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Abstract 
 
Web-based training is increasingly gaining popularity both in industry and education. Although a number of studies, 
experiments, and developments have been conducted in this area, few evidence cases of success have been reported. 
One likely reason for the lack of success is that just placing lecture notes on the web does not train. This situation can 
be improved through the use of training software such as Intelligent Tutoring Systems (ITS). ITS incorporate built-in 
expert systems in order to monitor the performance of a learner and to personalize instruction on the basis of adaptation 
to learners’ learning style, current knowledge level, and appropriate teaching strategies.  
However, researchers and developers quickly find out that developing such systems is an enormous task, which is 
further complicated by the fact that one cannot simply borrow tools from other systems and incorporate them due to 
various levels of incompatibility at the programming and knowledge base level.  To allow for more general ITS, which 
means that it can be used in other domains, it is required that ITS should be designed and implemented so as to support 
easy modification of lecture content, modification of decision rules in the expert system, and to support various 
methods to measure the performances of learning.  
In this paper, we propose a general framework and data model for web-based adaptive ITS that allows knowledge to be 
stored in such a way that is not only independent of the knowledge domain, but also supports the storage of transfer 
knowledge relationships and prerequisite knowledge relationships. We expect that our unified approach could 
contribute to the establishment of cumulative research traditions in ITS studies. 
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1. INTRODUCTION 
Computer-based training (CBT) has become more 
popular since the 1990s.  Corporations delivered 10% of 
their training through CBT Systems in 1996, and 16% of 
the Fortune 1000 companies trained through multimedia 
systems (Filipczak, 1996).  These days, web-based 
training is increasingly gaining popularity in education 
as well as in industry. A recent survey found that web-
based training (WBT) is the newest and fastest growing 
training method (McGee, 1998), a trend that is predicted  
to result in an online training industry reaching $28 
billion per year worldwide by 2001 (Dillon, 1997). A 
reason for this trend is that the Web is a very cost-
effective way of distributing training material to 
employees (Liegle and Madey, 1997; McGee, 1998; 

Dede, 1996).  Universities are following this web-
training trend by offering entire classes and degrees 
online, e.g., New York University, Drexel University, 
Britain’s Open University, and the University of 
Phoenix (Herther, 1997). 
 
One of the benefits from web-based training is 
punctuality.  Using web-based training, corporations are 
able to deliver just-in-time training when it is needed by 
employees (Gibbons, 1997).  Moving to the Web 
provides benefits in form of on-the-job continuing 
education and general training (Moore, 1996).  
Furthermore, web-based training is platform 
independent and makes maintenance of systems and 
contents much easier (Cole, et al., 1997).  



 
Despite the fact that many studies, experiments, and 
prototype developments have been conducted in the area 
of CBT systems, and although many systems have been 
developed that support training and lecturing in the form 
of CAL, CAI, CBT, and WBT (Hawkins, 1997; Kruse, 
1997; Hardaway and Will, 1997), the vast majority of 
such systems in industry and commerce are not as 
successful as had been hoped (Martinsons and 
Schindler, 1995; Nelson, Whitener, and Philcox, 1995; 
Wells, Layne and Flowers, 1993; and Major and 
Reichgelt, 1992).  
 
One important reason for this lack of success is that 
“information is not instruction” (Jim L’Allier, in 
Bernstein, 1998 p.16) and “information is not training” 
(Schank 1994, p. 634), which means that even 
hypermedia presentations do not teach by themselves, 
but instead only present information. Schank, Korcuska, 
and Jona (1995) stated that pure information 
presentation fails as a technique for education, and they 
criticized page turning, ‘next button’ oriented 
multimedia applications for not supporting learning. 
 
