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Abstract 
 

Improvements in technology call for the development of patient care systems that can alleviate problems encountered 
due to decrease in the workforce of hospitals.  The systems developed for patient care and clinical care should be real-
time systems that can perform required functions.  Criticality of patients’ health should be taken into consideration 
while developing these systems.  Simulation modeling helps solve the problem in the design of patient care systems.  
Automated Patient Care System (APCS) encompasses the requirements in hospitals that specifically address the needs 
of in-patients.  APCS aims at the design and implementation of a highly reliable real-time model that provides the 
means to investigate the feasibility of an automated patient care system.  Systems that perform critical missions in 
unpredictable environments require a significant consideration in efficient use of the available resources.  Further, the 
underlying system requirements should be taken into consideration.  The APCS model will address all the criticalities 
involved and will result in effective implementation of real-time system.  The model should be of interest to medical 
professionals, hospitals and clinics, and the officials of the Health Department as it focuses on the system design and 
lays out the groundwork for a complete automated system supported by real-time task scheduling and incremental 
learning techniques for effective performance in unpredictable environments. 
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1. INTRODUCTION 
 
In recent years, the use of computers in controlling and 
monitoring of information, industrial, and medical 
systems has been expected greatly.  The two million 
nurses in the medical field constitute the largest group of 
health care professionals.  Between the years of 1983 
and 1998, the average age of registered nurses has 
increased by 4.5 years (Buerhas, Staiger, and Auerbach 
2000).  This is due to the decrease in the number of 
women who show interest in the career of nursing.  This 
decline in the number of women in nursing career is 
attributed to wide choice of career opportunities that 
exist for them (Bednash 2000).  Improvements in 
technology call for the development of patient care 
systems that can alleviate problems encountered due to 
decrease in the workforce of hospitals. Time-critical 
applications such as life support systems require real-
time response to operations and should be able to 
function in unpredictable environment.  For the last two 
decades, the issues of real-time responsiveness and 
unpredictability of environment have been studied in 
terms of other requirements, such as languages 
(Krishnan and Volz 1989), task scheduling (Alijani and 

Chang Su 1990), load balancing (Hac and Jin 1987), and 
reliability and fault tolerance (Alijani and Wedde 1991; 
Anderson and Knight 1983).  Also, learning by 
incremental techniques would make time-critical 
missions more effective.  Such an adaptive learning 
strategy is vital for hard real-time tasks (Alijani, Omar, 
and Welsh 1997).  All these aspects contribute to design 
of more complex and complete systems; however, it is 
clear that task scheduling schemes and fault tolerance 
mechanisms are more essential elements required by any 
real-time system performing critical missions. 
 
Real-time systems are categorized as soft and hard real-
time systems.  In a soft real-time system, the time 
constraints of time-critical tasks might not be so 
restrained, and a statistical distribution of response time 
is normally acceptable.  However, in hard real-time 
systems, tasks must be completed before some fixed 
time has elapsed.  Thus, the importance of meeting the 
task’s execution deadline make a reliable task 
scheduling scheme a central issue for the correctness 
and reliability of the system (Biyabani, Stankovic, and 
Ramamithram 1988; Woodside and Craig 1987). 
 



Wide ranging issues such as public policy, patient 
treatment procedures, and capital expenditure 
requirements in health care delivery can be addressed 
using simulation (Standridge 1999).  Some of the 
characteristics of simulation are given below. 
 
1) Conformation to both system structure and 

available system data. 

2) Support to experimentation at relatively low cost 
and at little risk. 

3) Conformation of results to unique system 
requirements for information. 

 
Mistakes in medical field are very expensive and 
simulation can help in generating correct architectural 
decisions (Lange 1999) to avoid major losses to lives of 
human beings.  Traditional medical planning and 
architecture methods are very expensive and hence, are 
seldom implemented by hospitals and clinics.  
Simulation can address all the “chaotic states” before 
actual implementation can be carried out.  Simulation 
also helps in elimination of potential errors and mistakes 
in the design of any patient care system.  Computer-
human interface solutions for emergency medical were 
designed utilizing the technology of simulation 
(Holzman 1999).  In such solutions, simulation was used 
for the configuration, functionality, and evaluation apart 
from system architecture of computer systems that assist 
medics in providing effective emergency medical care. 
 

