allow to obtain
nondeterministic finite automata from regular
expressions, that transform nondeterministic finite
automata into deterministic ones, simple lexical
analyzers, etc.

• In “Computer Science II” aspects of computability
are again tackled.

 First Semester Second Semester

 Admission Course Computer Science I
First year Introduction to Programming I Introduction to Programming II

 Mathematical Analysis I Geometry and Linear Algebra
 Algebra I Physics

Computer Science II Design and Analysis of Algorithms II
Design and Analysis of Algorithms I Data Communication I
Introduction to Computer Architecture Probability and Statistics
Electricity and Magnetism Digital Electronics

Second year

Mathematical Analysis II
 Functional and Logic Programming Paradigms Object Oriented Programming
 Data Structures Databases

Third year Software Design Methodologies Programming Languages
 Computer Architecture I Operating Systems
 Operation Research
 Computer Architecture II Software System Design
 Information Theory Compilers

Forth year Data Communication II Specialization Period (12 credits)
 Advanced Mathematical Analysis
 Specialization Period (4 credits)

Fifth year Software Engineering Final Project
 Specialization Period (16 credits)

Figure 1. Undergraduate Degree Curriculum in Systems Engineering.

• “Analysis and Design of Algorithms II” introduces
the basis of the theory of computational complexity
by means of the analysis of some problems related
to the P and NP classes.

• In other courses of the kernel of the basic formation
(for example, in “Software Design Methodologies”,
“Computer Architecture I”, etc) the formal models
analyzed in “Computer Science I” are used.

• The curriculum includes a compulsory course and
an optional one in compiler design.

• Students can take up specific courses in
computability and complexity through optional
courses in the area of “Theoretical Computer
Science”.

• The Specialization Period includes, for example,
Artificial Intelligence, Communication Networks,
Information Retrieval and Visualization, and
Computational Geometry courses.

5. THE METODOLOGY

The course is one-semester in length (70 hours). It
consists of 2 hours of lectures and 3 hours of practical
classes per week.

In general, the methodology followed to teach each of
the contents mentioned in Section 3 begins by
introducing the fundamental ideas informally by means
of many examples, in order to motivate their use for
practical modeling purposes. Then, the corresponding
formal definitions are given.

To illustrate our approach we describe the way we teach,
for example, Finite Automata. At this point, students
have already learnt the concepts of alphabets, strings and
languages, and they have faced the problem of
determining if a string belongs to a given language. In
this context, we present a language L over an alphabet A
and ask the students if a string s belongs to this set. For
example, A = {a, b}, L = {an b2k / n, k >0} and s = a3b2.
To answer this question we not only need to analyze the
symbols which appear in s but also their relative
positions. We construct a diagram which helps us to
determine the different members of the language. This
diagram has an input tape where the symbols of the
string s are placed, some states, a reading head, a finite
control, an initial state and a set of final states. To find
out if s is in L, we simulate the evolution of the diagram
from an initial state reading each successive symbol of s.
If after consuming all the symbols a final state is
reached, we say the string s belongs to language L.
Otherwise, s does not belong to L. We repeat this
process for many different test data. Thus, we present
finite automata as a model of a machine, which accepts a
particular set of words over some alphabet A. After this
informal introduction, we formalize deterministic finite
automata definition and we present deterministic finite
automata as language recognizers and language
transducers, emphasizing their important role in
compiler construction. Besides, we give some examples

of finite automata modeling “real-world” applications,
like the vending machine, an elevator, traffic signals
emulation, etc. Students are given enough time to solve
many other exercises of increasing difficulty. When they
are familiarized with these automata, we introduce
nondeterministic finite automata, and we explain the
algorithm to convert a nondeterministic finite automaton
into the equivalent deterministic one. More exercises are
provided to students in order to clarify this new concept.
Approximately, 10 hours are used to teach the concepts
mentioned above.

In each practical class, a brief theoretical-practical
introduction is developed to help the students solve the
corresponding practical work. In addition, sample
solutions for selected exercises are shown. The students
also have a specially prepared student’s handbook,
which contains notes for each one of the topics included
in the practical works, exercises with step by step
solutions, and detailed information of the bibliography
to be used for each topic (Mauco 1998). This student’s
handbook was written to make the topics accessible to
first-year students since, in general, traditional books
(Aho 1995; Atallah 1999; Kelley 1995; Lewis 1998;
Mandrioli 1987) are aimed at students of advanced
courses, and thus they do not fit the proposed approach.