A potential solution to this problem is the use of training 
software such as Intelligent Tutoring Systems (ITS) with 
built-in artificial intelligence. These systems, which 
adapt themselves to the current knowledge stage of the 
learner and support different learning strategies on an 
individual basis, could be integrated with the Web 
(Nkambou and Gauthier, 1996). However, the nature of 
ITS research requires various technologies and different 
disciplinary knowledge, making the reuse of previous 
studies relatively difficult compared to other research 
areas. To solve this problem, we adopt a unified 
approach for adaptation of learners’ current knowledge 
and learning styles and effective teaching strategies, 
combined with an object-oriented approach for system 
development and maintenance. In the following section, 
we first discuss benefits of adaptive ITS with extensive 
review of previous research. Then, we suggest a general 
framework and data model for web-based adaptive ITS 
which can be used in other domains. Finally, we present 
our implementation for Pl@tos, an adaptive ITS that has 
been developed in order to teach introductory courses of 
computer programming languages, and show how to 
combine a reasoning expert system shell with lecture 
content in ITS.  In doing this, we expect that our unified 
and object-oriented approach could contribute to the 
establishment of cumulative research traditions in ITS 
studies. 
 

2. BENEFITS OF ADAPTIVE INTELLIGENT 
TUTORING SYSTEMS 

 
Web-based ITS are still in the early developmental and 
experimental stages and much research will need to be 
done at all levels to evaluate the quality of learning 
(Herther, 1997). Thus, there is a need for exploration 

and evaluation, which makes web-based education a hot 
research and development area (Khan, 1997).  
 
Web-based educational systems have the benefits of 
classroom and platform independence. Adaptation is 
especially important for such systems because web-
based applications are used by a much wider variety of 
users than standalone applications, and because in many 
cases the user is alone at home or in the office, without 
support from human instructors or peers (Brusilovsky, 
1998). As an additional benefit, adapting the 
instructional methods and the training material to 
individual learning styles has led to improved learner 
performance (Bostrom, et al., 1990). 
 
Figure 1 shows an overview of the instruction process. 
A teaching strategy is selected based on the knowledge 
type being taught and the learner’s current depth of 
knowledge. The actual instruction then changes the 
learner’s level of knowledge depth by either adding new 
knowledge or “deepening” existing knowledge. Testing 
is conducted to evaluate the success of the instruction 
and the potential need for a repetition or modification of 
instruction. 
 
Traditional classrooms and conventional CBT systems 
face a number of problems: In Figure 1, (*) indicates 
that there can be multiple learners at the same time, e.g. 
in a classroom. Each of these learners will have a 
different depth of knowledge, and thus will require 
different types of instruction. These differences will 
change over time, since the change in depth of 
knowledge through instruction (**) will vary from 
person to person. In addition, learners will have their 
respective preferred learning styles, and a typical lecture 
is limited to either repeating the same material over and 
over again in different formats trying to support different 
learning styles, or ignores these differences altogether. 
In order to show learners whether they understood the 
material, tests are given to them. However, time 
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Figure 1:  Need for Personalized Instruction



limitations usually prevent the instructor from repeating 
the instruction to those individuals who failed parts of 
the test. Instead, grades are used to inform the student 
(and potential employers) that a particular knowledge 
type has not been mastered. At this point, the student 
alone is responsible for changing the situation and 
obtaining mastery, without the help of an instructor. 
 
A better instruction method would be to personalize the 
instruction based on the background and the progress of 
each individual student via either human or computer-
based tutors. A personalized method of instruction is 
characterized by 1) learner-controlled pacing, 2) the 
ability to retake tests until mastery is demonstrated, 3) 
immediate feedback, 4) small units of instructional 
material, 5) the use of peer proctors to administer 
feedback and testing, and 6) optional lectures (Calhoun, 
1975). For computer-based training systems, the 
computer can take over the role of peer proctors in form 
of online-testing and grading, and lectures can be placed 
online as well. The other principles can be directly 
applied to the development of ITS by providing learners 
with different versions, different difficulty levels, etc., 
based on their performance and previous knowledge. 
 
In the following sections, we review the two approaches 
that have emerged in the area of software training 
research (Olfman and Mandviwalla, 1994) that try to 
improve end-user training: 1) adaptation of the training 
material content and 2) adaptation of the training 
material presentation.  
 
