

Developing Adaptive Intelligent Tutoring Systems:

A General Framework and Its Implementations

Jens O. Liegle1
and

Han-Gyun Woo

Department of Computer Information Systems, Georgia State University
Atlanta GA 30303, USA

Abstract

Web-based training is increasingly gaining popularity both in industry and education. Although a number of studies,
experiments, and developments have been conducted in this area, few evidence cases of success have been reported.
One likely reason for the lack of success is that just placing lecture notes on the web does not train. This situation can
be improved through the use of training software such as Intelligent Tutoring Systems (ITS). ITS incorporate built-in
expert systems in order to monitor the performance of a learner and to personalize instruction on the basis of adaptation
to learners’ learning style, current knowledge level, and appropriate teaching strategies.
However, researchers and developers quickly find out that developing such systems is an enormous task, which is
further complicated by the fact that one cannot simply borrow tools from other systems and incorporate them due to
various levels of incompatibility at the programming and knowledge base level. To allow for more general ITS, which
means that it can be used in other domains, it is required that ITS should be designed and implemented so as to support
easy modification of lecture content, modification of decision rules in the expert system, and to support various
methods to measure the performances of learning.
In this paper, we propose a general framework and data model for web-based adaptive ITS that allows knowledge to be
stored in such a way that is not only independent of the knowledge domain, but also supports the storage of transfer
knowledge relationships and prerequisite knowledge relationships. We expect that our unified approach could
contribute to the establishment of cumulative research traditions in ITS studies.

Keywords: Intelligent Tutoring Systems, Cognitive Style, Learning Style, System Development, Framework

1 jliegle@cis.gsu.edu

1. INTRODUCTION
Computer-based training (CBT) has become more
popular since the 1990s. Corporations delivered 10% of
their training through CBT Systems in 1996, and 16% of
the Fortune 1000 companies trained through multimedia
systems (Filipczak, 1996). These days, web-based
training is increasingly gaining popularity in education
as well as in industry. A recent survey found that web-
based training (WBT) is the newest and fastest growing
training method (McGee, 1998), a trend that is predicted
to result in an online training industry reaching $28
billion per year worldwide by 2001 (Dillon, 1997). A
reason for this trend is that the Web is a very cost-
effective way of distributing training material to
employees (Liegle and Madey, 1997; McGee, 1998;

Dede, 1996). Universities are following this web-
training trend by offering entire classes and degrees
online, e.g., New York University, Drexel University,
Britain’s Open University, and the University of
Phoenix (Herther, 1997).

One of the benefits from web-based training is
punctuality. Using web-based training, corporations are
able to deliver just-in-time training when it is needed by
employees (Gibbons, 1997). Moving to the Web
provides benefits in form of on-the-job continuing
education and general training (Moore, 1996).
Furthermore, web-based training is platform
independent and makes maintenance of systems and
contents much easier (Cole, et al., 1997).

Despite the fact that many studies, experiments, and
prototype developments have been conducted in the area
of CBT systems, and although many systems have been
developed that support training and lecturing in the form
of CAL, CAI, CBT, and WBT (Hawkins, 1997; Kruse,
1997; Hardaway and Will, 1997), the vast majority of
such systems in industry and commerce are not as
successful as had been hoped (Martinsons and
Schindler, 1995; Nelson, Whitener, and Philcox, 1995;
Wells, Layne and Flowers, 1993; and Major and
Reichgelt, 1992).

One important reason for this lack of success is that
“information is not instruction” (Jim L’Allier, in
Bernstein, 1998 p.16) and “information is not training”
(Schank 1994, p. 634), which means that even
hypermedia presentations do not teach by themselves,
but instead only present information. Schank, Korcuska,
and Jona (1995) stated that pure information
presentation fails as a technique for education, and they
criticized page turning, ‘next button’ oriented
multimedia applications for not supporting learning.

