
 Software Agents
A Contribution to Agents Specification

Vojislav Stojkovic 1

William Lupton 2
Computer Science Department

Morgan State University
Baltimore, MD 21251, USA

Abstract

This article presents informal and formal specifications of some basic concepts (terms) and properties of agent theory,
the design and imperative and recursive implementations of intelligent agents and supports agent approach in computer
science.

Keywords: Agent, agent model, intelligent agent, agents theory, software agent, agent program.

1. INTRODUCTION

We regard an agent theory as a specification for an
agent. Agent theorists develop formalisms for
representing the properties of agents, and using these
formalisms, try to develop theories that capture desirable
properties of agents.

The concepts (terms) of "agent," "agent model,”
intelligent agent," "agents theory," "software agent,"
"agent-oriented programming language (AOP
language)," "agent-oriented programming system (AOP
system)," "agent-oriented programming (AOP)," "agent
program," etc. are central concepts of agents theory.
They are also one of the most important concepts in
some other areas of artificial intelligence,
communications, robotics, and user interfaces.
Unfortunately some of these concepts are still "noise"
concepts, subjects to abuse, misuse, and confusion even
in the artificial intelligence agent community.

In many textbooks and articles on Artificial Intelligence
an agent is something that acts in the world, for
example, a person, a robot, a dog or a cat.

The purpose of this paper is fourfold:

- Informally and formally define the basic concepts
(terms) of the agent theory, such as “agent,” “agent
model,” “intelligent agent,” “software agent,” and etc.

(Still these basic concepts have not standard
definitions!)
- Informally and formally define some basic properties
of agents and their environment (world).
- Discuss design and imperative and recursive
implementations of intelligent agents.
- Support (by our opinion very important) agent-
approach in computer science and artificial intelligence.

2. AGENTS

An agent is a (simple) computer system that is capable
of autonomous actions in some environment in order to
satisfy its design objectives.

The autonomy means:

- Agents operate (reason, make decisions, and solve
problems) without the direct intervention of others
(agents and non-agents)
- Agents have some kind of control over their actions
and internal states.

3. AGENT MODEL

An agent model is characterized by the fact that it is
possible to develop (write, construct, make, build, etc.)
independent agents (units, routines, functions, modules,
pieces of code, systems, machines, etc.) to do something
with some purposes.

1 Stojkovi@Morgan.edu
2 Lupton@Morgan.edu

mailto:Stojkovi@morgan.edu
mailto:Lupton@Morgan.edu

This approach asserts that agents are self-contained,
though they may contain references to other agents.

The agent model provides a framework for exchange of
materials between agents. Agents must be represented
and implemented in independent ways.

The main benefit provided by the agent model is reuse.
An agent might be used in several different agent
systems.

4. INTELLIGENT AGENTS

An intelligent agent is a (complex) computer system that
is capable of flexible autonomous actions in some
environment in order to satisfy its design objectives.

The flexibility means:

- Reactivity: agents perceive their environment through
sensors and act upon that environment through effectors.
- Pro-activeness: agents do not simply act in respond to
their environment, they are able to exhibit goal-directed
behavior by taking the initiative.
- Social ability: agents communicate (request and/or
responds) with others (agents and non-agents) via agent
language.

For some researches intelligent agents have stronger and
more specific properties than the properties identified
above.

Intelligent agents are (complex) computer systems that
have the properties identified above plus the properties
conceptualized and/or implemented using concepts such
as knowledge, belief, choice, decision, capability,
intention, obligation, commitment, etc.

Some researches go further and consider emotional
concepts.

Intelligent agents, sometimes, have properties, such as:

- Mobility: agents move around a network.
- Veracity: agents believe in the truth of their
information.
- Benevolence: agents do not have conflict goals and
always try to do what is asked of it.
- Rationality: agents act in order to achieve its goals and
do not act in a way as to prevent its goals being
achieved.

Intelligent agents with the properties usually
characteristic for human beings are computer surrogate
for persons and/or processes that fulfills stated needs or
activities.

An ideal agent is an intelligent agent with behavior that
maximized its performance measures, on the basis of
experience and built-in knowledge.

An autonomous ideal agent is an ideal agent that takes
the actions based completely on its experience. It
operates successfully in a wide variety of environments,
given sufficient time to adapt.

