
Toward an Automated Patient Care System (APCS)

Ghasem S. Alijani1 and Raghuram N. S. Tadimalla2
Southern University at New Orleans

6400 Press Drive, New Orleans, LA 70126

Abstract

Improvements in technology call for the development of patient care systems that can alleviate problems encountered
due to decrease in the workforce of hospitals. The systems developed for patient care and clinical care should be real-
time systems that can perform required functions. Criticality of patients’ health should be taken into consideration
while developing these systems. Simulation modeling helps solve the problem in the design of patient care systems.
Automated Patient Care System (APCS) encompasses the requirements in hospitals that specifically address the needs
of in-patients. APCS aims at the design and implementation of a highly reliable real-time model that provides the
means to investigate the feasibility of an automated patient care system. Systems that perform critical missions in
unpredictable environments require a significant consideration in efficient use of the available resources. Further, the
underlying system requirements should be taken into consideration. The APCS model will address all the criticalities
involved and will result in effective implementation of real-time system. The model should be of interest to medical
professionals, hospitals and clinics, and the officials of the Health Department as it focuses on the system design and
lays out the groundwork for a complete automated system supported by real-time task scheduling and incremental
learning techniques for effective performance in unpredictable environments.

Keywords: critical mission, patient care systems, adaptive learning, hard real-time task-scheduling

1 dalijani@ix.netcom.com
2 raghutadimalla@hotmail.com

1. INTRODUCTION

In recent years, the use of computers in controlling and
monitoring of information, industrial, and medical
systems has been expected greatly. The two million
nurses in the medical field constitute the largest group of
health care professionals. Between the years of 1983
and 1998, the average age of registered nurses has
increased by 4.5 years (Buerhas, Staiger, and Auerbach
2000). This is due to the decrease in the number of
women who show interest in the career of nursing. This
decline in the number of women in nursing career is
attributed to wide choice of career opportunities that
exist for them (Bednash 2000). Improvements in
technology call for the development of patient care
systems that can alleviate problems encountered due to
decrease in the workforce of hospitals. Time-critical
applications such as life support systems require real-
time response to operations and should be able to
function in unpredictable environment. For the last two
decades, the issues of real-time responsiveness and
unpredictability of environment have been studied in
terms of other requirements, such as languages
(Krishnan and Volz 1989), task scheduling (Alijani and

Chang Su 1990), load balancing (Hac and Jin 1987), and
reliability and fault tolerance (Alijani and Wedde 1991;
Anderson and Knight 1983). Also, learning by
incremental techniques would make time-critical
missions more effective. Such an adaptive learning
strategy is vital for hard real-time tasks (Alijani, Omar,
and Welsh 1997). All these aspects contribute to design
of more complex and complete systems; however, it is
clear that task scheduling schemes and fault tolerance
mechanisms are more essential elements required by any
real-time system performing critical missions.

Real-time systems are categorized as soft and hard real-
time systems. In a soft real-time system, the time
constraints of time-critical tasks might not be so
restrained, and a statistical distribution of response time
is normally acceptable. However, in hard real-time
systems, tasks must be completed before some fixed
time has elapsed. Thus, the importance of meeting the
task’s execution deadline make a reliable task
scheduling scheme a central issue for the correctness
and reliability of the system (Biyabani, Stankovic, and
Ramamithram 1988; Woodside and Craig 1987).

Wide ranging issues such as public policy, patient
treatment procedures, and capital expenditure
requirements in health care delivery can be addressed
using simulation (Standridge 1999). Some of the
characteristics of simulation are given below.

1) Conformation to both system structure and

available system data.

2) Support to experimentation at relatively low cost
and at little risk.

3) Conformation of results to unique system
requirements for information.

Mistakes in medical field are very expensive and
simulation can help in generating correct architectural
decisions (Lange 1999) to avoid major losses to lives of
human beings. Traditional medical planning and
architecture methods are very expensive and hence, are
seldom implemented by hospitals and clinics.
Simulation can address all the “chaotic states” before
actual implementation can be carried out. Simulation
also helps in elimination of potential errors and mistakes
in the design of any patient care system. Computer-
human interface solutions for emergency medical were
designed utilizing the technology of simulation
(Holzman 1999). In such solutions, simulation was used
for the configuration, functionality, and evaluation apart
from system architecture of computer systems that assist
medics in providing effective emergency medical care.

Before describing the task-scheduling scheme, the
physical and logical elements of the system are
presented.

2. PHYSICAL SPECIFICATION

As figure 1 shows, the entire system is composed of
experts, monitoring devices (M1, M2, ..., Mk),

mechanical devices such as intravenous fluid pumps and
ventilator denoted as I1, I2, ..., In, and a control feedback
system. The control feedback system consists of a set of
subsystems (SS1, SS2, ..., SSk) that are capable of
communicating with other subsystems. Physically, each
subsystem consists of a set of processors, I/O devices,
local and external memories, and communication
facilities.