A potential solution to this problem is the use of training
software such as Intelligent Tutoring Systems (ITS) with
built-in artificial intelligence. These systems, which
adapt themselves to the current knowledge stage of the
learner and support different learning strategies on an
individual basis, could be integrated with the Web
(Nkambou and Gauthier, 1996). However, the nature of
ITS research requires various technologies and different
disciplinary knowledge, making the reuse of previous
studies relatively difficult compared to other research
areas. To solve this problem, we adopt a unified
approach for adaptation of learners’ current knowledge
and learning styles and effective teaching strategies,
combined with an object-oriented approach for system
development and maintenance. In the following section,
we first discuss benefits of adaptive ITS with extensive
review of previous research. Then, we suggest a general
framework and data model for web-based adaptive ITS
which can be used in other domains. Finally, we present
our implementation for Pl@tos, an adaptive ITS that has
been developed in order to teach introductory courses of
computer programming languages, and show how to
combine a reasoning expert system shell with lecture
content in ITS. In doing this, we expect that our unified
and object-oriented approach could contribute to the
establishment of cumulative research traditions in ITS
studies.

2. BENEFITS OF ADAPTIVE INTELLIGENT
TUTORING SYSTEMS

Web-based ITS are still in the early developmental and
experimental stages and much research will need to be
done at all levels to evaluate the quality of learning
(Herther, 1997). Thus, there is a need for exploration

and evaluation, which makes web-based education a hot
research and development area (Khan, 1997).

Web-based educational systems have the benefits of
classroom and platform independence. Adaptation is
especially important for such systems because web-
based applications are used by a much wider variety of
users than standalone applications, and because in many
cases the user is alone at home or in the office, without
support from human instructors or peers (Brusilovsky,
1998). As an additional benefit, adapting the
instructional methods and the training material to
individual learning styles has led to improved learner
performance (Bostrom, et al., 1990).

Figure 1 shows an overview of the instruction process.
A teaching strategy is selected based on the knowledge
type being taught and the learner’s current depth of
knowledge. The actual instruction then changes the
learner’s level of knowledge depth by either adding new
knowledge or “deepening” existing knowledge. Testing
is conducted to evaluate the success of the instruction
and the potential need for a repetition or modification of
instruction.

Traditional classrooms and conventional CBT systems
face a number of problems: In Figure 1, (*) indicates
that there can be multiple learners at the same time, e.g.
in a classroom. Each of these learners will have a
different depth of knowledge, and thus will require
different types of instruction. These differences will
change over time, since the change in depth of
knowledge through instruction (**) will vary from
person to person. In addition, learners will have their
respective preferred learning styles, and a typical lecture
is limited to either repeating the same material over and
over again in different formats trying to support different
learning styles, or ignores these differences altogether.
In order to show learners whether they understood the
material, tests are given to them. However, time

Learner

Learner

Learner

Domain
Knowledge:
Declarative,
Procedural

Learning Style
Domain
Knowledge:
Declarative,
Procedural

Teaching
Strategies

Select
Teaching
Strategy

Instruction

Testing

Flow

Influences

(*)

(**)

Figure 1: Need for Personalized Instruction

limitations usually prevent the instructor from repeating
the instruction to those individuals who failed parts of
the test. Instead, grades are used to inform the student
(and potential employers) that a particular knowledge
type has not been mastered. At this point, the student
alone is responsible for changing the situation and
obtaining mastery, without the help of an instructor.

A better instruction method would be to personalize the
instruction based on the background and the progress of
each individual student via either human or computer-
based tutors. A personalized method of instruction is
characterized by 1) learner-controlled pacing, 2) the
ability to retake tests until mastery is demonstrated, 3)
immediate feedback, 4) small units of instructional
material, 5) the use of peer proctors to administer
feedback and testing, and 6) optional lectures (Calhoun,
1975). For computer-based training systems, the
computer can take over the role of peer proctors in form
of online-testing and grading, and lectures can be placed
online as well. The other principles can be directly
applied to the development of ITS by providing learners
with different versions, different difficulty levels, etc.,
based on their performance and previous knowledge.

In the following sections, we review the two approaches
that have emerged in the area of software training
research (Olfman and Mandviwalla, 1994) that try to
improve end-user training: 1) adaptation of the training
material content and 2) adaptation of the training
material presentation.

