

Using Surveillance Software as an HCI Tool

Blaise W. Liffick
Laura K. Yohe

Department of Computer Science, Millersville University
Millersville, PA, 17551, USA

Abstract

Laboratory equipment (both hardware and software) for conducting experiments, usability studies, and field studies in
the area of human-computer interaction (HCI) is typically complex, bulky, expensive, and intrusive. Recent strides in
the development of surveillance software offer the prospect of a non-invasive, inexpensive, and largely automatic way
of capturing data from user activities that could be useful to HCI professionals, researchers, and educators. This project
investigates this possibility.

Keywords: Human-computer interaction, usability study, surveillance

An article that appeared in the Wall Street Journal in
March 2000 described two low-cost surveillance
software packages that were finding success on the
market (McCarthy 2000). This article coincided with
a problem that is common to small human-computer
interaction (HCI) labs: finding non-intrusive,
inexpensive ways to monitor computer users during
experiments, usability studies, or field tests.
Equipment and software being marketed for usability
labs currently costs tens of thousands of dollars, a sum
beyond the reach of small labs or companies
(UserWorks 2001). Surveillance software, however,
is relatively inexpensive (a few hundred dollars). We
wondered whether such software might be used in
place of much more extensive (and expensive) lab
setups which typically use several video cameras and
observation-recording software.

One of the classic problems with observing users can
be referred to as the panopticon effect, Hawthorne
effect (Preece et al 1994) or the Heisenberg effect.
Panopticon was a term used by Jeremy Bentham in
1787 to describe a type of prison constructed in the
round, with cells on the outside of a central core that is
manned by a guard (Johnson 2001). The cell wall
facing the guard is a one-way window, so that the
guard can see into each cell, but the prisoners could
not see the guard. Bentham conjectured that it would
not be necessary to always have a guard present in
order to ensure good behavior on the part of the
prisoners, since the prisoners could not verify when
the guard was indeed present—they would adopt
behavior on the assumption that they were being

observed. The Hawthorne effect refers to a study done in
1939 in a Hawthorne, Illinois manufacturing plant. The
Heisenberg effect comes from physics and, simply put,
states that the act of observing a particle changes the
behavior (velocity or direction) of that particle. All terms
apply to the problem of trying to observe users without
affecting how they behave. Such problems are nothing
really new, and can be traced back to the use of
“efficiency experts” more than 100 years ago (Edgar
1997).

HCI researchers and practitioners typically use video
cameras to observe both the user and the computer’s
monitor during use. While it is possible to hide the
cameras to a certain extent, and while some experts
believe that users forget about the cameras in a short
amount of time (Shneiderman 1998), there are times when
setting up several cameras is difficult (such as in the field)
or at least expensive. Furthermore, while a camera can
faithfully record most of the actions visible on the
monitor, it is not recording the actual actions of the user,
i.e. what keys the user pressed, when the mouse was
clicked, which mouse button was clicked, etc. While
some of this could certainly be deduced by watching a
videotape, to do so would also be extremely time
consuming (and, therefore, expensive). Automated data
collection software has largely been custom built and is
not widely available, so videotaping is still the preferred
way of recording user interactions for most HCI
professionals (Drury et al 1999).

This paper, then, describes an experiment conducted to
determine whether surveillance software could be used as

an inexpensive, non-intrusive, automatically logging
tool for HCI work.

1. THE PROJECT

Two software products were selected to test as
possible HCI tools. One of the products proved to be
too buggy to use (inquiries to the company were
ignored), and was dropped from the study. The
product selected, Silent Watch by Adavi (Adavi
2001), has received substantial amounts of press in the
past year, so appeared that it might be a reasonable
place to start our project. Since this current project is
more of a feasibility study, it was decided that the
initial study could successfully be completed with a
single product, leaving a comparative study of
multiple products to a future project.

Silent Watch clearly fit the first two criteria we were
concerned about, cost and invisibility to the user. The
product costs about $225 per package, which includes

a license for monitoring up to four machines. Although
software must be installed on the machine to be
monitored, an option in Silent Watch allows it to be placed
into “stealth” mode, so that the user has no way of
discovering that the software even exists on their machine.
This is perfect for overcoming the Heisenberg effect, a
considerable concern in HCI studies.

The major portion of the project, of course, is evaluating
the software’s performance for logging user activity.

Silent Watch software consists of two parts: the viewer
and the client. The viewer software is loaded onto the test
conductor’s computer to observe the test subject’s
machine. The client software is loaded onto the test
subject’s computer to allow the viewer machine to pick up
the image of the subject’s machine as well as any use of
the keyboard and mouse. Transactional information is
transmitted from the client to the viewer system over an
existing local area network.

