

Migrating a Traditional Network and Data
Communication Laboratory Course to an Information

Systems-Friendly Environment

Michael E. Battig – mbattig@smcvt.edu
Computer Science Department, St. Michael’s College

Colchester, VT 05439

and

Ronald Sobol – Ronald_Sobol@res.raytheon.com
Raytheon Electronics Systems – MS T3MR5, 50 Apple Hill Drive

Tewksbury, MA 01876

Abstract

Networking and data communication have become more prominent in the information technology arena over the past
ten years. Graduates of Information Systems or Computer Science programs should possess some competence in this
computing sub-discipline. However, many universities opt to exploit resources and find synergy between the
Computer Science and Information Systems curricula where possible. We present an approach to teaching the subject
that gives students a rich set of laboratory experiments and yet is appropriate for both the Information Systems and
Computer Science curricula. Our approach gives students access to the implementation detail of data communication
protocols in an NT/Visual Basic programming environment that is friendly to Information Systems.

Keywords: Networking, telecommunications, laboratory course, computing curricula, information systems curricula

1. INTRODUCTION

With the explosive growth of computer networks and
telecommunications in recent years, the need for
undergraduate instruction in the subject has become
apparent. This particular computing sub-discipline
represents one with significant overlap and synergy
between IS and CS. CS curricular guidelines place this
topic under the Operating Systems umbrella (ACM
1990), whereas IS curricular recommendations tend to
make it a separate category altogether (AITP 1997).
This paper presents a course designed to serve both the
CS and IS audiences.

The curricular guidelines for CS list the following topics
as part of a networks course: architecture, protocols,
switching, routing, LANs, data security, and layers of
communication networks. The curricular guidelines for
IS list these topics: networking requirements, hardware,
software, architectures, topologies, protocols, and
security. Although the above lists are incomplete

(we’ve emphasized the similarities), they do highlight
the points of intersection between the curricular
recommendations. Furthermore, we will show how our
laboratory experiments reinforce these topics.

Many universities have the luxury of maintaining
distinct IS and CS faculty/curricula. Some colleges,
whether due to budget, size or curricular choice, have
decided to integrate some of the IS and CS curricula.
Therefore, adapting courses to both programs is
preferred for the same reasons that class libraries are
preferred in software development, i.e., we get greater
reuse from our efforts. Our program features a joint
first-year curriculum for IS and CS majors. This model
has proved beneficial in a context where the driving
force was service to student needs, as opposed to just
optimizing faculty resources (Harrington 1995). This
paper will describe experiences in developing and
adapting an undergraduate course in networks/data
communications and provide resources for
implementing the course within any IS program.

mailto:mbattig@smcvt.edu
mailto:Ronald_Sobol@res.raytheon.com

This course began at a large state university that
received an NSF grant to develop an inexpensive data
communications laboratory for use in its undergraduate
CS program (Smith 1994, 1991). The results produced
a highly portable course concept. As part of the grant,
hardware specifications for a simple data
communications lab were given which involves
connecting PCs together with null modems using their
serial ports. The course was subsequently adapted to fit
a small college curriculum and to incorporate exposure
to object-oriented software development (Battig 1998).
In this work we will share our experience from
migrating this laboratory course to serve a joint
curriculum in CS/IS. The course was adapted to allow
the laboratory component to operate on Windows NT
workstations using Visual Basic as the programming
language to implement a simple data communications
protocol. The protocol utilized is a simplification of
BSC (IBM’s Binary Synchronous Communications).
Details of this protocol can be found in most popular
textbooks (Shay 1999; Stallings 2000; Tannenbaum
1996).

2. IS/CS CURRICULAR ISSUES

Our institution offers both CS and IS degrees at the
baccalaureate level. Since we are operating at a
relatively small college, the CS and IS programs share
faculty, computing resources, and contain a common
core of courses. The goal is to create a network/data
communications course that is appropriate for both
majors. It is worth mentioning at this point that the IS
program has an emphasis on software development and
therefore leans more toward the technical (versus
managerial) end of the spectrum.

Regardless of the degree program (i.e., CS versus IS),
the main pedagogical goal of the networks/data
communications course is to provide students with a
foundation in the terminology, concepts, and
implementation issues of this computing sub-discipline.
The inclusion of the laboratory component is designed
to reinforce the classroom material. Thus, students
become intimately acquainted with at least one protocol
and its accompanying frame formats. As a result,
students develop a point of reference for understanding
other protocols and their underlying implementation
details.

