
 
 

 Inventing the “Treebook”:  
A Workbook with Pages Linked in a Tree 

 
Dave Sullivan1 

College of Business, Oregon State University 
Corvallis, Oregon 97330  USA 

 
and 

 
Matthew Garth McLuckie 2 

Group, WellMed, 520 NW Davis, Suite 300 
Portland, Oregon 97209 USA 

 
 

Abstract 
 
A spreadsheet program is an ideal tool for recording scores and calculating grades—tasks every instructor needs to do. 
But anyone who has built a multipage workbook soon learns how difficult it can be to maintain formulas and entries 
among all pages. To help instructors sidestep these difficulties, we invented a “Treebook”; that is, an intelligent 
workbook whose pages are linked in a hierarchical tree. This article describes how we used Visual Basic to create two 
generations of Excel-based gradebooks that culminated in inventing the Treebook. We expect Treebooks will 
eventually be used in many application areas because they make building large spreadsheet models easier and more 
reliable. 
 
Keywords:  spreadsheet models, gradebook, Visual Basic, Treebook 
 
 

                                            
1 Sullivan@bus.orst.edu 
2 MatthewMcLuckie@aol.com 

1. PROBLEM STATEMENT 
 
Instructors face a common set of housekeeping chores: 
maintain a class roster, grade activities, record scores, 
convert scores into an overall grade, and communicate 
evaluations to students. A spreadsheet program, such as 
Microsoft Excel, Corel Quattro Pro, or Lotus 1-2-3, 
provides an ideal tool for performing these tasks. 
Anyone comfortable writing spreadsheet formulas can 
create a simple gradebook solution in an hour or so. 
 
Figure 1 shows the structure of a typical single-page 
gradebook application. Adding a new student or activity 
to this gradebook is relatively straightforward. To add a 
new student, a new row needs to be inserted, and 
formulas for the Total and Grade columns need to be 
copied into the new row. To add a new activity, a new 
column needs to be inserted, and formulas in the Total 
column may need to be modified if they no longer add 

activity scores correctly. Both operations have the 
potential to disrupt data in other areas of the page, such 
as a grade lookup table that might be stored below or to 
the right of the main gradebook area. 
 
Dan Bricklin is popularly credited with inventing the 
spreadsheet in 1978 while a student at the Harvard 
Business School (Bricklin, 2000). Earlier programs had 
offered the ability to build financial models in a row-
and-column format, but Bricklin's VisiCalc offered an 
interactive way to change values, scroll, and copy 
formulas with both relative and absolute addresses. 
Spreadsheet programs today retain many features 
pioneered in VisiCalc's original design, and with minor 
modifications, the gradebook shown in Figure 1 could 
have been built with VisiCalc.  
  
VisiCalc worksheets had only one page per spreadsheet 
file. So if the user wanted to store several different types 



Figure 1 A single-page gradebook. In this gradebook, 
the rows store data about each student and the columns 
store data about graded activities. The Total column 
summarizes all activity scores, and the Grade column 
uses a Lookup function to convert total points into 
letter grades. 

of information in the same spreadsheet model, such as a 
grade lookup table and an area filled with activity 
scores, then each part needed to be in different areas of 
the page. This approach made jumping from one part of 
the model to another difficult. It also made common 
operations like inserting rows or columns dangerous 
because revisions to one area could inadvertantly 
damage other areas.  
 
These problems were solved when a software 
development team at Borland extended Bricklin's idea to 
encompass a workbook full of worksheets with page 
tabs on the bottom. Borland filed a basic patent in April 
1992 to cover these inventions (Anderson, 1992). The 
workbook makes larger models feasible; for example, in 
a gradebook, each graded activity can have its own page 
to store detailed comments or partial-activity scores. 
Other pages can summarize activities to arrive at an 
overall course grade or hold grade lookup tables, graphs, 
or other data. Jumping from one page to another 
involves clicking on page tabs. New rows or columns 
can be added to one page without affecting other pages 
adversely. 
 
The workbook led to another surge in spreadsheet 
popularity because it let people build much larger, well-
organized models. Workbooks let ordinary people tackle 
tasks that previously would have required setting up a 
database or writing programming code. Best of all, 
workbooks let people tap into a host of handy graphing 
and analysis features and offer a familiar geographical 
approach to exploring data.  
 
