

On a New Teaching Paradigm
For Information Systems

Stephen Choolfaian
And

Fran Gustavson
IS Department, School of Computer Science and Information Systems

Pace University
Pleasantville, NY 10570, USA

Keywords: information systems, process encapsulation, process uncoupling, object orientation, systems paradigm,
descriptive information systems paradigm, structured analysis

Abstract

The Input -> Process -> Output concept has been a basic teaching paradigm of the computer field since its inception. This
notion is imbedded in the "Systems Concept," in programming and in the teaching process. Since those days many things
have changed, including improved speed and access to data, faster and larger processors and memories and vastly improved
communications and networking capabilities. Because of these changes, it is time for a new paradigm, one that includes
current technologic, theoretical, and conceptual approaches. We call this the "Communication Driven Paradigm." This
paper presents starts by describing the evolution of data processing from its beginning to present times, the changes and
realities of each stage, and the relevant descriptive system diagrams. It then presents the new "Communication Driven
Paradigm" and its diagramming. This paradigm can be used to describe system development using either object oriented or
structured systems analysis and design.

Phase I: The Beginnings

Since the beginning of the "Data Processing/Computer"
era, a number of descriptive and conceptual paradigms
have evolved, each reflecting the technical and
perceptual realities of its time. Each of the then current
technologies led professionals in the field to change the
methods that would accomplish their design and
functional objectives. These new methodologies were
converted into ever changing rules which then, falling
into the hands of academics, became "paradigms." These
paradigms became the underpinnings of the many
courses that were developed over time. Although these
philosophic underpinnings were often more implicit than
explicit, they were the basis upon which specific courses
or disciplines were developed.

Early in computing history the electrical engineers'
notion of the "Black Box" was incorporated into the
analysis of information systems. The black box concept
held that a good method of analyzing and describing
complex activities was to describe them as an input, a
black box, and an output. One would not need to be
concerned with the details of what went on in the "black
box" until a later time. When analyzing the black box,
the same process could be used, namely recursively
breaking it into more and more black boxes. This came

to be understood as the "Systems Concept;" it consisted
of three basic elements: Inputs, Processes, and Outputs.
This notion of a system was not only true for the
Information System, but for virtually any rationally
related ongoing set of activities.

Diagrammatically, this was shown as in Figure 1.

Figure 1. Input/process/output diagram

This early view of a "data processing system" was
exemplified by unit record (punched card) equipment.
A punched card went into a machine, calculations were
made, and a report or modified punched card came out.
This could be the entire process, or a step of the process
- that is, the black box or one of the lower level black
boxes. As the technology advanced, this notion
appeared in the physical realities of sequential tape
systems. Cards were input, processes occurred, and the
results were carried forward on magnetic tapes.

Unit record or early tape systems were often described
with "Systems Flow Charts." The diagrams were very
much oriented to, and corresponded with, the physical
media that carried records from one processing step to
another. Systems flow diagrams could easily follow the
basic Input, Process, Output (I/P/O) rule, and could also
reflect the breaking down, or decomposing, from higher
level, more general, black boxes, to lower level, more
detailed ones.

Figure 2. Example of Systems Flow Chart

The I/P/O structure lent itself quite easily to
programming. In fact, most languages embodied it.
Probably the most often stated "fundamental" of
programming was that all programming languages could
be described as providing the ability to "read (input)",
"assign (process)," "conditionally and/or unconditionally
branch," and "write (output)." This was expressed
diagrammatically in the "Program Flow Chart".
Examination of these graphical representations of
algorithms clearly shows how the I/P/O notions are
applied.

Figure 3. Example of a Program Flow Chart

In these early times, processing was transactionally
oriented, and while it was understood that files were

being used, each typically was processed as a stream of
ordered records and was usually processed together with
another stream of records ordered in the same sequence.
This approach was formalized into the "master file"
concept that became the basis of "file based processing."

Phase II: File Based Processing

Because of the nature of early storage devices, it was
almost inevitable that processing had to be done
sequentially to be economic. Direct access was
expensive, slow, and of low capacity. Sorting "files"
was the most resource consuming part of most
applications. (The conventional wisdom of the period
was that upwards of 70% of all processing was used to
sort.) These realities became imbedded in the "File
Based Processing" paradigm. An example of this
approach is shown as Figure 4.

Figure 4. An example of File Based Processing

File based processing typically included the idea of "Old
Master to New Master" conversions. At the end of each
processing step, the sequential, ordered records, now
regarded as files, went through the processing step
together. As transactions were matched to master
records, changes were made (or not), and a new,
updated, master created. Each cycle of the process
produced transactional outputs and a new master.

These consistent and common steps introduced the
notion of data stores, and therefore the possibility of
using the same data in more than one process or
application, limited by the sequential nature of the
equipment available. It became clear that accessing a
specific record, or data element, was quite desirable in
some application systems, for example banking and
airlines. To meet these needs, a whole new technology
was developed. Introduction or improvements of
magnetic drums, magnetic disks, mass storage magnetic
cards and other such devices enabled economic and
rapid direct access to specific data. This ultimately led
to the "data driven" Data Base Paradigm.