Students can work in an interactive way using a
computer. Currently, JFLAP (Java Formal Languages
and Automata Package) is being used in practical classes
to provide visualization and interaction (Gramond 1999;
Hung 2000). This tool is used to design and simulate
deterministic and non-deterministic versions of finite
automata, pushdown automata and Turing machines.
Besides, it complements the concepts learned in class by
giving students an alternative view, in addition to the
theoretical representation, usually followed in textbooks.
Moreover, interaction allows students to play an active
role in the learning process, experimenting with the
concepts to receive feedback.

Each student has to pass two examinations, a mid-term
test and a final one. The mid-term test includes practical
exercises similar to the practical works ones. The final
exam evaluates the complete contents of the course.
Figure 2 contains an example of a mid-term test and
Figure 3 shows an example of a final test.

6. EXPERIENCE EVALUATION

Until 1996 the theory of automata and formal languages,
computability and complexity were included in a one-
semester third-year course named Theory of
Computation. At that moment, students had already
completed courses of programming, algorithms and data
structures, comparative analysis of programming
languages, analysis and design methodologies and
computer architecture. These courses obviously made
use of formal models, such as automata and grammars,
without having analyzed them at a specific course that

provided a general view. This cause
Moreover, although a great part o
formation had been already covere
computational processes were still n

Students did not see the contents a
problems, but as abstractions whi
done without until that point. The
was very high. During the course
invest considerable time in exerc
underestimated, as for example
pushdown automata and Turing mac

The experience in teaching these co
course has shown that students’ in
consider that this is an important fa
process. Students were comfortable
the methodology. Figure 4 shows
promoted students in the first-year
four years. It can be easily observed

1) For each of the following la
corresponding automaton and
how they can be derived from

L1 = { cp aj dk bk+1 a2n cq
L2 = { x / x ∈ {a, b, c}* a

2) Consider the following BNF
 <reg_expr> ::= <re
 <reg_term> ::= <re
 <reg_factor> ::= (<re

a) For the strings i) (a + b) *. a
possible. b) Select in a) one str
automaton, by using the algori

1) Given the following languag
context-sensitive language and
language and give its correspo
 i) L1 ={x / x ∈{a, b, c}* and
 ii) L2 = L1

*
 iii) L3 = {an+1 b2i c2n+ i dn / i
 iv) L4 = {an+1 bk di+2n / i, n ≥
2) a) Define string, alphabet an
languages studied. c) For each
¿Which type of grammar is mo
answer.
3) a) Define i) recursive and re
the Halting problem. Demonst
4) a) List the closure propertie
the following operation L1

R ∪
COMPUTER SCIENCE I MID-TERM TEST
nguages over the alphabet {a, b, c, d}: a) Determine its type. b) Give the
grammar. c) Give two examples of strings belonging to the language and show
the start symbol of the grammar.
/ n > j and k, p ≥ 0 and q, j > 0}
nd x has an even number of occurrences of the substring abc}
 for simplified regular expressions:

g_expr> + <reg_term> | <reg_term>
g_term> . <reg_factor> | <reg_factor>
g_expr>) | <reg_factor>* | a | b | ε

 . a* ii) ε + a** . b iii) (() + b) + a construct complete derivation trees when
ing described by the BNF and construct the minimum-state deterministic finite
thms studied in the course.
Figure 2. Mid-term test example

Figure 3. Final test example

d content repetition.
f the students’ basic
d, the limitations of
ot perceived.

s a basis for solving
ch they could have
 lack of motivation
it was necessary to

ises which students
 finite automata,
hines design.

ntents in a first-year
terest is higher. We
ctor in any learning
 with the topics and
 the percentage of

 courses for the last
 that the percentage

of promoted students in “Computer Science I” is high
and similar to the remaining courses.

In general, students find easy to identify a language type
and to solve problems applying the taught models.
However, they have difficulties in demonstrating
properties about them.

Nowadays, the course is still being tested by following
the students and their performance in advanced courses.
It was perceived that students could solve different
problems abstracting similar solutions based on the
studied models. In addition, a survey was carried out in
order to gather the students’ comments in connection to
the proposal. The task involved 120 students who had
gone through “Computer Science I” in the last years.
90% of the students considered that the course could be
taught in the first year. The survey also revealed that the
course has the same difficulty degree as other first-year
courses.