Computer scientists cringe when they think about large 
spreadsheet models because workbooks do not enforce 
any sort of data integrity. Maintaining large workbook 
models quickly becomes a nightmare. Consider Figure 
2, a typical gradebook application in a class with 
Figure 2 This workbook uses different pages for each 
classroom activity. For example, the Quiz 1 page contains 
scores for one activity, and scores from its Total column 
are posted to the Quiz 1 column in the Main page. 
activities like case studies, quizzes, and a final exam. If 
information about each graded activity occupies a 
different page, then adding a new student to the 
workbook requires lots of steps:  
 
Each page in the book needs a new row to hold the new 
student's scores, total, and grade.   
1) The student's UserID must be added to each page—

causing data to be stored redundantly. 
2) Formulas need to be filled into the new rows so 

total columns will aggregate; grade columns will 
use a lookup table; and so on.   

3) Other formulas need to be created to post results 
from one page to another.   

 
Entirely different sequences of steps must be followed to 
add or delete new activities to the workbook or to sort 
items without jumbling data among pages. All these 
maintenance steps offer the potential for making hidden 
errors or introducing data inconsistencies.  
 
We spent the last two years inventing ways to sidestep 
these problems. Our basic approach has been to make 
the workbook smarter about the objects it contains. That 
way, when an object like a student or activity is 
modified, the user needs to give only one command yet 
the workbook can be intelligent enough to modify all 
affected pages appropriately.  
 
During the last two years, our ideas followed an 
evolutionary process, and we built two successive 
generations of intelligent workbooks. The first 
generation used Excel as a front-end for displaying 
information while all data were stored in a back-end 
Microsoft Access database. For the second generation, 
we constructed an Excel Add-in that lets a workbook 
contain a Treebook; that is, a collection of pages linked 
in a hierarchical tree. This second-generation approach 
makes the workbook smarter without needing to store 
data in a separate database. The rest of this article 



Figure 3 A flowchart showing the architecture used 
in the Suvan College Office gradebook. 

describes each generation in more detail and explains 
how our thinking evolved. 
 
 

2. FIRST GENERATION:  SUVAN COLLEGE 
OFFICE GRADEBOOK 

 
When we began building our first-generation gradebook, 
our design goal was simple: we wanted to combine the 
specialized features found in commercial standalone 
gradebook programs with the familiarity and ease-of-use 
of Excel.  
 
To meet this goal, we planned to store all data—activity 
scores, spreadsheet formulas, student names, and so 
on—in an Access database. We intended to use Excel 
only as a front-end that displayed information and 
computed formulas but contained no permanently stored 
user-supplied data (see Figure 3). Finally, we decided to 
write all programming instructions in Visual Basic for 
Applications and store the resulting code inside an Excel 
workbook. We called our prototype “College Office” 
because it was built on top of Microsoft Office and was 
designed to help college instructors (Sullivan, 1999). 
 
To the best of our knowledge, no one had tried this 
strategy of using a read-only Excel workbook as a front-
end to an Access database before, and we rapidly began 
to understand why. Our first challenge came from slow 
performance. Every time a cell’s value was changed in 
Excel, our code needed to trap the event, determine what 

part of the gradebook model had changed, post changes 
to tables in the Access database, and refresh the Excel 
display appropriately. Since Visual Basic for 
Applications is interpreted rather than compiled, the 
computer had to interpret each statement as well as 
execute its instructions. Much larger delays came from 
passing information between Excel and Access. 
Microsoft calls these data flows “out of process” 
communication, and they seemed to take forever to 
execute. Similar problems occurred whenever our code 
needed to drop data on a worksheet. We nearly 
abandoned the project after the first month because it 
looked like the performance would remain too sluggish 
for the program to work reasonably. However, with 
experimentation, we discovered ways to pack all inter-
process communications into arrays. Since the 
communication overhead was based on how many calls 
were made between programs rather than how much 
data were exchanged, using arrays judiciously caused 
the final version of College Office to run at least one 
hundred times faster than our initial prototypes. 
 