Adaptation based on Content
Adaptation of the content implies that different learners
receive different versions of the same lecture. Common
approaches are 1) adapting the level of difficulty
appropriate to level of understanding, 2) adapting the
level of depth according to stated learning goal of the
learner, which can range from high level overview to in-
depth discussions, 3) adding appropriate references to
existing knowledge, e.g. references to “loops” in Visual
Basic when learning “loops” in C++ for only those
learners that know Visual Basic (Merrill, et al., 1996).

Content adaptation has also the benefit of allowing the
ITS to support a variety of learning styles such as textual
vs. visual or audio presentation forms of the same
training material, or even different versions of the
content to support learning styles such as concrete vs.
abstract oriented learners or analytics vs. wholists by
providing different content to different learners
(Davidson, et al., 1992; Egan, 1988; Gitomer, 1987;
Knarr, 1996; Kolb, 1976; Sadler-Smith, 1997).

Adaptation Based on Sequence
Besides adapting the content of the training material,
another well-researched area is the adaptation of the
instruction sequence. Bernstein (1998) found that two
approaches to lesson sequencing seem to be work well

on the Web. These approaches are based on either
behavioralism or constructionism theory (Brandt, 1997).
The former guides a student through predefined steps
(system control), and the latter provides all the resources
and lets students construct knowledge themselves
(learner control).

Niemiec, Sikorski, and Walberg (1996) conducted a
meta-analysis of the research on learner-control. They
found that most studies used a combination of learner-
control features, had a system-controlled control group,
and administered an immediate posttest. At first glance,
the overall average result of near zero effect of learner-
vs. system-control might surprise researchers and
discourage any further investigation in this area.
However, the way research on learner-control has been
conducted has been criticized (Reeves, 1993), and any
meta-analysis in this area in fact compares “apples and
oranges” and thus has to be examined very closely. The
following paragraphs present an overview of research in
this area.

Schnackenberg et al. (1998) presented a thorough
overview of the research on learner- vs. system-control.
Arguments in favor of learner-control are that 1)
learners know their own instructional needs best, 2)
learner-control can help students become independent
learners, and 2) learners construct their own knowledge
in the context of their own needs and experiences and
require control over the learning process to do so.
Critics claim that that learner-control distracts learners
because it forces them to interrupt their learning and pay
attention to the sequencing of material (Schnackenberg,
et al., 1998). Others (Murray, 1998) claim that beginners
are unable to make the right sequence choices, because
they lack the background knowledge necessary to make
educated decisions. Similarly, Lieberman and Linn
(1991) found that novices should benefit from system-
control, but more advanced students could benefit from
learner-control. Others go even further claiming that the
degree of learner-control should depend on the learner’s
familiarity with the topic as well as the learner’s
motivation, aptitude, and attitude (Merrill, et al., 1992).

In order to avoid the constant questions about how to
proceed in learner-control systems, an experiment by
Schnackenberg et al. (1998) tried asking the learners in
advance about the amount of instruction and practice
they desired. Matching and mismatching the learners to
their preferred amounts, the study showed that although
subjects preferred the lean version of the instructional
material, scores were higher for subjects who took the
full version, which shows that learners are not making
the best choices when asked directly.

Most learner-control studies ignore the proficiency level
of the learners. For example, McGrath (McGrath, 1992)
examined the question of whether learners do benefit
from learner-controlled systems. She examined the

impact of hypertext, CAI, paper, and program-control
and found differences in score, navigation, and time
spent. These results must be examined carefully since
Schröder, Möbus, and Pitschke (1995) found that novice
learners used a fairly passive strategy for moving
through a hypermedia system, not utilizing their
selection control and instead following a linear viewing
pattern. On the other hand, Rieman, Young, and Howes
(1996) showed in their experiments that students did not
follow a linear viewing pattern when they had full
control; instead, no specific sequence was followed in
what they call exploratory learning. Supporting both
these views, Allinson (1992) reported in her study that
some subjects used a more linear navigation approach,
and others preferred self-determined hypertext
navigation. The effect of navigation on performance was
examined by Melara (1996) who found no performance
differences when students used a hierarchical organized
system compared to a network structure. However,
others like Tennyson (1981) and later Goforth (1994)
found performance differences in that learner control is
more effective than system-control, but Young (1996)
supported this finding only for learners with high self-
regulated learning strategies, not for others, showing a
potential link of navigation habits and level of expertise.
Based on this discussion, the research on the
effectiveness of learner- vs. system-control seems to be
inconclusive at best.