Under normal conditions, each subsystem is responsible
to receive the information on the status of the patient
through a corresponding monitor and controls its
associated mechanical device. However, due to the
criticalness of the operations, each subsystem is able to
receive signals from all the monitors directly or through
other subsystems. Further, each subsystem is capable of
sending signals to all mechanical devices. Inter-
connection of all the monitors and mechanical devices to
each individual subsystem will achieve the targeted
response. Such a fully connected network gives the
subsystem a built-in fault tolerance capability that is
essential to every life support system.

In

I2

I1

Mk
M2

SS2

SS1

M1

Patient

SSk

Expert

Figure 1. System Overview

The major tasks of each subsystem are collecting the
information, scheduling the next event, and coordinating
its action with other subsystems. What follows is a
description of how these tasks are achieved.

3. LOGICAL SPECIFICATION

The expert is the focal point of this system. He/she will
initiate the monitoring of a patient and input
recommended treatment. However, to automate the
system to the point that it would be capable of making
decisions, each subsystem should continuously collect
and store information on the status of the patient,
schedule the next event, and coordinate its actions with
other subsystems. Thus, the logical elements of each
subsystem can be specified in terms of a task scheduler,
a database management, and a coordinator.

Within each subsystem, a processor is designated to
perform a logical element. These processors are referred
to as task scheduler, coordinator, and database manager.
In other words, each subsystem can be viewed as a
multiprocessor that is capable of executing its tasks in
real-time and concurrently. The following is a brief
description of the logical elements.

Database Manager
The database manager is responsible to collect all the
necessary data provided by the monitor and organize
them based on their criticalness. It also stores the
history of decisions made by the expert so far, and the
corresponding data. This information and decisions help
the expert to plan his treatment strategy. They can also
be used to automate the decision making process used
by the feedback control system (the detail of mapping a
data set into a decision is beyond the scope of this
paper). For the database manager to achieve its tasks, it
must receive information from the monitor,
communicate with the expert through the interface
subsystem, and present the results in a simple form to
the expert.

The database manager must communicate with the task
scheduler to provide the required information for
scheduling the next event. It also must communicate
with the coordinator that provides access to other
subsystems. This facilitates the information sharing
required for coordinating the subsystems actions.

Coordinator
The coordinator processor works as media between the
database manager, task scheduler, and other subsystems.
In a normal condition, the coordinator gets the data from
the database manager and the corresponding decision
made by the expert or the task scheduler and sends them
to other subsystems. Conversely, it receives the
information and decisions that have been made by other
subsystems and passes them to the database manager to
be stored as a history. To tolerate subsystem failures,
the functional capability of each subsystem has been

replicated in others. Therefore, each of them is capable
of performing the affected subsystem tasks. A suitable
technique for determining the availability of subsystems
is described elsewhere (Alijani and Chang Su 1990).

Task Scheduler
Generally, in a real-time computing system, tasks are
classified as periodic and sporadic. In our system, under
a normal condition, the scheduler is responsible to
schedule the events (periodic tasks) related to a specific
mechanical device after receiving information from the
database manager and coordinator. However, in case of
a subsystem failure, the scheduler should manage more
than one device, and since the arrival times of these
events are not predictable, the scheduler should be able
to schedule sporadic tasks. While a task’s deadline is
usually known at the time of scheduling, its computation
time is dependent on the data and availability of local
and global resources. In the following paragraphs, we
briefly describe our task scheduler scheme that has been
tested in a multiprocessor and a distributed system.
More details of algorithms and implementations of the
task scheduler can be found elsewhere (Alijani and
Wedde 1991).

To alleviate the problem, we make the use of the idea of
'safety time', a factor that is added to the worst-case
computation time of each task whenever the deadline of
the new task and the status of the scheduled tasks
follow. Our scheduler consists of three phases and it is
able to take advantage of accumulated safety times and
locally available resources provided through replication
and relocation techniques (Wedde and Alijani 1990).
These factors provide the scheduler an extensive
flexibility to handle a maximum number of critical tasks
locally.

The success of scheduling a new task depends on its
deadline, its worst-case computation time, and the
current status of scheduled tasks. In our model, worst-
case computation time, WT, consists of retrieving data,
making a decision, and sending a signal to an
appropriate mechanical device. The current status of
each scheduled task is stored in a schedule list defined
as S-List. To find an available time slot for a new task a
search must be conducted within a 'window frame'. The
size of the window, ws, can be defined in terms of the
present time, t, and the deadline, dt, of the new task, ws
= dt – t. The local scheduler maintains the S-List in
which the tasks are ordered according to their start
times. Therefore, the task with the Earliest-Start-Time
will be executed next. The three phases of the task
scheduler are described below.