Adaptation based on Content 
Adaptation of the content implies that different learners 
receive different versions of the same lecture. Common 
approaches are 1) adapting the level of difficulty 
appropriate to level of understanding, 2) adapting the 
level of depth according to stated learning goal of the 
learner, which can range from high level overview to in-
depth discussions, 3) adding appropriate references to 
existing knowledge, e.g. references to “loops” in Visual 
Basic when learning “loops” in C++ for only those 
learners that know Visual Basic (Merrill, et al., 1996). 
 
Content adaptation has also the benefit of allowing the 
ITS to support a variety of learning styles such as textual 
vs. visual or audio presentation forms of the same 
training material, or even different versions of the 
content to support learning styles such as concrete vs. 
abstract oriented learners or analytics vs. wholists by 
providing different content to different learners 
(Davidson, et al., 1992; Egan, 1988; Gitomer, 1987; 
Knarr, 1996; Kolb, 1976; Sadler-Smith, 1997). 
 
Adaptation Based on Sequence 
Besides adapting the content of the training material, 
another well-researched area is the adaptation of the 
instruction sequence. Bernstein (1998) found that two 
approaches to lesson sequencing seem to be work well 

on the Web. These approaches are based on either 
behavioralism or constructionism theory (Brandt, 1997). 
The former guides a student through predefined steps 
(system control), and the latter provides all the resources 
and lets students construct knowledge themselves 
(learner control).  
 
Niemiec, Sikorski, and Walberg (1996) conducted a 
meta-analysis of the research on learner-control. They 
found that most studies used a combination of learner-
control features, had a system-controlled control group, 
and administered an immediate posttest. At first glance, 
the overall average result of near zero effect of learner- 
vs. system-control might surprise researchers and 
discourage any further investigation in this area. 
However, the way research on learner-control has been 
conducted has been criticized (Reeves, 1993), and any 
meta-analysis in this area in fact compares “apples and 
oranges” and thus has to be examined very closely. The 
following paragraphs present an overview of research in 
this area. 
 
Schnackenberg et al. (1998) presented a thorough 
overview of the research on learner- vs. system-control. 
Arguments in favor of learner-control are that 1) 
learners know their own instructional needs best, 2) 
learner-control can help students become independent 
learners, and 2) learners construct their own knowledge 
in the context of their own needs and experiences and 
require control over the learning process to do so. 
Critics claim that that learner-control distracts learners 
because it forces them to interrupt their learning and pay 
attention to the sequencing of material (Schnackenberg, 
et al., 1998). Others (Murray, 1998) claim that beginners 
are unable to make the right sequence choices, because 
they lack the background knowledge necessary to make 
educated decisions. Similarly, Lieberman and Linn 
(1991) found that novices should benefit from system-
control, but more advanced students could benefit from 
learner-control. Others go even further claiming that the 
degree of learner-control should depend on the learner’s 
familiarity with the topic as well as the learner’s 
motivation, aptitude, and attitude (Merrill, et al., 1992). 
 
In order to avoid the constant questions about how to 
proceed in learner-control systems, an experiment by 
Schnackenberg et al. (1998) tried asking the learners in 
advance about the amount of instruction and practice 
they desired. Matching and mismatching the learners to 
their preferred amounts, the study showed that although 
subjects preferred the lean version of the instructional 
material, scores were higher for subjects who took the 
full version, which shows that learners are not making 
the best choices when asked directly. 
 
Most learner-control studies ignore the proficiency level 
of the learners. For example, McGrath (McGrath, 1992) 
examined the question of whether learners do benefit 
from learner-controlled systems. She examined the 