It might be the case that the two approaches, learner-
control and system-control, work well for different
students, but at this point, the research regarding the
optimal balance of learner- vs. system-control is
inconclusive. It would appear that the best system would
adapt itself to the learner by providing both the
behavioralist and the constructivist approach based on
the learner’s preference and personality type (Tan,
1996).

One such experiment was conducted by Melara (1996),
who examined the effect of learning style (based on
Kolb’s Learning Style Inventory) on learner
performance within two different hypertext structures:
hierarchical and network. Her experiment showed no
significant differences in achievement for Explorers and
Observers using either hypertext structure. She raises the
following point: contrary to Observers, Explorers are
expected to prefer experimentation to observation.
Studies are needed that examine the time spent on
different activities that are targeted towards these two
different personality types (Melara, 1996). Melara’s
study comparing two versions of learner-control only
examined the effect of different content structure and
navigation. A more interesting study would be to
examine the effect of the Explorer vs. Observer
personality-type dimension on system- vs. learner-
controlled sequence.

3. THE PL@TOS INTELLIGENT TUTORING
SYSTEM

Our research has concentrated on building an adaptive
intelligent tutoring system that teaches the principles of
structured programming (Liegle, 1999). In this paper,
we will present the steps we are taking in order to make
the system adaptable to other domains as well. One of
our objectives is to provide a general framework for ITS
(see Figure 2) and its prototype (the Programming
L@nguage TutOring System - Pl@tos). To be a more
general ITS, which means that it can be used in other
domains, the ITS needs to be designed and implemented
so as to support modification of a) the lecture content, b)
the decision rules and the fact base of the expert system,
and c) the methods to measure performances of learning.
The most common stumbling block in ITS research is
that the reuse of previous studies is relatively difficult
compared to other research areas due to the nature of
ITS that involve various technologies and the
differences of disciplinary knowledge. Therefore, we
expect that our unified and object-oriented approach
about system implementation could contribute to the
establishment of cumulative research traditions in ITS
studies.

The goal of Pl@tos is to give learners personalized
instruction based on their preferred learning style,
background knowledge, and current understanding of
the material. The following paragraphs review how the
expert system component of Pl@tos selects the most
appropriate path of action, the design of the knowledge
repository, and the implementation environment of the
new version of Pl@tos.

Figure 2 shows how information about a user and the
knowledge repository are used by the expert system to
identify the most appropriate content with the best
teaching strategy for a given user. The expert system
identifies what should be learned next by comparing the
contents of a given course (see Figure 3) to the current
knowledge of the learner (see History, Figure 3). Using
the prerequisite relationship between different topics,

Current
Knowledge

Learning
Style

User Information

Teaching
Strategy

Knowledge
(Contents,
Structure)

Knowledge Repository

Expert System

Intelligent Tutoring System
Strategy

Figure 2: Integration of an Expert System Shell

the system identifies a set of recommended lectures and
depending on the learning style either presents one of
them or asks the learner to select one. The learning style
is used to determine the most appropriate teaching
strategy for a given lecture and student by using the
TLC-Learning style relationship (see Figure 3).

Figure 3 presents a top-level data model of the system.
A student can enroll in multiple courses, and each
student can have multiple preferred learning styles. To
simplify the design of the system, the history table acts
like a log-file for each student and keeps track of which
test, exercise, etc. students took and whether they passed
or failed. Each course has a series of topics or lectures.
Each topic is available at different difficulty levels, and
the most appropriate level is presented to the students
based on past performance. Each topic can have
multiple special versions targeted for the various
learning styles, e.g. a graphical representation for
visually oriented learners. There can also be different
versions of the topic based on the depth of learning,
from high-level introduction and overviews to in-depth
discussions. Associated to each topic are test questions
and a list of required prerequisite knowledge. This later
relationship is used to determine what topic the student
can/should learn next by only presenting topics where
all prerequisite topics have been already mastered. The
transfer-knowledge table links topics from different
courses together. An example would be if a student
already knows how to program a loop in Visual Basic
and is learning about loops in C++, then the additional
information about similarities and differences between
the two languages can be presented. This special
information would only confuse students that do not
know Visual Basic, thus this information is stored
separately.