We soon ran into another problem. We wanted to allow 
instructors to give a single command to add or delete an 
activity and have the program make all necessary 
modifications to the workbook. These modifications 
required adding or deleting columns from the top-level 
page, creating or deleting the associated second-level 
activity page, adjusting formulas, and so on. The 
problem came from Microsoft Excel 97’s unreliability at 
creating new pages via Visual Basic commands. Most of 
the time it would create new pages without a hitch, but 
occasionally our code would freeze the computer when 
Excel tried to create a new page. No amount of testing 
or debugging could solve this problem, so we stopped 
asking Excel to create new pages programmatically. 
Instead, we built a workbook with 50 hidden pages, and 
when the user gives a command requiring a new page, 
the code unhides an existing page. While this approach 
worked, it made the workbook large because each page 
adds 50K to the workbook’s size. 
 
It took us a year of full-time effort to design, build, test, 
document, and release the Suvan College Office 
gradebook program. After testing the program ourselves, 
we conducted beta-level testing at Oregon State 
University and Linn Benton Community College. As 
soon as we finished testing, Microsoft included the 
program in its next Online Learning Resource Kit 
(Suvan LLC, 1999). Our software required its own CD-
ROM in this kit because we included forty-two videos 
showing how to set up and use the gradebook. We are 
grateful to Microsoft for the support they provided our 
project, both for the license fees they paid Suvan LLC 
and for shipping 40,000 copies of the program to 
instructors worldwide as a public service. 
 
Software is dynamic—full of motion and visual 
activity—so this article cannot capture the richness of 
how Suvan College Office operates. If you want to learn 



Figure 4 Clicking with the right mouse button causes 
this pop-up menu to appear in College Office. 
Choosing the Insert Activity command will insert a 
new activity column at the current location and add a 
new activity page to the gradebook. For example, this 
Insert Activity command will add a new Activity 6 and 
renumber the current Activity 6 to become Activity 7. 
more about the program, the best strategy would be to 
obtain a copy and try using it. Microsoft’s Online 
Learning Resource Kit is now out of print, but you can 
download the program for free from Microsoft’s Office 
Update website (Microsoft, 1999) or Suvan LLC’s 
website at www.collegeoffice.com.  
 
If you know something about Visual Basic 
programming, then you can look at the source code. The 
program uses 13,000 lines of carefully documented 
code. The code is password protected, but the password 
is “treasure”. Use all lowercase characters for the 
password, and do not type the quote marks. 
 

3. SECOND GENERATION: SUVAN 
TREEBOOK 

 
Just after we released our Suvan College Office 
gradebook program, Microsoft released its Office 2000 
Developers Kit. We soon discovered the limitations and 
obstacles that had plagued us throughout the last 
development cycle had disappeared. The Office 2000 
development tools let us remove all code from the Excel 
workbook and compile it as a separate Excel Add-in. 
This would let us avoid warnings about embedded 
macros whenever a workbook is opened. With full 
access to all tools in the Visual Basic 6 Enterprise 
Edition, we had improved testing and debugging aids 
and better support for building large object models. Over 
time we discovered the development tools’ reliability 
had gotten better as well. All this prompted us to start 
Figure 5 The Treebook Explorer view shows how 
Treebook pages are linked in a hierarchy. 
from scratch and develop an entirely new way to make 
Excel workbooks more intelligent. 
 
A key insight came when we considered how to 
organize pages in the workbook. Suvan College Office 
had used a main page to summarize information coming 
from child pages, but it didn't let child pages have 
grandchild pages. We decided to remove this limitation 
and support a linked set of hierarchical pages where 
each page could post data to a parent page and receive 
data from child pages. As an example of how this works, 
examine the page structure shown in Figure 5:  the Root 
page summarizes data from the Case 1, Case 2, and 
Final Exam pages as well having Quiz 1 and Quiz 2 
columns. At the next level down in the hierarchy, the 
Final Exam page summarizes data from an Essay page 
and from the Grade Cutoffs, Short Answer, True/False, 
and Multiple Choice columns. 
 
Figure 6 shows an even smaller Treebook with only 
three pages. It shows how values on two child pages get 
posted to a parent page. 
 
A Treebook can extend or collapse dynamically 
depending on how much detail the user wants to store or 
analyze. Not only is this helpful to the user, but the 
treelike structure made writing the Visual Basic code 
easier because all pages operate the same regardless of 
their position in the hierarchy. 
 