There have been a number of interesting side effects
observed with the inclusion of this course in the
curriculum. Many students have commented that they
learned quite a bit of software engineering practice from
the assignments in the course. This is due to several
facets of the laboratory work. First, it is an opportunity
to move away from the “programming in the small” and
toward “programming in the large.” Since the
assignments constitute several pieces of one larger

puzzle, the students must live with the consequences of
earlier design decisions (They are warned about this by
the way, lest the reader think the authors enjoy some
twisted form of hazing!). Second, this pedagogical
approach is being promoted on a national level by such
groups as the ACM that urge us to teach software
engineering in the warp and woof of the curriculum, not
just in a single course (Johnson 1997).

The nature of network layers (i.e., OSI model) lends
itself well to incremental and object-oriented
programming. The students begin to see the benefits of
code reuse in that they are not building the entire project
from scratch. Thus, the inclusion of the data
communications/networks course provides an
opportunity for additional exposure to the object-
oriented software development paradigm in a realistic
scenario.

3. LABORATORY MIGRATION

Just as abstract data types become meaningful to
students through implementation, communication
protocols are better understood when actually
implemented. Although the possibilities are numerous,
we restricted our course to four lab assignments: send,
receive, error-checking, and data encryption. The
assignments are given to correspond with the timing of
the relevant material covered in lecture (e.g., the error-
checking assignment is given at about the same time that
the CRC method is discussed in class). Thus, the
laboratory work consists of incrementally building a
complete program that contains portions of a typical
data communications exchange occurring at the lowest
three levels of the OSI model.

The receive assignment is given first. Along with
explanation of the BSC protocol, students receive
instruction on how to use the hardware and software in
the data communications laboratory. For the receiver
lab, students are provided with a send program which
allows for adequate testing of the receive program using
a monitor program. For the second assignment students
are required to add sending capability. Thus, the
program must be able to function as both sender and
receiver depending on the situation. The third
assignment consists of implementing a 16-bit CRC error
detection algorithm. Finally, students implement a data
encryption algorithm (students are permitted to choose
among several alternatives). Consequently, they are
incrementally building a single program over the course
of the semester.

The Monitor program, along with the others described
here, is provided in the Appendix. The purpose of the
Monitor is twofold. First, it provides students with the
necessary means of testing and debugging their lab
work. Second, it provides the instructor with the
capability of verifying student work. Related to this, the

monitor has the ability to corrupt CRC values in data
frames. Thus, students and instructors can simulate the
anomalous occurrence of data loss or corruption due to
such hard to simulate events as electromagnetic
interference.

Originally the lab portion of this course was migrated
from Turbo Pascal (since the original NSF funded
program provided Turbo Pascal source code drivers for
the IBM PC communications ports) to C++ (Battig
1998). The transition from Pascal to C++ was expedited
by incorporating C++ code provided by one author’s
RS-232 class (Nelson 1992). However, the prior lab
software utilized DOS-specific routines to program the
communication ports. Therefore, since we were creating
new lab software (in light of our desire to use NT), we
decided that the use of Visual Basic would provide a
CS/IS curricular integration benefit.

Our initial experience using the new platform was
positive. During the first semester of use (Spring 2000)
we observed several benefits. First, Visual Basic is well
suited for the interface portion of the project. I.e.,
students found it much easier to create separate windows
for the various lab components, which allowed them to
focus more effort on the essential issue of dealing with
the communication protocol. Second, we found that the
Microsoft Winsock 5.0 control (available to both Visual
Basic 5.0 & 6.0) provides a convenient means of
establishing connections between stations in the NT
environment. The Winsock control provides a protocol
property that allows for the specification of either the
TCP or the UDP protocol. The programs provided in
the Appendix demonstrate the use of this feature.
Lastly, we noted that student enthusiasm increased in
the new environment (we were no longer asked: “Why
do we have to do our labs on this arcane equipment?”).

Over the years we have found that implementing the
CRC error detection algorithm presents the greatest
challenge to students. In reality, we are asking them to
implement something that is really suited for a hardware
implementation (shift registers and XOR gates are not
typically implemented in Visual Basic). Therefore, we
are providing a complete CRC test program (written in
Visual Basic, see Appendix), which may be supplied to
students as part of laboratory materials for the course.
Thus, the students will need to incorporate the CRC
routine into their communication program in order to
validate the integrity of the data during the transmission
(in reality the monitor poses the greatest statistical threat
to their data given the likelihood of data corruption on a
typical campus network).
We have discovered that the use of Visual Basic
produces some interesting outcomes. First, most IS
majors have some background in VB. Second, CS
majors (who are typically familiar with C++ and/or
Java) are able to learn Visual Basic quickly. This
additional programming language exposure has some

positive side effects. Students implicitly learn
programming language differences (especially given the
event driven nature of VB). Students have also reported
that Visual Basic programs are fairly robust (compared
to the DOS/C++ environment) and are easier to test and
debug.