impact of hypertext, CAI, paper, and program-control 
and found differences in score, navigation, and time 
spent. These results must be examined carefully since 
Schröder, Möbus, and Pitschke (1995) found that novice 
learners used a fairly passive strategy for moving 
through a hypermedia system, not utilizing their 
selection control and instead following a linear viewing 
pattern. On the other hand, Rieman, Young, and Howes 
(1996) showed in their experiments that students did not 
follow a linear viewing pattern when they had full 
control; instead, no specific sequence was followed in 
what they call exploratory learning. Supporting both 
these views, Allinson (1992) reported in her study that 
some subjects used a more linear navigation approach, 
and others preferred self-determined hypertext 
navigation. The effect of navigation on performance was 
examined by Melara (1996) who found no performance 
differences when students used a hierarchical organized 
system compared to a network structure. However, 
others like Tennyson (1981) and later Goforth (1994) 
found performance differences in that learner control is 
more effective than system-control, but Young (1996) 
supported this finding only for learners with high self-
regulated learning strategies, not for others, showing a 
potential link of navigation habits and level of expertise. 
Based on this discussion, the research on the 
effectiveness of learner- vs. system-control seems to be 
inconclusive at best. 
 
It might be the case that the two approaches, learner-
control and system-control, work well for different 
students, but at this point, the research regarding the 
optimal balance of learner- vs. system-control is 
inconclusive. It would appear that the best system would 
adapt itself to the learner by providing both the 
behavioralist and the constructivist approach based on 
the learner’s preference and personality type (Tan, 
1996). 
 
One such experiment was conducted by Melara (1996), 
who examined the effect of learning style (based on 
Kolb’s Learning Style Inventory) on learner 
performance within two different hypertext structures: 
hierarchical and network. Her experiment showed no 
significant differences in achievement for Explorers and 
Observers using either hypertext structure. She raises the 
following point: contrary to Observers, Explorers are 
expected to prefer experimentation to observation. 
Studies are needed that examine the time spent on 
different activities that are targeted towards these two 
different personality types (Melara, 1996). Melara’s 
study comparing two versions of learner-control only 
examined the effect of different content structure and 
navigation. A more interesting study would be to 
examine the effect of the Explorer vs. Observer 
personality-type dimension on system- vs. learner-
controlled sequence.  

3. THE PL@TOS INTELLIGENT TUTORING 
SYSTEM 

 
Our research has concentrated on building an adaptive 
intelligent tutoring system that teaches the principles of 
structured programming (Liegle, 1999). In this paper, 
we will present the steps we are taking in order to make 
the system adaptable to other domains as well. One of 
our objectives is to provide a general framework for ITS 
(see Figure 2) and its prototype (the Programming 
L@nguage TutOring System - Pl@tos). To be a more 
general ITS, which means that it can be used in other 
domains, the ITS needs to be designed and implemented 
so as to support modification of a) the lecture content, b) 
the decision rules and the fact base of the expert system, 
and c) the methods to measure performances of learning. 
The most common stumbling block in ITS research is 
that the reuse of previous studies is relatively difficult 
compared to other research areas due to the nature of 
ITS that involve various technologies and the 
differences of disciplinary knowledge. Therefore, we 
expect that our unified and object-oriented approach 
about system implementation could contribute to the 
establishment of cumulative research traditions in ITS 
studies. 
 
The goal of Pl@tos is to give learners personalized 
instruction based on their preferred learning style, 
background knowledge, and current understanding of 
the material. The following paragraphs review how the 
expert system component of Pl@tos selects the most 
appropriate path of action, the design of the knowledge 
repository, and the implementation environment of the 
new version of Pl@tos. 
 
Figure 2 shows how information about a user and the 
knowledge repository are used by the expert system to 
identify the most appropriate content with the best 
teaching strategy for a given user. The expert system 
identifies what should be learned next by comparing the 
contents of a given course (see Figure 3) to the current 
knowledge of the learner (see History, Figure 3). Using 
the prerequisite relationship between different topics, 
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Figure 2:  Integration of an Expert System Shell



the system identifies a set of recommended lectures and 
depending on the learning style either presents one of 
them or asks the learner to select one. The learning style 
is used to determine the most appropriate teaching 
strategy for a given lecture and student by using the 
TLC-Learning style relationship (see Figure 3). 
 