The sample Treebook in Figure 7 uses typography to 
indicate which columns have associated child pages and 
which do not. A cell whose content is computed by a 
formula appears in bold face; a cell that contains a value 

http://www.collegeoffice.com/


appears in regular face. Because the cells in the Quiz 1 
and Quiz 2 columns appear in regular face, they contain 
values and do not use formulas to obtain their values 
from a child page.  
 
Suppose the user decides to record detailed information 
about one of these quizzes. The easiest way to request a 
child page is to double-click in a column. Thus, by 
double-clicking on the Quiz 1 column, the user would be 
asking the Treebook Add-in to create a new page named 
Quiz 1, copy the Quiz 1 column’s values from the 
current page down to the newly constructed child page, 
and place formulas in the Quiz 1 column that obtain 
values from the child page’s Total column. 
 
This example raises an important question: Where does 
a Treebook store information about conceptual objects 
like students and activities? Suvan College Office stores 
this information in a back-end Access database, and we 
decided not to use this approach again. Storing and 
retrieving data from Access is slow. Even worse, many 
of our user support questions came from difficulties with 
installing and referencing the database engine—
something largely outside our control. 
 
We decided to store this sort of information in hidden 
areas of the workbook itself.  We placed information 
about the Treebook’s hierarchical organization in a 

Hidden Structure page; information about each page’s 
contents was hidden in the page’s top two lines and first 
two columns. So whenever a workbook is opened, our 
Treebook Add-in looks for a Hidden Structure page. 
Workbooks without a Hidden Structure page are 
ordinary workbooks and are ignored by our Treebook 
Add-in. If the Treebook Add-in finds a Hidden Structure 
page, it reads the page to determine which other pages 
are part of the Treebook, how many rows and columns 
each Treebook page has, and so on. The typical user 
never sees any of this hidden structural data.  
 
All these data are loaded into various Visual Basic 
collections in memory that represent the objects in the 
Treebook. For example, data from the Hidden Structure 
page determines how many instances of the Treepages 
collection (the Treebook equivalent of a worksheet) 
should be constructed. Other important collections 
include Rowcols (the Treebook equivalent of rows or 
columns within a spreadsheet model), Pagerowcols (an 
instance of a Rowcol on a specific Treepage) and Cells. 
Our Treebook Add-in loads the entire Treebook into 
these collections, but future Treebook Add-in 
implementations could open faster by loading only part 
of the Treebook into memory. 
 
Treebook objects are smarter than their spreadsheet 
equivalents. For example, a Treepage knows: 

Figure 6 These three pages show how values on two 
child pages get posted to a parent page. 



   
� Where it fits in the Treebook’s hierarchy of 

pages.  
� Which Rowcols appear in its PageRowCols 

collections.  
� A RowCol knows:  
� Its key, which uniquely identifies a logical row 

or column. A logical row or column might 
appear on more than one Treepage. This would 
happen when a new student is added to a 
Treebook, and the student's Rowcol appears on 
several Treepages.  

� Whether the Rowcol is part of the Rows or 
Columns collection. Since any spreadsheet 
model can be transposed to make rows into 
columns and visa versa, our Visual Basic code 
treats both rows and columns essentially the 
same by creating them from the same Rowcol 
class.  

 
A Cell knows:  
� Its key, which is built from its row's Rowcol key 

and its column's Rowcol key. Thus, a cell’s key 
uniquely identifies the cell within the Cells 
collection, and it also identifies where the cell 
falls in the various Rowcol and Pagerowcol 
collections.  

� Whether it stores a value or a reference to 
another cell. An important design feature of a 
Treebook is to store each logical piece of data in 

only one cell. Thus, although a student's name 
might appear on many pages in a Treebook, only 
one cell will store the name, and all other cells 
will reference that cell. The user doesn't need to 
know which cell is the owner and which cells 
reference the owner. If the user enters a value in 
a cell that stores a reference to another cell, the 
Treebook Add-In will place the value in the 
correct cell and replace the reference in the 
changed cell. 

 
The net effect of all these collections is to teach the 
Treebook about the objects it contains, such as students, 
courses, and classroom activities. This lets the user 
concentrate on building a spreadsheet model composed 
of logical objects that can behave in more intelligent 
ways than ordinary spreadsheet rows, columns, and 
cells.  
 