Before describing the task-scheduling scheme, the 
physical and logical elements of the system are 
presented. 
 

2. PHYSICAL SPECIFICATION 
 
As figure 1 shows, the entire system is composed of 
experts, monitoring devices (M1, M2, ..., Mk), 

mechanical devices such as intravenous fluid pumps and 
ventilator denoted as I1, I2, ..., In, and a control feedback 
system.  The control feedback system consists of a set of 
subsystems (SS1, SS2, ..., SSk) that are capable of 
communicating with other subsystems.  Physically, each 
subsystem consists of a set of processors, I/O devices, 
local and external memories, and communication 
facilities. 
 
Under normal conditions, each subsystem is responsible 
to receive the information on the status of the patient 
through a corresponding monitor and controls its 
associated mechanical device.  However, due to the 
criticalness of the operations, each subsystem is able to 
receive signals from all the monitors directly or through 
other subsystems.  Further, each subsystem is capable of 
sending signals to all mechanical devices.  Inter-
connection of all the monitors and mechanical devices to 
each individual subsystem will achieve the targeted 
response.  Such a fully connected network gives the 
subsystem a built-in fault tolerance capability that is 
essential to every life support system. 
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Figure 1. System Overview 



The major tasks of each subsystem are collecting the 
information, scheduling the next event, and coordinating 
its action with other subsystems.  What follows is a 
description of how these tasks are achieved. 
 

3. LOGICAL SPECIFICATION 
 
The expert is the focal point of this system.  He/she will 
initiate the monitoring of a patient and input 
recommended treatment.  However, to automate the 
system to the point that it would be capable of making 
decisions, each subsystem should continuously collect 
and store information on the status of the patient, 
schedule the next event, and coordinate its actions with 
other subsystems.  Thus, the logical elements of each 
subsystem can be specified in terms of a task scheduler, 
a database management, and a coordinator. 
 
Within each subsystem, a processor is designated to 
perform a logical element.  These processors are referred 
to as task scheduler, coordinator, and database manager.  
In other words, each subsystem can be viewed as a 
multiprocessor that is capable of executing its tasks in 
real-time and concurrently.  The following is a brief 
description of the logical elements. 
 
Database Manager 
The database manager is responsible to collect all the 
necessary data provided by the monitor and organize 
them based on their criticalness.  It also stores the 
history of decisions made by the expert so far, and the 
corresponding data.  This information and decisions help 
the expert to plan his treatment strategy.  They can also 
be used to automate the decision making process used 
by the feedback control system (the detail of mapping a 
data set into a decision is beyond the scope of this 
paper).  For the database manager to achieve its tasks, it 
must receive information from the monitor, 
communicate with the expert through the interface 
subsystem, and present the results in a simple form to 
the expert. 
 
The database manager must communicate with the task 
scheduler to provide the required information for 
scheduling the next event.  It also must communicate 
with the coordinator that provides access to other 
subsystems.  This facilitates the information sharing 
required for coordinating the subsystems actions. 
 
Coordinator 
The coordinator processor works as media between the 
database manager, task scheduler, and other subsystems.  
In a normal condition, the coordinator gets the data from 
the database manager and the corresponding decision 
made by the expert or the task scheduler and sends them 
to other subsystems.  Conversely, it receives the 
information and decisions that have been made by other 
subsystems and passes them to the database manager to 
be stored as a history.  To tolerate subsystem failures, 
the functional capability of each subsystem has been 

replicated in others.  Therefore, each of them is capable 
of performing the affected subsystem tasks.  A suitable 
technique for determining the availability of subsystems 
is described elsewhere (Alijani and Chang Su 1990). 
 