Figure 3 presents a top-level data model of the system. 
A student can enroll in multiple courses, and each 
student can have multiple preferred learning styles. To 
simplify the design of the system, the history table acts 
like a log-file for each student and keeps track of which 
test, exercise, etc. students took and whether they passed 
or failed. Each course has a series of topics or lectures. 
Each topic is available at different difficulty levels, and 
the most appropriate level is presented to the students 
based on past performance. Each topic can have 
multiple special versions targeted for the various 
learning styles, e.g. a graphical representation for 
visually oriented learners. There can also be different 
versions of the topic based on the depth of learning, 
from high-level introduction and overviews to in-depth 
discussions. Associated to each topic are test questions 
and a list of required prerequisite knowledge. This later 
relationship is used to determine what topic the student 
can/should learn next by only presenting topics where 
all prerequisite topics have been already mastered. The 
transfer-knowledge table links topics from different 
courses together. An example would be if a student 
already knows how to program a loop in Visual Basic 
and is learning about loops in C++, then the additional 
information about similarities and differences between 
the two languages can be presented. This special 
information would only confuse students that do not 
know Visual Basic, thus this information is stored 
separately.  
 
A unique approach was used to store and identify 
exercises/problems. Each problem can have multiple 
solutions, and each solution has a list of required 

prerequisite knowledge associated. When students that 
learn for example loops in C++ and want to practice 
their skill on a problem, the system can search through 
all solution-prerequisites and identify those where a 
particular student has already mastered all but the 
currently practiced topic and present them to the student. 
 
The implementation of different teaching strategies is 
challenging. While some researchers have suggested that 
general teaching strategies indeed exist (Merrill, 1991; 
Merrill, et al., 1996; Merrill and Li, 1989), our own 
research has shown that the implementation of such 
strategies for particular domains such as computer 
programming are not easily transferable to other 
domains (Liegle, 1999)2. We are currently redesigning 
the implementations for teaching strategies such as the 
“show”, “demonstrate”, “is-part-of”, and others for more 
general use. 
 
Figure 4 presents the current physical environment of 
the Pl@tos system. In implementing the Pl@tos system, 
we adopted an object-oriented approach in order to ease 
the reuse of components, content, or even whole 
systems. The main parts of systems with the exception of 
the web server and the database are developed with 
Java, a pure object-oriented programming language. The 
Pl@tos prototype is implemented on a LINUX web 
server running apache. Instead of CGI programs, it uses 
Java Servlets to connect the system to the database and 
JESS. JESS is an expert system shell providing a rule 
engine and scripting environment. JESS is implemented 
as a set of Java classes, allowing developers to combine 
expert systems and Java applets and applications with 
minimal efforts. JESS is compatible with CLIPS in most 
parts, thus it can be used in reasoning systems in a way 

                                                                 
2  For a detailed review of teaching strategies & their 
implementation for the domain programming, see Liegle 
(1999).  
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that developer supply knowledge in the form of 
declarative rules3.  
 
The servlet engine JServ is used to provide the server 
side environment for the Java servlets. The entire system 
at this point is at a prototyping level of implementation, 
however, an XML interface will be provided at some 
point to allow the sharing of the knowledge repository 
with other intelligent applications. 
 
For performance reasons, the fact-base of the expert 
system is created in two steps. The various fixed 
relationships (between lectures, between examples and 
solutions, and between learning styles and lectures) are 
only created when new knowledge is added to the 
system. These relationships are then stored as facts in a 
text file that can be either read by the servlet or hard-
coded for performance reasons. When a student finishes 
a lecture and takes the post-test, the result of this test is 
added to the history file. Also, a fact-base is stored for 
each student representing the taken and passed/failed 
lectures. These student-facts are loaded into the expert 
system each time a new decision must be made in terms 
of what to teach next.  
 
This user model represents the lesson structure of each 
course a user takes. Lessons are currently classified in 
one of five types: 1) “ready to be learned,” 2) “mastery 
was demonstrated,” 3) “mastery is assumed,” 4) 
“prerequisites are missing,” or 5) “learner tried and 
failed to master lecture.” The status of a lecture is color-
coded similar to the color-coding scheme of Weber and 
Specht (1997). Links to all lectures can be displayed in 
their respective colors to aid students under learner-
control in their decision making. For example, a red 
color-coded link indicates that this particular lecture is 
not ready to be learned yet because some prerequisite 
                                                                 
3 See http://herzberg.ca.sandia.gov/jess/ 

lectures are not yet mastered. If a learner under learner 
control is given options of what to learn next, these links 
are annotated by the color codes, aiding the learner in 
the decision process on what to do next. The following 
JESS examples present 1) a representation of the lessons 
and 2) the color-coding scheme used to represent the 
status of a given lesson for a given learner. 
 