A non-autonomous ideal agent is an ideal agent that
takes the actions based completely on its built-in
knowledge. It operates successfully while the build-in
knowledge - assumptions hold.

It is reasonable to provide an ideal agent with some
initial knowledge as well as an ability to learn.

Information retrieval (network) agent is a very popular
form of intelligent agents whose main task (job) is to
find and gather relevant information.

5. FORMAL SPECIFICATIONS OF AGENTS

The agent’s environment is a collection of resources
available to the agent. The environment can be
represented as a set S = {s1, s2, …} of environment
states. At any given instant, the environment is assumed
to be in one of these states.

The agent’s effectoric capability can be represented as
a set A = {a1, a2, …} of actions.

An agent can be represented as a function

action: S* -> A

which maps sequences of environment states to
actions.

For most agents, a function action can be specified by
a table. For most agents, such a table is infinite unless
the number and length of the sequences of
environment states and actions are bound.

Environment might be:

- accessible (vs. inaccessible)
- deterministic (vs. nondeterministic)
- episodic (vs. nonepisodic)
- static (vs. dynamic)
- discrete (vs. continuous).

An environment is accessible to an agent, if
an agent's sensors give agent access to the complete
state of the environment.

An environment is deterministic, if the next state of
the environment is determined by the current state and
the action selected by the agent.

An agent decides what action to perform on the basis of
its history – its experiences to date.

Experience (experience of an agent, agent experience) is

a collection of evidences provided to the agent by
history.

An experience (history) can be represented as
a sequence of environment states – those that the agent
has thus far encountered.

experience = {s1’, s2’, …}

The non-deterministic behavior of an environment can
be represented as a function

environment: S X A -> environment-states(S)

which takes the current state of the environment s in S
and an action a in A (performed by the agent), and maps
them to a set of environment states environment(s,a) –
those that could result from performing action a in state
s.

If all the sets in the range of environment are all
singletons, then the environment is deterministic, and its
behavior can be accurately predicted.

An environment is episodic, if the agent's experience is
divided into "episodes." An episode consists of the agent
perceiving and then acting.

An environment is static, if the environment cannot be
changed while an agent is deliberating.

An environment is discrete, if there are a limited number
of distinct, clearly defined percepts and actions.

Some environments are more demanding than others.
Environments that are inaccessible, nondeterministic,
nonepisodic, dynamic, and continuous are the most
challenging.

6. SOME PROPERTIES OF AGENTS

A history h is a sequence:

h: s0(a0) -> s1(a1) -> s2(a2) -> … -> sn(an) …

s0 is the initial environment state (i.e., its state when
the agent starts executing).

si, i=1, 2, …, n, … is the n’th environment state (which
is one of the possible results of executing action an-1 in
state sn-1).

an, n=0, 1, 2, … is the n’th action that the agent chose to
perform.

If

- action: S* -> A is an agent,
- environment: S X X -> environment-states(S) is
an environment, and

- s0 is the initial state of the environment,

then the sequence

h: s0(a0) -> s1(a1) -> s2(a2) -> … -> sn(an) -> …

represents a possible history of the agent in
the environment iff the following two conditions hold:

- for all u in N, a(u) = action((s0, s1, …, sn)) and
- for all u in N, such that u > 0,
sn in environment(s(n-1), a(n-1)).

Behavior (behavior of an agent, agent behavior) is
the action of an agent caused by its history.
Agent behavior depends only on its history.

The characteristic behavior of an agent

action: S* -> A in an environment
environment: S X A -> environment-states(S)

is the set of all the histories that satisfy these properties.

If some property Fi holds of all these histories,
this property can be regarded as an invariant property of
the agent in the environment.

History(agent, environment) is the set of all histories of
agent.

Agents agent1 and agent2 are:

- behaviorally equivalent with respect to environment
env

iff history(agent1, env) = history(agent2, env)

- simply behaviorally equivalent

iff they are behaviorally equivalent with respect to all
environments.

In general, agents whose interaction with their
environment does not end, i.e., they are non-terminating
are very important.

The right (intelligent) action (behavior) is the best
possible action (behavior) of an agent in a given
situation. It causes the agent to be most successful.

Goal (performance measure) the agent is supposed to
achieve is a standard that defines degree of success of
an agent in an environment.