4. CONCLUSION

The inclusion of a networks and data communications
course to the synergistic IS/CS curricula has been
presented. We have shown that points of intersection
exist between IS and CS curricula that may be exploited
in order to teach to both audiences. The course was
developed with an eye toward minimizing costs and
faculty preparation in addition to utilizing existing
laboratory facilities. The course concept has been
determined to be scaleable for large and small
institutions as well as applicable to the needs of both IS
and CS curricula. An unexpected benefit of the course
is the many opportunities found for integrating and
reinforcing concepts found across computing curricula.
Finally, we have included our software toolset (see
Appendix), which will assist in the development of
telecommunications laboratory experiments that
reinforce the course content.

5. ACKNOWLEDGEMENTS

The authors wish to thank Rainey Little and Chuck
Thomas for their helpful suggestions and
encouragement.

6. REFERENCES

ACM/IEEE-CS Joint Curriculum Task Force,

Computing Curricula 1991, 1991
http://www.computer.org/education/cc1991.

AITP, IS'97 Curriculum Model for 4 Year

Undergraduate Programs in Information Systems,
1997,http://www.is2000.org/is2k/rev/Review1.asp.

Battig, Michael E., “Scaling a Data Communications

Laboratory Course to Fit the Small College
Curriculum,” 1998, The Journal of Computing in
Small Colleges, vol. 13, no. 4.

Harrington, Jan L. and Helen M. Hayes, “A Joint First

Year Program for Computer Science and
Information Systems,” 1995, SIGCSE Bulletin, vol.
27, no. 1, pg. 121-5.

Johnson, Hubert A., “Integrating Software Engineering

into the Traditional Computer Science
Curriculum,” 1997, SIGCSE Bulletin, vol. 29, no.
2, pg. 39-53.

Nelson, Mark, Serial Communications: A C++
Developer’s Guide, 1992, M & T Publishing Inc.

Shay, William A., Understanding Data Communications

and Networks, 2nd Ed., 1999, PWS Publishing Co.

Smith, Wayne, “Tutorial: A Laboratory to Support a

First Course in Data Communications Using
Personal Computers and Turbo Pascal,” 1994,
SIGCSE Bulletin, vol. 26, no. 1, pg. 404.

Smith, Wayne, “The Design of An Inexpensive

Undergraduate Data Communications Laboratory,”
1991, SIGCSE Bulletin, vol. 23, no. 1, pg. 273-6.

Stallings, William, Data and Computer

Communications, 6th Ed., 2000, Prentice-Hal, Inc.

Tannenbaum, Andrew S., Computer Networks, 3rd Ed.,

1996, Prentice-Hall, Inc.

APPENDIX

Four complete Visual Basic 5.0 programs are provided
in our zip file. To download the zip file, visit the web
site at: academics.smcvt.edu/compsci/CSLinks.htm.
The four programs are described below along with
details about the laboratory assignments.

 The Monitor program is perhaps the most
critical piece of software for the laboratory experiments.
Both students and faculty need the Monitor program for
program validation. We recommend that students not be
given access to the Monitor source code since it
contains too much that could be pirated for the lab work.
An actual run of the Monitor program is shown below.

The Chat program is a simple communication program
that demonstrates the use of UDP (Winsock 5.0), Visual
Basic, and the Monitor to establish connections between
two workstations without any particular protocol or data
frame (i.e., typed characters are simply transmitted as
they are keyed and received characters are displayed in a
separate window). The Chat program’s source code
serves as the starting point for students constructing
their own programs that will implement the BSC
protocol. Therefore, the Chat program is the only
program for which the students receive the source code.

The CRC program is a standalone program that
calculates CRC-16 values for input character strings.
This program serves two purposes. First, it provides a

source for validating computed CRC values by students.
Second, for those faculty members who do not wish to
inflict students with the pain and suffering of building
their own CRC routines, this source code may be
provided to students. In this second case, the students
will still have to incorporate the logic into their
programs to send/receive NAKs when the Monitor
corrupts CRC values.

The final program is the complete DataComm program
that can send, receive, calculate CRC values, and
recover from errors injected by the Monitor program.
Care must be taken to prevent students from obtaining
the source code of this program. This program serves
two useful purposes for students. First, it provides them
with a working model of how their finished program
should function. Second, it provides the necessary
sending capability that they need to build a receiver
program (the very first assignment).

Finally, it is worth mentioning that these programs could
quite possibly be adapted to work with other frame
formats or protocols. For example, one could construct
a circular sequence of stations and implement a token
ring laboratory.

A sample execution of the Monitor program
 (written in Visual Basic 5.0)

	Computer Science Department, St. Michael’s College
	Raytheon Electronics Systems – MS T3MR5, 50 Apple Hill Drive
	APPENDIX