A unique approach was used to store and identify
exercises/problems. Each problem can have multiple
solutions, and each solution has a list of required

prerequisite knowledge associated. When students that
learn for example loops in C++ and want to practice
their skill on a problem, the system can search through
all solution-prerequisites and identify those where a
particular student has already mastered all but the
currently practiced topic and present them to the student.

The implementation of different teaching strategies is
challenging. While some researchers have suggested that
general teaching strategies indeed exist (Merrill, 1991;
Merrill, et al., 1996; Merrill and Li, 1989), our own
research has shown that the implementation of such
strategies for particular domains such as computer
programming are not easily transferable to other
domains (Liegle, 1999)2. We are currently redesigning
the implementations for teaching strategies such as the
“show”, “demonstrate”, “is-part-of”, and others for more
general use.

Figure 4 presents the current physical environment of
the Pl@tos system. In implementing the Pl@tos system,
we adopted an object-oriented approach in order to ease
the reuse of components, content, or even whole
systems. The main parts of systems with the exception of
the web server and the database are developed with
Java, a pure object-oriented programming language. The
Pl@tos prototype is implemented on a LINUX web
server running apache. Instead of CGI programs, it uses
Java Servlets to connect the system to the database and
JESS. JESS is an expert system shell providing a rule
engine and scripting environment. JESS is implemented
as a set of Java classes, allowing developers to combine
expert systems and Java applets and applications with
minimal efforts. JESS is compatible with CLIPS in most
parts, thus it can be used in reasoning systems in a way

2 For a detailed review of teaching strategies & their
implementation for the domain programming, see Liegle
(1999).

Problem
PID
Sorting

Enrollment
SID
CID

SolutionPrerequisite
SID
TLC-ID

Student
SID

StudentLearningStyle
SID
LSID

LearningStyle
LSID

TLC-LearningStyle
TLC-ID
LSID

Course
CID
C++

TopicLevelCourse
TLC-ID
Lecture

TestQuestion
TQID

Solution
SID
Bubble Sort

TopicPrerequisite
TLC-ID
TLC-ID

TransferKnowledge
TLC-ID
TLC-ID
Compare C++ to VB

TopicLevel
TL-ID
Easy

Example
EXID

History
HID

Figure 3: Top-Level Data Model

that developer supply knowledge in the form of
declarative rules3.

The servlet engine JServ is used to provide the server
side environment for the Java servlets. The entire system
at this point is at a prototyping level of implementation,
however, an XML interface will be provided at some
point to allow the sharing of the knowledge repository
with other intelligent applications.

For performance reasons, the fact-base of the expert
system is created in two steps. The various fixed
relationships (between lectures, between examples and
solutions, and between learning styles and lectures) are
only created when new knowledge is added to the
system. These relationships are then stored as facts in a
text file that can be either read by the servlet or hard-
coded for performance reasons. When a student finishes
a lecture and takes the post-test, the result of this test is
added to the history file. Also, a fact-base is stored for
each student representing the taken and passed/failed
lectures. These student-facts are loaded into the expert
system each time a new decision must be made in terms
of what to teach next.

This user model represents the lesson structure of each
course a user takes. Lessons are currently classified in
one of five types: 1) “ready to be learned,” 2) “mastery
was demonstrated,” 3) “mastery is assumed,” 4)
“prerequisites are missing,” or 5) “learner tried and
failed to master lecture.” The status of a lecture is color-
coded similar to the color-coding scheme of Weber and
Specht (1997). Links to all lectures can be displayed in
their respective colors to aid students under learner-
control in their decision making. For example, a red
color-coded link indicates that this particular lecture is
not ready to be learned yet because some prerequisite

3 See http://herzberg.ca.sandia.gov/jess/

lectures are not yet mastered. If a learner under learner
control is given options of what to learn next, these links
are annotated by the color codes, aiding the learner in
the decision process on what to do next. The following
JESS examples present 1) a representation of the lessons
and 2) the color-coding scheme used to represent the
status of a given lesson for a given learner.