Example: JESS representation of a lecture 

(deftemplate lecture
(slot name) ; shortname of lecture
(slot color))

Example: The status of the lesson “Variables” for a 
given user  

(deffact lecture
(name Variables); This user tried to

; learn about Variables,
(color orange)) ; but failed the test.

For each user, a file is created with a listing for each of 
the lectures. In the beginning, all lectures but the first 
one are marked “unlearned.” This is an implementation 
of the widely used “overlay” model (Brusilovski, 1992), 
which requires a representation of the entire knowledge 
for each user. 
 
Once a learner takes a test for a given lecture, the result 
of the test will impact the status of other lectures for 
which the current lecture is a prerequisite. For example, 
if the introduction to “loops” is mastered, then the 
learner can proceed with learning the details of a “for-
loop”. This would be indicated to the learner by 
changing the color code of annotated links from red 
(prerequisite knowledge for “for-loops” missing) to 
green (all prerequisites fulfilled). The update of the 
student model is again performed by rules of the expert 
system. Following are 1) the JESS template for a 
prerequisite relationship, 2) an example of an instance of 
such a relationship, and 3) an example of a JESS rule 
using this relationship. 
 
Example: JESS representation of prerequisite 
relationship 
(deftemplate prerequisite
(slot A) ; A is a prerequisite of B.
(slot B)) ; A,B are lessons.

Example: One instance of a prerequisite relationship 
(deffact prerequisite
(A Variables) ; Understanding of

; Variables is required
(B Input)) ; before Input can be

; explained.
 
After each learner interaction with the knowledge base, 
the student model is updated by the actual interaction 
(e.g. mastered lecture “introduction to loops”), then the 
rules of the expert system are applied to the student 
model to see what effect the change had, and the 
updated student model is saved for the next interaction. 
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Example: One of the rules updating the user model 
after a change  
(defrule myforward
(topic (name ?first)

(color ?firstcolor&black))
(prereq (A ?first) (B ?second))
?x0 <- (topic (name ?second)

(color ?color&red))
(not (exists
(and (prereq (A ?otherfirst&~?first)

(B ?second)))
(topic (name ?otherfirst)

(color red|green)))
=>
(modify ?x0 (color green)) )

 
Additional rules are needed to aid in the decision 
process which version of a lecture should be given to 
what student. For example, a given lecture might have 
an abstract graphical and a concrete textual version. 
Which version should be given to a concrete but 
graphical oriented learner? We currently lack the data to 
make this decision, but plan on using our system to 
collect this information over time.  
 

4. SUMMARY AND CONCLUSIONS 
 
Personalized instruction can finally be delivered over 
the Internet through the use of adaptive web-based 
intelligent tutoring systems. While other systems have 
shown that web-based training is a feasible and 
economical way of delivering training, research has also 
shown that the mere presentation of information on the 
web does not qualify as instruction. The addition of 
testing tools can improve the learning, especially if 
students are sent back to review material that they have 
not mastered yet. And more, research has shown that if 
training material is presented to students according to 
their preferred learning style, learning improves. We 
have shown in this paper how training material can be 
organized in a way that allows an expert system shell to 
continuously monitor the progress of individual 
students, select the most appropriate next lecture, and 
present it in a way that best fits the preferred learning 
style of the learner. Once the implementation of our 
improved system is completed, we plan on conducting 
experiments that measure the amount of improved 
learning that takes place when personalizing instruction 
to individual students. We are currently limiting our 
efforts to the knowledge domain Introductory 
Programming in C++, but are planning on expanding 
the knowledge domain to incorporate other 
programming languages such as Visual Basic and Java 
and later math in order to further evaluate the impact of 
transfer knowledge on learning.  
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