Example

The performance measures of vacuum cleaner agents is
a function of:

- the amount of cleaned up dirt
- the spent time
- the amount of consumed electricity
- the amount of generated noise

The time of performance evaluation is very important.

Example

Vacuum cleaner agents clean up more dirt in the first
half of the work than in the second half of the work.
The performance measure and the ways of use it is
imposed by some authority.

7. TYPES OF AGENTS

There are four types of agents:

- A simple reflex agent, which responds to what it
senses from its environment
- A keeping-track agent, which keeps track of the world
- A goal-based agent, which acts to achieve its goals
- A utility-based agent, which acts to maximizes own
internal metrics.

8. AGENTS THEORY

Agent(s) theory (theory of agent(s), agency(ies) theory,
theory of agency(ies)) is a collection of formalisms
focussed on the aspects of agents.

Agents theory studies the relationships between
the agents' attributes.

Example

Agents theory studies:

- How an agent's information and pro-attitudes are
related
- How an agent's cognitive state changes over time
- How the environment affects an agent's cognitive state
- How an agent's information and pro-attitudes lead it to
perform actions.

9. AGENTS VERSUS NON AGENTS

The world is not strictly divided into agents and non
agents.

Example

A clock can be thought of as:
- An inanimate object or
- A simple, degenerate, semi-intelligent agent.

A clock is a degenerate agent because its percept

sequence is empty. No matter what happens outside, the
clock's action should be unaffected.

A clock is an intelligent agent because it always does the
right action - moving its hands or displays its digits in
the proper fashion.

A clock is a semi-intelligent agent because if it is moved
from one time zone to another time zone, the right thing
for the clock is to update its time, but it cannot do by
itself.

10. SOFTWARE AGENTS

A software agent is a software process that exhibits
the properties listed above.

Examples of Software Agents

- Software daemons, (such as background processes in
the UNIX operating system), which monitor a software
environment and perform actions to modify it are
software agents.
- Agents for electronic mail handling.
- Agents for meeting scheduling.
- Agents for electronic news filtering.
- Agents for recommending books, journals, etc.

Software agents must contain the following most
important information:

- Owner: user name, parent process name, or master
agent name.
People, processes, and/or other software agents can
spawn agents.
- Author: development owner, maintenance.
People or processes may create software agents.
- Creation date: date of request.
- Account: billing information, addresses, and etc.
- Goal: goal statement(s) and measures for success.
Statements of successful agent task completion and
metrics for determining the task’s point of completion
and the value of the return are necessary.
- Subject description: topic name and topic description
attributes.
The subject description details the goal’s attributes.
The goal’s attributes provide the boundaries of the agent
task.
- Duration: response requested by a certain date.
- Background: supporting information.

Software agent may and probably will contain much
other useful information.

One of the most difficult aspects of software agent
design is to define specific tasks that are both feasible
using current technology, and are truly useful to
the everyday user.

11. AGENT-ORIENTED
PROGRAMMING LANGUAGES

(AOP LANGUAGES)

An agent-oriented programming language (AOP
language) is a programming language that allows
programming in the terms of the concepts developed in
agent theory.

An AOP language includes the structures and attributes
and notions corresponding to agents.

Concurrent object programming languages
(Actor, ABCL, and etc.) are in many respects the
ancestors of the AOP languages. A self-contained,
concurrently executing object, with a internal state that
is not directly accessible to the outside world, and
responding to messages from other such objects, is very
close to the concepts of an agent.

The well-known AOP languages are:

- AGENT0
- PLACA (PLAnning Communicating Agents)
- Concurrent MetateM
- APRIL
- MAIL
- ABLE (Agent Behavior LanguagE)
- ACL (Agent Communication Language)
- KQML (Knowledge Query and Manipulation
Language)
- KIF (Knowledge Interchange Format)

AOP language AGENT0 is a protype AOP language.

12. AGENT-ORIENTED PROGRAMMING
SYSTEM

(AOP SYSTEM)

An agent-oriented programming system (AOP system)
has three primary components:

- A formal language for specifying agents
- A programming language for programming
(instructing and defining) agents
- An agentifier for converting agent programs into
executable programming.

AOP-system=(Formal-L,Programming-L,Agentifier)

13. AGENT-ORIENTED PROGRAMMING (AOP)

Agent-oriented programming (AOP) is a programming
style that uses agents as basic units. AOP proposes agent
programming in terms of mentalistic notions such as
belief, desire, and intention. The intent of AOP is to
provide an environment in which agents can interact
with one another. Such an infrastructure greatly
simplifies the creation of agents and makes it possible to
study the properties of agents and their interactions.