Example: JESS representation of a lecture

(deftemplate lecture
(slot name) ; shortname of lecture
(slot color))

Example: The status of the lesson “Variables” for a
given user

(deffact lecture
(name Variables); This user tried to

; learn about Variables,
(color orange)) ; but failed the test.

For each user, a file is created with a listing for each of
the lectures. In the beginning, all lectures but the first
one are marked “unlearned.” This is an implementation
of the widely used “overlay” model (Brusilovski, 1992),
which requires a representation of the entire knowledge
for each user.

Once a learner takes a test for a given lecture, the result
of the test will impact the status of other lectures for
which the current lecture is a prerequisite. For example,
if the introduction to “loops” is mastered, then the
learner can proceed with learning the details of a “for-
loop”. This would be indicated to the learner by
changing the color code of annotated links from red
(prerequisite knowledge for “for-loops” missing) to
green (all prerequisites fulfilled). The update of the
student model is again performed by rules of the expert
system. Following are 1) the JESS template for a
prerequisite relationship, 2) an example of an instance of
such a relationship, and 3) an example of a JESS rule
using this relationship.

Example: JESS representation of prerequisite
relationship
(deftemplate prerequisite
(slot A) ; A is a prerequisite of B.
(slot B)) ; A,B are lessons.

Example: One instance of a prerequisite relationship
(deffact prerequisite
(A Variables) ; Understanding of

; Variables is required
(B Input)) ; before Input can be

; explained.

After each learner interaction with the knowledge base,
the student model is updated by the actual interaction
(e.g. mastered lecture “introduction to loops”), then the
rules of the expert system are applied to the student
model to see what effect the change had, and the
updated student model is saved for the next interaction.

Servlet Engine
(JServ 1.1)

HTTP Server
(Apache 1.3.11)

Operating System
(SUSE Linux 6.3)

Knowledge
Repository

Java Runtime Environment
(JRE)

Expert System Shell
(JESS 5.0)

JDBC

RDBMS(PostgreSQL)

XML

Servlet Class

JDK 1.2.2

JSDK 2

Figure 4: Physical Environment

Example: One of the rules updating the user model
after a change
(defrule myforward
(topic (name ?first)

(color ?firstcolor&black))
(prereq (A ?first) (B ?second))
?x0 <- (topic (name ?second)

(color ?color&red))
(not (exists
(and (prereq (A ?otherfirst&~?first)

(B ?second)))
(topic (name ?otherfirst)

(color red|green)))
=>
(modify ?x0 (color green)))

Additional rules are needed to aid in the decision
process which version of a lecture should be given to
what student. For example, a given lecture might have
an abstract graphical and a concrete textual version.
Which version should be given to a concrete but
graphical oriented learner? We currently lack the data to
make this decision, but plan on using our system to
collect this information over time.

4. SUMMARY AND CONCLUSIONS

Personalized instruction can finally be delivered over
the Internet through the use of adaptive web-based
intelligent tutoring systems. While other systems have
shown that web-based training is a feasible and
economical way of delivering training, research has also
shown that the mere presentation of information on the
web does not qualify as instruction. The addition of
testing tools can improve the learning, especially if
students are sent back to review material that they have
not mastered yet. And more, research has shown that if
training material is presented to students according to
their preferred learning style, learning improves. We
have shown in this paper how training material can be
organized in a way that allows an expert system shell to
continuously monitor the progress of individual
students, select the most appropriate next lecture, and
present it in a way that best fits the preferred learning
style of the learner. Once the implementation of our
improved system is completed, we plan on conducting
experiments that measure the amount of improved
learning that takes place when personalizing instruction
to individual students. We are currently limiting our
efforts to the knowledge domain Introductory
Programming in C++, but are planning on expanding
the knowledge domain to incorporate other
programming languages such as Visual Basic and Java
and later math in order to further evaluate the impact of
transfer knowledge on learning.