Phase III: "The Data Driven" Data Base Paradigm

Introduction of the Random Access Device as an
economically feasible method for the storage and
retrieval of data became the basis of "Data Based
Systems." This was reflected in the birth of the Data
Flow Diagram (DFD). This new concept, and its
diagrammatic statement, the DFD, incorporated the idea
of independence of data from processes, with the
physical and logical notion of the "Data Bank:" a place
where data could be stored and accessed by one or more
applications within the enterprise. The Data Flow
diagram reflected this new reality. Its symbols
constituted the world of the application.

This new paradigm formed a convenient basis or
motivation for most IS curricula. For example, Data
Structures and Data Base Management clearly relate to
the data aspects of this topography. Systems analysis
relates to the identification and specification of
information requirements (outputs), data requirements
(inputs), and processing requirements and rules.
Applications programming relates to the conversion of
requirements into procedures and algorithms, and so on.
While not a rigid framework, this approach has been
incorporated into similar notions such as Structured
Analysis and Design and Structured Programming.

Figure 5. A typical DFD

In retrospect, it's fairly obvious that a data driven
approach was quite easy to visualize, and often to
implement, using a centralized staff together with
centralized equipment. The communication of data
from outside entities to the processes and then to
destinations was quite easily accomplished with,
literally, a line, cable or other directly coupled
connection. The reality of data transfer was not far from
the diagramming of it.

Over the years, technology has grown and improved.
Processing, data storage, networking and
telecommunications capabilities have dramatically
increased while costs have substantially decreased. As

this occurred, users have increasingly demanded that the
benefits of these new technologies be provided now!
This has given rise to what we call the "Communication
Driven Paradigm."

Phase IV: The New "Communication Driven
Paradigm."

While centralized "mainframe" equipment dominated
the commercial world, large companies typically
developed and maintained their own unique systems
using this centralized equipment and a corporate staff.
The now ubiquitous PC created a new world for the
user, hence the analyst, designer, and programmer. The
little machine that could apparently did provide the
ability to do everything, and do it rapidly. As a result,
independent designers created applications packages
such as Lotus 123, DB3, Access etc., that allowed
individual users conveniently to assemble the basic
elements of input, output, process and data into simple,
relatively easy to use templates or programs, specifically
designed to meet that user's "personal computing" needs.

At the same time, other independent software developers
were also developing "applications packages" for
Ordering, Accounting, Payroll and other common
business needs. These made good sense for small
offices, where one machine typically could handle one
or more of these functions with relative ease, or larger
settings where single machines could take care of needs
in a department or section.

These advances rapidly gave rise to the need to share the
data and results obtained at each independent station
with other stations requiring the same data, programs, or
text. Thus were ushered in LAN's, WAN's, Clients,
Servers, and Internets: all of these are tools to enable the
sharing of data and programs. In addition to these vital
changes to the nature of how systems were constructed
and implemented, the decreased cost of processing gave
rise to what had previously been a prohibitively costly
method of interacting with users, namely graphical
interfaces. The "windowed," "point and click"
technology provided the user a means of conversing
with the computer and its processes in what seemed to
be a more natural way. This method of interfacing was,
whatever its merits and demerits, rapidly
institutionalized as the standard user interface.

Thus was born the need for a new paradigm, an
enhanced "input, output, data, process" paradigm. As
we perceive it, this new paradigm should include:

- User Interface Processes - These "modules",
"functions", or however one names them, are the

updated expressions of what were called system inputs
or system outputs.

- Data Access Processes - Those activities associated
with the storage or retrieval of required data elements.

- Data Manipulation Processes - Those activities
associated with the calculation or manipulation of data
received from User Interfaces and/or Data Processes and
forwarding to User Interfaces and/or Data Processes.

- Communications Processes - Those activities
associated with the transfer of data between any of the
processes listed above.

These processes are shown in symbol form in Figure 6.
Note that the communications process symbol should be
understood as bi-directional, that is, messages are
normally transmitted both to and from the processes that
are connected by the symbol.

Figure 6. The symbols of the “communications driven
paradigm."

This classification scheme provides a framework within
which all systems can be described. It allows
descriptions to be made using existing tools or
techniques, while allowing each module to be
decomposed into sub modules as required. All systems
can be described at almost any level with combinations
of these elements. Each element can represent hardware
or software, and it is compatible with other parallel
concepts such as Object Orientation, Data Distribution,
Client/Server and the Internet. Figure 7 below shows
an example of an expanded diagram.

Figure 7. A sample Diagram ATM/multiple machines,

In addition to providing a way to describe systems, the
Communication Driven Paradigm provides an excellent
framework for construction of a curriculum. In addition
to the core knowledge of the field in areas such as
programming, management and communication skills,
implementing any of the major Processing Functions
will require additional skills and knowledge taught as
part of IS/IT curricula. For example, Data Processes
would require programming, data structures, data base
management and so on. Communications courses might
include computer architecture, e.g. buses, channels,
LAN's, switching, and so on. User Interface Processes
might require skills in using interface development tools
such as Visual C++, HTML, XML and so on.

Conclusion:

How we attack problems is often defined by the way we
describe them. In today's technologic world, rapid
changes in the hardware and software that is available,
and the impact of these changes on our users, has made
the teaching about and development of systems a
different process than we have had in the past. Our
previous view was that of a sequential set of steps that
constituted a system or procedure. The new reality is
that of a set of independent activities, operating
asynchronously. Our old diagrammatic and structural
model cannot accurately depict this new reality. The
New Communication Driven Paradigm can.