Task Scheduler 
Generally, in a real-time computing system, tasks are 
classified as periodic and sporadic.  In our system, under 
a normal condition, the scheduler is responsible to 
schedule the events (periodic tasks) related to a specific 
mechanical device after receiving information from the 
database manager and coordinator.  However, in case of 
a subsystem failure, the scheduler should manage more 
than one device, and since the arrival times of these 
events are not predictable, the scheduler should be able 
to schedule sporadic tasks.  While a task’s deadline is 
usually known at the time of scheduling, its computation 
time is dependent on the data and availability of local 
and global resources.  In the following paragraphs, we 
briefly describe our task scheduler scheme that has been 
tested in a multiprocessor and a distributed system.  
More details of algorithms and implementations of the 
task scheduler can be found elsewhere (Alijani and 
Wedde 1991). 
 
To alleviate the problem, we make the use of the idea of 
'safety time', a factor that is added to the worst-case 
computation time of each task whenever the deadline of 
the new task and the status of the scheduled tasks 
follow.  Our scheduler consists of three phases and it is 
able to take advantage of accumulated safety times and 
locally available resources provided through replication 
and relocation techniques (Wedde and Alijani 1990).  
These factors provide the scheduler an extensive 
flexibility to handle a maximum number of critical tasks 
locally. 
 
The success of scheduling a new task depends on its 
deadline, its worst-case computation time, and the 
current status of scheduled tasks.  In our model, worst-
case computation time, WT, consists of retrieving data, 
making a decision, and sending a signal to an 
appropriate mechanical device.  The current status of 
each scheduled task is stored in a schedule list defined 
as S-List.  To find an available time slot for a new task a 
search must be conducted within a 'window frame'.  The 
size of the window, ws, can be defined in terms of the 
present time, t, and the deadline, dt, of the new task, ws 
= dt – t.  The local scheduler maintains the S-List in 
which the tasks are ordered according to their start 
times.  Therefore, the task with the Earliest-Start-Time 
will be executed next.  The three phases of the task 
scheduler are described below. 
 
 First Phase:  In this phase, all generated tasks 
(local or remote) are to be examined and possibly 
scheduled without using the STF (safety time factor) 
associated with each scheduled task.  This phase will 
activate the second phase of the local scheduler if a new 
critical task meets a preset threshold (to be explained in 



the second phase), and thus cannot be scheduled without 
further manipulation of the already scheduled tasks. 
 
 Second Phase:  In this phase, the scheduler tries to 
guarantee timely execution of a new task by 
manipulating the already scheduled tasks within a 
window frame and utilizing the accumulated safety 
times.  A metric will be defined in order to decide 
whether a task is “critical enough” to activate the second 
and possibly third phase of the scheduler.  The scheduler 
compares a new task criticalness, cr, with a flexible 
threshold, TH, that will be set by the system as a 
parameter.  If cr ≥ TH, then the new task is considered 
as a critical task.  Otherwise, it will be classified as a 
non-critical task.  Within the window frame, a forward 
shifting is performed to utilize the STFs and available 
times for scheduling the new critical task.  If the 
provided time frame is less than the WT, then the third 
phase of the scheduler will be activated. 
 
 Third Phase:  The critical tasks that are not 
processed by the second phase will be passed to the third 
phase for further consideration.  Removal of one or 
more less critical tasks from the list is performed in 
order to provide a time slot for a new highly critical 
task.  These tasks will be sent to other subsystems 
through the coordinator.  Since searching for a victim 
low priority or non-critical task adds overhead to the 
subsystem, a provision must be made to reduce the 
search domain.  In this model, a combination of the 
threshold and window frame will provide the system 
with an efficient search scheme.  It should be noted that 
the non-critical tasks are guaranteed to be executed in 
the absence of critical tasks or when the schedule has 
enough accumulated time due to the safety times.  The 
critical tasks are guaranteed to be executed once they are 
in the scheduler list. 
 

4. CONCLUSIONS 
 
In this paper, we have described the layout for design 
requirements of a real-time automated patient care 
system that is capable of performing in an unpredictable 
environment and tolerates failures.  The advantage of the 
system is it provides the means for continuous 
monitoring of a patient, and it releases the staff from 
performing the trivial tasks and leaves them to more 
important tasks of supervision and giving the patient the 
emotional support and human interaction. 
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Figure 1. System Overview


	Abstract