So far all our examples have come from one area: 
building a gradebook. We hope Treebooks will find 
many other application areas. To help make this a 
reality, we built a design mode into our Treebook Add-
in that reveals the contents of the Hidden Structure page. 
This lets someone without programming experience 
change what the Treebook objects are called. For 
example, to build a budgeting application, an accountant 
might change “Students” and “Activities” to be 
“Expenses” and “Time Periods”. This sort of application 
could help people consolidate budgets throughout an 

Figure 7 A sample Treebook that matches the page 
structure shown in Figure 5.  



enterprise. A scientific application might analyze 
“Subjects” and “Experiments”. Marketing professionals 
might analyze “Products” and “Sales Areas”. 
 
The static descriptions in this article do not do justice to 
the dynamic and interactive nature of working with a 
Treebook. We have finished writing a functional 
Treebook Add-in, but we have not finished alpha-level 
testing. So as we write this article, few people have seen 
the Treebook Add-in in action, and we have not released 
the program or its source code for general use. We will 
have completed internal testing by the time this paper is 
presented or published. At that time you should be able 
to obtain a copy for free from our Treebook website at 
http://www.Treebook.com. 
 

4. SUMMARY AND CONCLUSIONS 
 
This article described two ways to build more intelligent 
spreadsheet-based workbooks. The Suvan College 
Office gradebook program uses the first method, and 
this article describes how you can download and 
examine its source code. Instructors around the world 
are using this program to manage their classroom 
record-keeping chores. 
 
The second method uses an Excel-based Add-in to hide 
structural information inside a workbook, thereby 
converting it into a Treebook. A Treebook makes 
building and maintaining data-intensive models much 
easier than trying to link worksheets by hand.  
 
Just as with a standard workbook, a Treebook can build 
just about any sort of model. The main difference comes 
because a Treebook knows about the items that it 
contains, so it can maintain relationships among the 
items in a more intelligent manner. 
 
Although our Treebook Add-in uses specific techniques 
to work its magic, a Treebook's features could be added 
to nearly any spreadsheet program or built with other 
programming languages.   
 
Our long-run hope is that people will adapt the Treebook 
concept to serve as a front-end to a relational database or 
OLAP server. This would let people suck large amounts 
of data into a well-structured spreadsheet model. At least 
in theory, this could combine the geographic familiarity 
and analytical power of a spreadsheet with the 
organization and integrity of a database. 
 

5. REFERENCES 
 
Anderson, Charles; et al. (1992, April 8). US Patent 

#5,416,895: System and methods for improved 
spreadsheet interface with user-familiar objects. 
Retrieved March 5, 2000 from the IBM Intellectual 
Property Network on the World Wide Web: 
http://www.patents.ibm.com/ 

Bricklin, Dan (2000). VisiCalc: Information from its 
creators, Dan Bricklin and Bob Frankston. 
Retrieved May 28, 2000 from the World Wide 
Web: http://www.bricklin.com/visicalc.htm 

Microsoft Corporation. (1999, November 8). Suvan 
Office Gradebook for Excel 2000 and Access 2000. 
Retrieved May 29, 2000 from Microsoft Office 
Update on the World Wide Web: 
http://officeupdate.microsoft.com/ 

Sullivan, Dave. (1999, June). College Office User 
Manual. Retrieved May 14, 2000 from the World 
Wide Web: 
http://www.collegeoffice.com/manual.doc 

Suvan LLC (1999, Spring). Suvan College Office. In 
Online Learning Resource Kit (Vol. 2, CD-ROM 
#3). Kent, WA: Microsoft Corporation 

 
 


	Abstract
	This article described two ways to build more intelligent spreadsheet-based workbooks. The Suvan College Office gradebook program uses the first method, and this article describes how you can download and examine its source code. Instructors around the w
	The second method uses an Excel-based Add-in to hide structural information inside a workbook, thereby converting it into a Treebook. A Treebook makes building and maintaining data-intensive models much easier than trying to link worksheets by hand.
	Just as with a standard workbook, a Treebook can build just about any sort of model. The main difference comes because a Treebook knows about the items that it contains, so it can maintain relationships among the items in a more intelligent manner.
	Although our Treebook Add-in uses specific techniques to work its magic, a Treebook's features could be added to nearly any spreadsheet program or built with other programming languages.
	Our long-run hope is that people will adapt the Treebook concept to serve as a front-end to a relational database or OLAP server. This would let people suck large amounts of data into a well-structured spreadsheet model. At least in theory, this could co