Figure 1. Main Window of Viewer

Figure 1 shows a typical display of the viewer system.
The viewer can be configured to monitor up to 49
users simultaneously. The figure shows the viewer
configured for four users, with only one currently
active (called Nell). The client software records
keystrokes and other data (such as URLs) and
forwards these records on to the viewer system, which
then updates the viewer display as well as its own
activity files. The amount of time between snapshots
of a client system is settable, with the minimum time
of 3-second intervals.

Log Files
The question we hoped to answer was whether Silent
Watch’s log files provided enough detail that could be
analyzed to provide meaningful information for a
usability study. Initial testing showed that the two
likeliest useful files were the keystroke log and the
URL log.

The keystroke log displays all characters entered from
the keyboard, including erasures made with the
<backspace> key and special keys such as <enter>,
<shift>, and function keys (see Figure 2). In addition

to displaying what has been typed, it provides a time/date
stamp down to the second and states when a user:

1. Logged onto a machine, which is indicated by
“Start Session” and the user login name,

2. Opened an application, which is indicated by
“Created” and the name of the application,

3. Activated an already open application, which is
indicated by “Activated” and the name of the
application, and

4. Closed an application, which is indicated by
“Closed” and the name of the application
(Adavi, 2000).

The URL log specifically displays the Uniform Resource
Locator (URL), i.e. website addresses, for every Internet
site the machine has accessed or attempted to access. It
continues to log this information even when the viewer
machine is off. A sample of the URL log viewer can be
seen in Figure 3. It can be saved and printed by using the
options in its file menu. For every address, there is a
time/date stamp down to the minute that shows when the
site was accessed.

Figure 2. The Keystroke Log

Figure 3. The URL Log

The Experiment
In order to test the Silent Watch software, we created a
dummy usability experiment, ostensibly to study the
differences between using a mouse, trackball, and
touch pad as a pointing device. The intent was to
pretend we were conducting a comparative experiment
on these devices while using the Silent Watch
software to monitor the users’ interactions. The
keystroke and URL logs would then be analyzed to
determine whether they provide any useful
information regarding the interactions. Specifically,
we were interested in whether the logs would show
each user’s actions accurately and with sufficient
detail required of a real usability study.

Twenty-two computer science juniors and seniors in
an HCI course were divided into three groups, one for
each pointing device. Each student was given a set of
written protocols to follow in order to accomplish
specific tasks. Protocols were composed for four
different activities: word processing, spreadsheet use,
Internet browsing, and using a graphing calculator.
Figure 4 shows the protocol for the Internet Browsing
task, along with a typical resulting keystroke log. In
this example, note that although the keystroke log
records most of the activity of the protocol steps, it
doesn’t do so discretely – most of the actions have
been recorded as part of the first time-stamped event
in the keystroke log.

The test trials were conducted in the typical fashion
for a usability study. The test conductor randomly
assigned each of the students to one of the three test
groups. One at a time the subjects were given one of
the four protocols to complete, as quickly as they
could. The tests were conducted in an HCI lab that

was more or less isolated from other activities. The test
conductor observed each test trial while monitoring the
progress of each on a nearby system (which contained the
Silent Watch Viewer software). Although the tests were
not conducted in as rigorous a way as would be normal for
an actual usability study, the conditions were close enough
to an actual test as needed for our purposes. The results of
the protocols themselves are unimportant to this project -
it doesn’t matter how quickly or accurately the test
subjects were actually able to accomplish their given
tasks. Although we did some simple analysis of the test
results, the purpose of doing so was to see how well the
log files that are automatically recorded by Silent Watch
captured the actions of the test subjects.

The Results
The results were basically as expected, a mixture of
success and failure, and a promise of potential
improvements that would produce a very useful tool.

First, the additional overhead of the Silent Watch software
does not appear to be noticeable to the user, such as by
adding in unexpected delays as a result of logging activity.
This was true even though the systems the tests were
conducted on were very slow by today’s standards (200
MHz Pentium II’s). So the software lived up to its
promise of stealth. This is important for two reasons: (1)
users are not reminded (although they are initially told)
that they are being monitored by occasional delays of the
system during their activities, and (2) the use of the
software does not appear to add noticeable overhead time
for completing tasks, so that timed tests would be
reasonably accurate.