14. AGENT-ORIENTED PROGRAMMING (AOP)
VERSUS

OBJECT-ORIENTED PROGRAMMING (OOP)

Agent-Oriented Programming (AOP) is a special case of
Object-Oriented Programming (OOP).

The following table summarizes the relation between
AOP and OOP.

 OOP AOP

Basic unit object agent

Parameters defining unconstrained belief, decision,
state of basic unit capability, obligation,

choice,
commitment, ...

Process of computation message passing and message passing and
 response methods response methods

Types of message unconstrained inform, request, offer,

promise,
accept, reject,

 assist, ...

Constraints on methods none honesty, consistency, ...

15. IMPLEMENTATION OF AGENTS

An agent can be implemented as:

- An agent architecture or
- An agent function.

Agent architecture is a classical approach to building
agents viewing them as a particular type of knowledge
based system. Typically it includes definitions of
software data structures and operations on these
structures.

An agent function maps a percept from
an environment to an action. It uses some internal data
structures updated as a new percept arrives. These data
structures are operated on by the agent's decision-
making procedures to generate an action choice,
which is then passed to the architecture to be executed.

Example of a skeleton agent function

Imperative Solution

action_type function skeleton_agent
 (percept_type percept)
 {
 local
 memory_type memory;
 action_type action;

 memory = update_memory(memory, percept);
 action = choose_best_action(memory);
 memory = update_memory(memory, action);

 return action;
 }

Example of a lookup table driven agent function

Imperative Solution

global
 table_type table;

action_type function
lookup_table_driven_agent(percept_type percept)
 {
 local
 percept_sequence_type percepts = empty;
 action_type action;

 percepts = append(percept, percepts);
 action = lookup(percepts, table);
 return action;
 }

Applicative (Functional) Solution

global
 table_type table;

action_type function
lookup_table_driven_agent(percept_type percept)
 {
 local
 percept_sequence_type percepts = empty;

 return lookup (

append(percept,percepts), table
);
 }

Function lookup_table_driven_agent operates by
keeping in memory entire percept sequence and using it
to index into table, which contains the appropriate action
for all possible percept sequences.

16. AGENT PROGRAM

Agent program is a collection of agent functions.

Agent program runs on some sort of computing device,
called architecture.

The architecture might be:

- A plain computer,
- A special-purpose hardware for certain tasks, or
- A software that provides a degree of insulation
between the raw computer and the agent program.

The architecture:

- Makes the percepts from the sensors available to
the agent program,

- Runs the agent program, and
- Feeds the agent program's action choices to
the effectors as they are generated.

The relationship among agent, architecture, and
agent program can be expressed as:

agent = architecture + agent program

17. INFORMATION AGENTS

An information agent is an information retrieval
(network) agent program to roam a network, interact
with its host, gather information, and come home. They
have access to multiple, potentially heterogeneous and
geographially distributed information sources.

One of the main tasks of the information agents is
an active search for relavant information. This includes
retrieving, analyzing, manipulating, and integrating
information available from different information
sources.

Information agents must be able to negotiate with
the network and ask for permission for everything they
do. They must be ready to prove who they are and show
that they have the authority to act for their masters.
Upon arrival, they must be ready to negotiate credit for
the host's services and, in the event that credit is not
available, the network agent programs must be able to
pay up front.

Some elements that make up an information agent are:

- state
- initialization functions
- main function
- cleanup functions
- authorization
- return address
- spending limits
- cost support

Current network transactions are too basic to be
efficient. To do anything beyond making a simple
request of a distant file server, several rounds of
information must be exchanged before the goal is
achieved. These exchanges take time and consume
network resources. In many cases, a request might spend
more than 90% of its time communicating.

Acknowledgements

This research was supported by:

- Advanced Telecommunication & Information
Distribution Research Program (ATIRP), 1997-98.
- The MSU HUD/EDI Special Projects Grant, 1999.