COMPUTER SCIENCE I FINAL TEST
es over the alphabet {a, b, c, d}: a) Determine each language type. b) Choose a
 give its corresponding automaton and grammar. c) Choose a context-free
nding grammar.
 x contains the substring w. wR where w = abc }

, n ≥ 0}
0 and (k = 2i or k = 2i+1)}
d language. b) By using sets, represent the relationships among all the types of

 language type, define formally the corresponding automaton and grammar. d)
re restrictive: the sensitive-context grammar or the context-free one? Justify your

cursively enumerable language; ii) decidable and undecidable problem. b) Define
rate which kind of problem it is.
s of: i) regular languages; ii) context-free languages. b) Demonstrate the result of
L2

*, where L1 is a context-free language and L2 is a regular language.

 First semester Second semester
 Number

of
Students

Introduction
to

Programming
I

Mathematical
Analysis I

Algebra I Physics Geometry
and Linear

Algebra

Introduction
to

Programming
II

Computer
Science I

 Enrolled 233 243 225 110 182 143 258
1996 Promoted 165 101 131 54 114 73 163

 % promotion 70.82 41.56 58.22 49.09 62.64 51.05 63.18
 Enrolled 228 237 240 168 200 175 227

1997 Promoted 139 106 147 122 148 89 148
 % promotion 60.96 44.73 61.25 72.62 74.00 50.86 65.20
 Enrolled 222 261 232 224 169 151 205

1998 Promoted 115 169 141 204 110 117 157
 % promotion 51.80 64.75 60.77 91.07 65.09 77.48 76.59
 Enrolled 259 234 241 123 210 186 218

1999 Promoted 182 103 190 99 162 122 163
 % promotion 70.27 44.02 78.84 80.49 77.14 65.59 74.77

Figure 4. Comparison of % of promotion in first-year courses

7. CONCLUSIONS

An introductory course in Computer Science intended
for first-year students was described. It introduces the
basic contents of the theory of computation starting from
the study of a hierarchy of abstract machines. The
difference with the traditional courses is not in the
contents, but in the stage of study when it is taught and
in the methodology followed to teach the topics.

The course proposed is a good starting point to make
students aware of the basic notions of language
processing and computational process limitations in the
early stages of their formation.

Our intention has been to bring soon a solid foundation
in computing theory for further studies along the study
program.

The experience has been satisfactory. We believe that it
could be reproduced in any CS/IS study program. The
condition would be that students attended a basic course
in discrete mathematics. Another alternative would be to
incorporate these contents at the beginning of the course.

8. REFERENCES

ACM Curricula Recommendation, 1991, “Computing

Curricula 1991”, ACM/IEEE-CS. Available in
www.acm.org/education/curricula.html

Aho, A. and J. Ullman, 1995, Foundations of Computer
Science, Computer Science Press.

Atallah, M., 1999, Algorithms and Theory of
Computation HandBook, CRC Pr.

Gramond, E. and S. Rodger, 1999, “Using JFLAP to
Interact With Theorems in Automata Theory”,
Thirtieth SIGCSE Technical Symposium on
Computer Science Education, pp. 336-340.

IS’ 97, 1997, Model Curriculum and Guidelines for
Undergraduate Degree Programs in Information
Systems, Association for Computing Machinery
(ACM), Association for Information Systems (AIS)
and Association of Information Technology
Professionals (AITP). Available in
www.acm.org/education/curricula.html

Hung, T. and S. Rodger, 2000, “Increasing Visualization
and Interaction in the Automata Theory Course”,
Available in www.cs.duke.edu/~rodger/papers

Kelley, D., 1995, Teoría de Autómatas y Lenguajes
Formales, Prentice Hall.

Lewis, H. and C. Papadimitriou, 1998, Elements of the
Theory of Computation, Second Edition, Prentice
Hall.

Loui, M. et al., 1996, Strategic Directions in Research in
Theory Computing, ACM Computing Surveys, Vol
28, 4, pp. 575-590.

Mandrioli, D. and C. Ghezzi, 1987, Theoretical
Foundations of Computer Science, John Wiley and
Sons.

Mauco, V. and R. Barbuzza, 1998, Notes for Computer
Science I (in Spanish) Facultad de Cs. Exactas,
Universidad Nacional del Centro de la Pcia. de
Buenos Aires.

MSIS’ 2000, 2000, Model Curriculum and Guidelines
for Graduate Degree Programs in Information
Systems, Association for Computing Machinery
(ACM), Association for Information Systems
(AIS). Available in www.acm.org/education

http://www.acm.org/education/curricula.html

	Abstract
	
	
	
	First semester