Next, the keystroke log does a pretty good job of
recording what the user has entered at the keyboard,
including any special keys and function keys. Although
all entered text is displayed in all upper case, the actual
characters entered can be deduced by following the use of
special keys such as <shift> and <caps lock> (it even
differentiates between the left and right shift keys). Time
stamps for launching and closing applications are recorded
to the second, adequate perhaps for many kinds of
usability studies. It was not difficult to calculate the time
between certain events using these time stamps. In
addition, certain types of errors, especially typos, are
easily determined. It is easy to imagine a program to
assist in such mundane analysis, e.g. by counting the
number of times the <backspace> character appears in a
log file or calculating the time between two events. It is
also not very difficult to match up elements of the
keystroke log with the protocol steps, where that’s
possible. For instance, Figure 4 shows how some of the
logged data matches the given protocol.

The URL file is less useful. Although it contains the time
a particular site is entered, and records even the launch of
auxiliary components of a website (note the launching of
go.msn.com in Figure 3, for instance),

1. Double click on the Internet Explorer/Netscape Browser icon on the desktop
2. Type www.yahoomail.com in the address slot of the browser and hit enter
3. Type in user name and password
4. Click on check e-mail
5. Click on compose
6. Send the message to self
7. Type “This is a test” in the text box
8. Click on the “Send” button
9. Type www.wunderground.com in the address slot of the browser and hit enter
10. Type “17601” in the text box for fast forecast and hit the <enter> key
11. Type www.adavi.com in the address slot of the browser and hit enter
12. Click on the Download tab
13. Fill in the text boxes but do not click on the “Download” button
14. Type www.yahoo.com in the address slot of the browser and hit enter
15. Search for some topic by typing the topic in the text box
16. Type www.millersville.edu in the address slot of the browser and hit enter
17. Click on the Max icon
18. Click on the “Personal Information” button
19. Type in user identification and password and hit enter.
20. Type in password again and hit enter
21. Type www.citibank.com in the address slot of the browser and hit enter
22. Select United States from the country list
23. Select Credit Card Account Online from Products/Services List (automatically takes you to the desired site)
24. Type in user name and password and hit enter
25. Click on the link for unbilled activity
26. Click on the “x” in the upper right corner of the window to close it

Figure 4a. A Typical Test Protocol for Internet Browsing

1. 10/30/00 10:09:28 AM - Activated http://www.msn.com/ - Microsoft Internet Explorer
 WWW.YAHOOMAIL.COM<Enter><Shift>LEORAH3779<Tab>******<Enter>
 <Shift>LEORAH3779<Right Shift>@YAHOO.COM<Shift>THIS IS A
 TEST.WWWIW<Backspace><Backspace>.WUNDERGROUND.COM<Enter><Num 1>
 <Num 7><Num 6><Num 0><Num 1><Num Enter>WWW.ADAVI.COM<Enter>
 <Shift>DR. <Right Shift>ROY <Shift>ROGERS<Tab><Right Shift>ASSOCIATE
 <Shift>PROFESSOR<Tab><Shift>TRIGGI<Backspace>ER
 <Shift>UNIVERSITY<Tab><Shift>PO <Right Shift>
 BOX 1002<Tab><Shift>DEPARTMENT OF <Right Shift>COMP <Right
 Shift>SCI<Tab><Shift>TEMPE<Tab><Shift>A<Right Shift>Z<Tab><Num 1>
 <Num 7><Num 5><Num 5><Num 1><Tab><Shift>UNITED <Right Shift>STATES OF <Right
 Shift>AMERICA<Tab>717-123-4567<Tab><Shift>
 ROGERS<Right Shift>@CS.TRIGGER.EDU<Tab>WWW.YAHOO.COM<Enter>LOGGING
 SOFTWARE<Enter>WWW.TRIGGER.EDU<Enter><Num 1>
 <Num 7><Num 3><Num 6><Num 0><Num 2><Num 9><Num 9>
 <Num 4><Tab><Num 0><Num 3><Num 0>
 <Num 7><Num 7><Num 9><Num Enter><Num 0><Num 3><Num 0><Num 7>
 <Num 7><Num 9><Num Enter>WWW.CITIBANK.COM<Enter>
23. 10/30/00 10:16:49 AM - Activated https://www.accountonline.com/CB/Login.dcl -
 Microsoft Internet Explorer
 <Shift>LEORAH3779<Tab>********<Enter>
26. 10/30/00 10:17:45 AM - Closed Unbilled Activity - Microsoft Internet Explorer

Figure 4b. The Keystroke Log for the Internet Browsing Test
The numbers to the left of the time stamp indicate which operation in the protocol the logged event corresponds to.
Note: Passwords in the log were replaced with “*,” but the log does record them in plain text.

http://www.yahoomail.com/
http://www.wunderground.com/
http://www.adavi.com/
http://www.yahoo.com/
http://www.millersville.edu/
http://www.citibank.com/

this information is only marginally useful, except,
perhaps, in analyzing how a particular website
launches, and how long it takes to complete the overall
launch.