 First Phase: In this phase, all generated tasks
(local or remote) are to be examined and possibly
scheduled without using the STF (safety time factor)
associated with each scheduled task. This phase will
activate the second phase of the local scheduler if a new
critical task meets a preset threshold (to be explained in

the second phase), and thus cannot be scheduled without
further manipulation of the already scheduled tasks.

 Second Phase: In this phase, the scheduler tries to
guarantee timely execution of a new task by
manipulating the already scheduled tasks within a
window frame and utilizing the accumulated safety
times. A metric will be defined in order to decide
whether a task is “critical enough” to activate the second
and possibly third phase of the scheduler. The scheduler
compares a new task criticalness, cr, with a flexible
threshold, TH, that will be set by the system as a
parameter. If cr ≥ TH, then the new task is considered
as a critical task. Otherwise, it will be classified as a
non-critical task. Within the window frame, a forward
shifting is performed to utilize the STFs and available
times for scheduling the new critical task. If the
provided time frame is less than the WT, then the third
phase of the scheduler will be activated.

 Third Phase: The critical tasks that are not
processed by the second phase will be passed to the third
phase for further consideration. Removal of one or
more less critical tasks from the list is performed in
order to provide a time slot for a new highly critical
task. These tasks will be sent to other subsystems
through the coordinator. Since searching for a victim
low priority or non-critical task adds overhead to the
subsystem, a provision must be made to reduce the
search domain. In this model, a combination of the
threshold and window frame will provide the system
with an efficient search scheme. It should be noted that
the non-critical tasks are guaranteed to be executed in
the absence of critical tasks or when the schedule has
enough accumulated time due to the safety times. The
critical tasks are guaranteed to be executed once they are
in the scheduler list.

4. CONCLUSIONS

In this paper, we have described the layout for design
requirements of a real-time automated patient care
system that is capable of performing in an unpredictable
environment and tolerates failures. The advantage of the
system is it provides the means for continuous
monitoring of a patient, and it releases the staff from
performing the trivial tasks and leaves them to more
important tasks of supervision and giving the patient the
emotional support and human interaction.

5. REFERENCES

Alijani, G. S. and S. Chang Su, 1990, “A Real-Time

Task Scheduling Scheme Using Loosely Couple
Systems.” Proceedings of the Third Conference of
the North America User Group, pp. 128-137.

Alijani, G. S., A. Omar, and J. S. Welsh, 1997, “An

Adaptive Learning Strategy for Autonomous

Machines.” Proceedings of the URC-TC ’97
Conference, pp. 43-48.

Alijani, G. S. and H. F. Wedde, 1991, “Enhanced

Reliability In Scheduling Critical Tasks for Hard
Real-Time Distributed Systems.” Proceedings of
ICCI ’91.

Anderson, T. and J. C. Knight, 1983, “A Framework for

Software Fault Tolerance in Real-Time Systems.”
IEEE Transactions on Software Engineering, SE-9
(3).

Bednash, G., 2000, “The Decreasing Supply of

Registered Nurses – Inevitable Future or Call for
Action?” Journal of American Medical
Association, 283 (22), pp. 2985-2987.

Biyabani, S. R., J. A. Stankovic, and K. Ramamithram,

1988, “The Integration of Deadline and Criticalness
in Hard Real-Time Scheduling.” Proceedings of
Real-Time Systems Symposium.

Buerhas, P. I., D. O. Staiger, and D. I. Auerbach, 2000,

“Implications of an Aging Registered Nurse
Workforce.” Journal of American Medical
Association, 283 (22), 2948-2954.

Hac, A. and X. Jin, 1987, “Dynamic Load Balancing in

a Distributed System Using a Decentralized
Algorithm.” International Conference on
Distributed Computing Systems.

Holzman, T. G., 1999, “Computer-Human Interface

Solutions for Emergency Medical Care.”
Interactions, pp. 13-24.

Krishnan, P. and R. Volz, 1989, “A Distributed Real-

Time Language and its Operational Semantics.”
IEEE Real-Time System Symposium, pp. 41-50.

Lange, V. E., 1999, “The benefits of simulation

modeling in medical planning and medical design.”
Proceedings of the 1999 Winter Simulation
Conference, pp. 1564-1567.

Standridge, C. R., 1999, “A tutorial on simulation in

health care: Applications and issues.” Proceedings
of the 1999 Winter Simulation Conference, pp. 49-
55.

Wedde, H. F. and G. S. Alijani, 1990, “MELODY: A

Distributed Adaptive File System for Handling
Real-Time Tasks in Unpredictable Environments.”
Journal of Real-Time Systems, 2 (4).

Woodside, C. M. and D. W. Craig, 1987, “Local Non-

Preemptive Scheduling Policies for Hard Real-
Time Distributed Systems.” Proceedings of Real-
Time Systems Symposium.

In

I2

I1

Mk
M2

SS2

SS1

M1

Patient

SSk

Expert

Figure 1. System Overview

	Abstract