References

1. Lupton, William and Stojkovic, Vojislav, 1998,
“Solving Incomplete and Incorrect Information
Problems using Conditional Planning, Execution
Monitoring, and Situated Planning Agents.” Twelfth
Annual ASEET Symposium, The Naval Postgraduate
School, Monterey, California.
2. Lynch, D.C. and Rose, M.T., 1993. Internet System
Handbook, Addison-WesleyPublishing Company, Inc.
3. Russell, S. and Norvig, P., 1995, Artificial
Intelligence: A Modern Approach, Prentice Hall Series
in Artificial Intelligence.
4. Shoham, Y., 1993. Agent-oriented programming.
Artificial Intelligence, 60, 51-92.
5. Stojkovic, Vojislav, Nnadi, Nkechi, and Jordan,
Gareth, 1999, “Experiments with Concurrent
Programming in Java.” Neat Networks’99 Conference,
The University of Texas at El Paso, El Paso, Texas.
6. Stojkovic, V. and Lupton, W., 1996, “Solving
the Nine Tiles Problem Using the Genetic Algorithm
Implemented in the Maple Programming Language.”
Intelligent Systems: A Semiotic Perspective,
International Multidisciplinary Conference,
Gaithersburg, Maryland.
7. Stojkovic, Vojislav and Tannouri, Samir, 1995, “C++
Object-Oriented Programming Implementation of Two
Dimensional Binary Image Compression Using
Hierarchical Coding Technique.” Twenty-Ninth Annual
Conference on Information Sciences and Systems,
Department of Electrical and Computer Engineering,
The Johns Hopkins University, Baltimore, Maryland.
8. Stojkovic, Vojislav and Tannouri, Samir, 1994,
“Proving the Classical Theorems of the Predicate
Calculus Using the PROVER.” The American Society
for Engineering Education (ASEE) Annual Conference,
Edmonton, Canada.

9. Stojkovic, Vojislav and Tannouri, Samir, 1993,
“Programming in Mathematica Using Accumulate and
Reduce Functionals.” The Sixth Annual International
Conference on Technology in Collegiate Mathematics;
Parsippany, New Jersey.
10. Stojkovic, Vojislav and Tannouri, Samir, 1993,
“EXPET: A Microcomputer Based Expert System for
Immigrant Petition for Alien Worker.” Third Annual
Conference of the Urban Business Association,
Baltimore, Maryland.
11. Stojkovic, Vojislav, 1992, “An Overview of Parallel
Computing Techniques.” Second Annual Users Working
Group Conference, Goddard Space Flight Center,
Greenbelt, Maryland.
12. Stojkovic, Vojislav, 1991, “The Synthesis of
a Predicate from Input/Output.” Transactions of
the DECUS.
13. Stojkovic, Vojislav, 1991, “An Implementation of
Wang's Algorithm in COMMON LISP.” Transactions of
the DECUS.
14. Tannouri, Samir and Stojkovic, Vojislav, 1993,
“Data Compression Algorithm for Network
Communication.” MU-SPIN Third Annual Conference,
Greenbelt, Maryland.
15. Tosic, Dusan and Stojkovic, Vojislav, 1999,
“An Implementation of the Distance Learning Based on
the Profound Using of Java-Applets.” Neat Networks’99
Conference, The University of Texas at El Paso,
El Paso, Texas.
16. Watson Mark, 1996, AI Agents in Virtual Reality
Worlds, Programming Intelligent VR in C++, John
Wiley & Sons, Inc.
17. Watson, Mark, 1996, Programming Intelligent
Agents for the Internet, McGraw-Hill.
18. Wayner, Peter, 1995, Agents Unleashed, A Public
Domain Look at Agent Technology, AP Professional.

	Abstract
	This article presents informal and formal specifications of some basic concepts (terms) and properties of agent theory, the design and imperative and recursive implementations of intelligent agents and supports agent approach in computer science.
	Keywords: Agent, agent model, intelligent agent, agents theory, software agent, agent program.
	4.	INTELLIGENT AGENTS
	5. FORMAL SPECIFICATIONS OF AGENTS
	6.	SOME PROPERTIES OF AGENTS
	
	7.	TYPES OF AGENTS
	Example

	9.	AGENTS VERSUS NON AGENTS
	
	Example

	10.	SOFTWARE AGENTS
	
	Examples of Software Agents
	Example of a skeleton agent function
	Example of a lookup table driven agent function
	16.	AGENT PROGRAM
	INFORMATION AGENTS

	Acknowledgements
	References