5. REFERENCES

Allinson, L. (1992) "Learning Styles and Computer--

Based Learning Environments," ICCAL
Proceedings, Wolfville, NS, Canada, pp. 61-73.

Bernstein, D.S. (1998) "WBT: Are We Really
Teaching," Inside Technology and Training (2:2),
pp. 15-17.

Bostrom, R.P., Olfman, L. and Sein, M.K. (1990) "The
Importance of Learning Style in User Training,"
MIS Quarterly (14:2), pp. 101-119.

Brandt, D.S. (1997) "Constructivism: Teaching for
Under of the Internet," Communications of the
ACM (40:10), pp. 112-117.

Brusilovsky, P. (1998) "Adaptive Educational Systems
on the World-Wide-Web: A review of Available
Technologies," 4th International Conference on
ITS Proceedings, San Antonio, Texas.

Calhoun, J.F. (1975) "The Relation of Student
Character-istics to Performance in a Personalized
Course," Educational Technology (15:4), pp. 16-
18.

Cole, K., Fischer, O. and Saltzman, P. (1997) "Just-in-
Time Knowledge Delivery," Communications of
the ACM (40:7), pp. 49-53.

Davidson, G.V., Savenye, W.C. and Orr, K.B. (1992)
"How Do Learning Styles Relate to Performance in
a Computer Applications Course?" J. of Research
on Computing in Education (24:3), pp. 348-358.

Dede, C. (1996) "Emerging Technologies in Distance
Education for business," Journal of Education for
Business (71:4), pp. 197-204.

Dillon, N. (1997) "Internet-Based Training Passes
Audit," Computerworld (31:44), pp. 47-48.

Egan, D. (1988) "Individual differences in human-
computer interaction," In Handbook of Human-
Computer Interaction, M. Helander (Ed.), Elsevier,
Amsterdam, North-Holland, pp. 543-568.

Filipczak, B. (1996) "CBT: A Status Report," Training
(33:11), p. 93.

Gibbons, P. L. (1997) "The Right Formula for
Training," Datamation (43:9), pp. 96-101.

Gitomer, J. (1987) "Determining Who Will Benefit form
Visual Interfaces," Journal of Information Systems
Management (4:1), pp. 85-87.

Goforth, D. (1994) "Learner Control = Decision Making
+ Information," J. Educational Computing
Research (11:1), pp. 1-26.

Hawkins, D.T. (1997) "WBT for Online Retrieval: Some
Examples," Online, (9/10), pp. 73-74.

Herther, N.K. (1997) "Education Over the Web.
Distance Learning and the Information
Professional," Online, pp. 63-72.

Khan, B.H. (1997) "Web Based Instruction,"
Englewood Cliffs, New Jersey.

Knarr, J. (1996) "Effects of Cognitive Style and Mode
of Information Presentation on the Usage of a Case
Tool for Relational Data Modeling," unpublished
Dissertation Draft, Kent State University.

Kolb, D. (1976) Learning Style Inventory, Self-Scoring
Test and Interpretation Booklet, McBer and
Company, Boston, MA.

Kruse, K. (1997) "Exploring Multimedia Internet-Based
Training," Training and Development (51:3), pp.
55-56.

Lieberman, D.A. and Linn, M.C. (1991) "Learning to
Learn Revisited" Journal of Research on
Computing in Education (23:3), pp. 373-395.

Liegle, J.O. (1999) "Development and Evaluation of an
Adaptive Web-Based Intelligent Tutoring System,"
Dissertation, Kent State University .

Liegle, J.O. and Madey, G.R. (1997) "Web Based
Training," Proceedings of the AIS 1997 Americas
Conference, Indianapolis, pp. 521-523.

Major, N. and Reichgelt, H. (1992) "COCA: A Shell for
ITS," ITS Proceedings, Montreal, pp. 523-530.