On the negative side are a number of shortcomings
that would need to be addressed before this particular
product would be particularly useful for HCI work:

1. The time stamps are not fine enough. In the
keystroke log they are only down to the
second. Down to the tenth of a second
would make this feature much more useful
for usability research, as many actions can
happen much faster than in one second. In
the URL log, time stamps are only to the
minute. Again, an order of magnitude
improvement in the accuracy of the time
would be a great improvement.

2. Mouse clicks are not recorded. Where and
when mouse buttons are activated is often
important to HCI work. They need to be
recorded, again probably down to the tenth
of a second.

3. The keystroke log is perhaps not complete
enough for work on web applications. For
instance, the field into which particular data
is being entered is not recorded.

4. The URL log does not record all web pages
visited, only when each website is entered.
It would also be helpful to record whenever
a link (in whatever form: menu, button,
embedded link, etc.) is activated (including
the time), although if all web page addresses
were recorded with a fine enough time
stamp, this might be deduced.

5. The mouse icon is not visible on the Viewer
screen, which makes it difficult for an
observer to follow the user’s actions.
Actions such as mouse clicks must be
deduced by, for instance, observing that a
particular application has just been launched
or a menu been displayed.

6. There is no ability to save the screen
snapshots from the Viewer. This means that
the screen would need to be recorded to a
video tape for later analysis, an additional
step and expense of equipment.

7. The minimum three second refresh cycle for
data transmitted between the client (subject)
system and the viewer (test conductor)
system is probably a bit too long. One
second would be preferable, and with
today’s fast machines should be possible
without degrading the performance of the
client system. A one-tenth cycle would be
preferred.

3. CONCLUSIONS

This study succeeded in identifying weaknesses of one
surveillance software package when attempting to use it as
an HCI tool. It further showed, however, that surveillance
software has the potential for such use. The weaknesses
described above are felt to be within the technical limits of
software development and the capabilities of current
hardware.

4. FUTURE RESEARCH

An extensive comparative study of other surveillance
software packages might prove instructive by perhaps
identifying other products that already address some of the
concerns indicated above. Ultimately it is hoped that we
could assist companies such as Adavi to further develop
their surveillance products so that they would provide an
inexpensive tool for HCI professionals and educators.

5. ACKNOWLEDGEMENTS

Special thanks to Adavi, Inc., for their donation of the
Silent Watch software for this project. Also, the
laboratory equipment used in this study was made possible
by National Science Foundation grant #DUE-9551245.

6. REFERENCES

Adavi, Inc. www.adavi.com. June 2001.

Drury, Jill, Tari Fanderclai, and Frank Linton.

“Automated Data Collection for Evaluating
Collaborative Systems.” SIGCHI Bulletin. Volume
31, Number 4 (October 1999): pp. 49-52.

Edgar, Stacey. Morality and Machines. 1997. Jones and

Bartlett Publishers. Sudbury, MA.

Johnson, Deborah. Computer Ethics, 3rd Edition. 2001.

Prentice Hall Publishing. Upper Saddle River, NJ: p.
113.

McCarthy, Michael J. "You Assumed 'Erase' Wiped Out

That Rant Against the Boss? Nope". Wall Street
Journal (03/07/00): p. A1.

Preece, J. et al. Human-Computer Interaction. 1994.

Addison-Wesley Longman. Reading, MA.

Shneiderman, Ben. Designing the User Interface, 3rd

Edition. 1998. Addison-Wesley Longman. Reading,
MA: p. 131.

UserWorks, Inc. Sales Literature. June 2001.

www.userworks.com.

	Using Surveillance Software as an HCI Tool
	Blaise W. Liffick
	Department of Computer Science, Millersville University
	Millersville, PA, 17551, USA
	Abstract
	A
	1. THE PROJECT
	Log Files
	
	
	Figure 2. The Keystroke Log
	Figure 3. The URL Log

	The Experiment
	The Results
	Figure 4a. A Typical Test Protocol for Internet Browsing
	3. CONCLUSIONS
	4. FUTURE RESEARCH
	6. REFERENCES