Martinsons, M.G. and Schindler, F.R. (1995)
"Organizational Visions for Technology
Assimilation," IEEE TA on Engineering
Management (42:1), pp. 9-18.

McGee, M.K. (1998) "Save On training," Information
Week, June 22 , pp. 141-146.

McGrath, D. (1992) "Hypertext, CAI, Paper, or Program
Control: Do Learners Benefit From Choices?,"
Journal of Research on Computing in Education
(24:4), pp. 513-532.

Melara, G.E. (1996) "Investigating Learning Styles on
Different Hypertext Environments," J. Educational
Computing Research (14:4), pp. 313-328.

Merril, M.D. (1991) "Constructivism and Instructional
Design," Educational Technology (31), pp. 45-53.

Merrill, M.D., Drake, L., Lacy, M.J., Pratt, J. and
Group, I.R. (1996) "Reclaiming Instructional
Design," Educational Technology, pp. 5-7.

Merrill, M.D. and Li, Z. (1989) "An Instructional
Design Expert Sys.," CBI Journal(16:3), pp. 95-
101.

Merrill, M.D., Li, Z. and Jones, M.K. (1992)
"Instructional Transaction Shells," Educational
Technology, pp. 5-26.

Moore, M.G. (1996) "Tips for the Manager Setting Up a
Distance Education Program," Journal of Distance
Education (10:1), pp. 1-5.

Murray, T. (1998) "Authoring Knowledge-Based
Tutors: Tools for Content, Instructional Strategy,

Student Model, and Interface Design," The Journal
of the Learning Sciences (7:1), pp. 5-64.

Nelson, R.R., Whitener, E.M. and Philcox, H.H. (1995)
"The Assessment of End-User Training Needs,"
CACM (38:7), pp. 27-39.

Niemiec, R.P., Sikorski, C. and Walberg, H.J. (1996)
"Learner-Control Effects," Journal of Educational
Computing Research (15:2), pp. 157-174.

Nkambou, R. and Gauthier, G. (1996) "Integrating
WWW resources in an ITS," Journal of Network
and Computer Applications (19), pp. 353-365.

Olfman, L. and Mandviwalla, M. (1994) "Conceptual
Versus Procedural Software Training for Graphical
User Interfaces: A Longitudinal Field
Experiment," MIS Quarterly (18:4), pp. 405-426.

Reeves, T.C.(1993) "Pseudoscience in CBU," J. of
Computer Based Instruction (20:2), pp. 39-46.

Rieman, J., Young, R. and Howes, A. (1996) "A dual-
space model of iteratively deepening exploratory
learning," International Journal of Human-
Computer Studies (44:6), pp. 743-755.

Sadler-Smith, E. (1997) "'Learning Styles' and
Instructional Design," IETI (33:4), pp. 185-193.

Schank, R.C., Korcuska, M. and Jona, M. (1995)
"Multimedia Applications for Education and
Training," ACM Computing Surveys (27:4), pp.
633-635.

Schnackenberg, H.L., Sullivan, H.J., Leader, L.F. and
Jones, E.E.K. (1998) "Learner Preferences and
Achievement Under Different Amounts of Leaner
Practice," ETRD (46:2), pp. 5-15.

Schröder, O., Möbus, C. and Pitschke, K. (1995) "A
Cognitive Model of Design Processes for Modeling
Distributed Systems," Proceedings of the Artificial
Intelligence in Education, Washington, DC, pp.
146-153.

Tan, S.-T. (1996) "Architecture of a generic
instructional planner," Journal of Network and
Computer Applications (19), pp. 265-274.

Tennyson, R.D. (1981) "Use of Adaptive Information
for Advisement in Learning Concepts and Rules
Using CAI," American Educational Research
Journal (18:4), pp. 425-438.

Wells, J.B., Layne, B.H. and Flowers, C.P. (1993)
"Assessment of CBI Use in Criminal Justice
Education Programs," J. Educational Technology
Systems (22:1), pp. 57-67.

Young, J.D. (1996) "The Effect of Self-Regulated
Learning Strategies on Performance in Learner
Controlled CBI," ETR&D (44:2), pp. 17-27.

