

 1

Web Development in a Server-Centric Environment Using
Java Server Pages (JSP)

John D. Haney
Craig A. VanLengen

College of Business Administration, Northern Arizona University
Flagstaff, AZ 86011

Abstract

The development of interactive Web page applications, where data is extracted from a database or a database is up-
dated, can be a tedious process. Several options are available. The preference for this study is Java Server Pages (JSP).
The fundamental processes for interactive Web page development are - querying from a database, adding a row to a
database table, changing the fields within a row, or deleting a row from a database table. These processes form the
foundation for any type of database interaction. The scripting language used for Java Server Pages is Java and the in-
teraction with the database is done with Structured Query Language (SQL) against an Oracle database. In each of these
processes a connection must be made to the database. A Java Database Connectivity (JDBC) connection to Open Da-
tabase Connectivity (ODBC) connection is used since the Jakarta Java Web Server is used which runs on Internet In-
formation Server (IIS) and NT. In the case of the query, where information is extracted from the database and placed
into a table on the web page, only one Web page is required. For adding a record, changing a record, or deleting a re-
cord two Web pages are required. The first page contains a form with objects, which are posted to the second JSP
page. The second JSP page then, by using SQL, inserts a record, modifies a record or deletes a record.

Keywords: Java Server Pages, Java, database connectivity, structured query language, database interaction

1. INTRODUCTION

JavaServer Pages (JSP) and Microsoft Active Server
Pages (ASP) were both designed to allow the creation of
server based Web applications that interacts with a data-
base. JSP is based on Sun Microsystems, Inc. Java 2
Platform, Enterprise Edition (J2EE) specification. J2EE
includes the definitions of JSP, JavaBeans, Enterprise
JavaBeans components and Java servlets. ASP is plat-
form and server dependent where JSP was designed to
be platform and server independent. This paper presents
examples of extracting information from a database
table and displaying the data in a Web page table using
Java Server Pages (JSP), and maintaining a database
with add, change, and delete options developed in JSP.
An Oracle database is used for these examples.

JSP pages can �e run on any Web server that has a serv-
let container with a JSP environment. Microsoft IIS
server and a servlet container with a JSP environment
were used for the examples. The JSP specification al-
lows us to combine static HTML and Java servlet pro-
gramming to generate dynamic content. JSP pages get
compiled into Java servlets that generate the user page.
The resulting Web page combines the HTML from the
JSP page with the results of the dynamic content speci-
fied within the JSP tags. This way the JSP page provides
dynamic content for each specific HTTP request. The
JSP container inserts the results of JavaBeans for busi-

ness logic processing and database interaction into the
static HTML and returns the request to the client.

JSP follows Sun’s "Write Once, Run Anywhere(tm)"
policy of Java. Also another advantage of JSP is that the
first time a page is requested it is compiled into a servlet
and executed. The next request for the same page will
execute the compiled version as long as no changes were
made to the original JSP page.

JSP also uses JavaBean components. Developing most
of the business logic and database access as JavaBean
components more cleanly separates the presentation
from the business and data layers. Developing with
JavaBeans promotes code reusability. Several JSP appli-
cations can access the needed functionality by calling
the same JavaBean classes. Since the JSP specification
is part of Sun’s Enterprise Edition (J2EE) specification
it also works with Enterprise JavaBeans (EJB) for de-
velopment of enterprise solutions.

Dynamic Content
End users want content tailored to their specific situa-
tion. On the other hand providers of Web content want a
solution that is easy to create and modify and also pow-
erful and flexible. Dynamic content is defined as content
provided on Web pages that are created when requested.
The content is created for each request based on criteria
specified in the request received from the client.

 2

JSP is a presentation layer technology that allows static
Web content to be mixed with Java code. JSP allows the
use of standard HTML, but adds the power and flexibil-
ity of the Java programming language. JSP does not
modify static data, so page layout and “look-and-feel”
can continue to be designed with current methods. This
allows for a clear separation between the page design
and the application. JSP also enables Web applications
to be broken down into separate components.

Tiered Development Approach
Organizations and developers want to move from a cli-
ent-centric to a server-centric model. In a client-centric
model changes to an application require the application
to be redeployed to all client workstations. With a
server-centric model, with applications running from a
Web server, redeployment to the client is not required.
Processing of transactions and preparing of user re-
sponses also takes place on the server.

The appropriate way for tiered development is to sepa-
rate the static presentation (look-and-feel) from the dy-
namic content generation. By separating the static from
the dynamic we make it easier to make changes in either
the presentation or the generation of the dynamic con-
tent. Developers can concentrate on writing Java code
within tags and building JavaBean components for the
business and database logic while the designer/artists
create the “look-and-feel” of the Web pages. By separat-
ing the presentation and the programming logic we are
creating a system that allows for future growth and is
easier to maintain.

JSP Compared to CGI Implementation
The Common Gateway Interface (CGI) is used to allow
users of the World Wide Web access to data and proc-
esses that do not specifically exist within the realm of
the HTTP server and HTML documents. The CGI re-
quest basically calls an external program. This external
program could be written in C, C++, Perl, or other pro-
gramming language. The external program is loaded,
executed to obtain the result and then unloaded. The
CGI programs run as a separate process from the Web
server and may be platform specific thereby reducing
the portability of the application. Another problem with
CGI is that each request creates a new server process.

Sun Microsystems proposed servlets as an alternative to
CGI. Servlets would provide a more flexible, portable,
and faster solution to providing the additional function-
ality. Servlets are written in Java and can call other Java
classes or JavaBeans to provide additional functionality.
Since the servlets are written in Java they provide appli-
cation portability. The server handles multiple requests
for the same servlet by having each request run as a
separate thread.

JSP is an extension of Java Servlets. The JSP page is
compiled into a servlet and executed by the Java Virtual
Machine. Therefore a JSP page implementation is more
scaleable than a CGI implementation. JSP pages require

less server processes than a CGI implementation. Re-
quests for data from multiple JSP pages can be handled
by a single connection to the database with a JDBC
JavaBean.

Mechanics of JSP
The Web server recognizes that a page with a .jsp exten-
sion requires additional processing. The JSP file is com-
piled into a Java servlet. The servlet can execute any
code that is within the <% … %> tags or request infor-
mation from JavaBeans that are referenced in the JSP
page. The response to a user request for a JSP page is an
HTML document that is displayed in a Web browser.

Component Development with JavaBeans and EJBs
Component development makes it easier to separate the
presentation, business logic, and the data layers. In JSP
we have the following components: JavaBeans, Enter-
prise JavaBeans (EJB), XML definitions, and tag librar-
ies. Developers can build highly cohesive and loosely
coupled JavaBean components for the business logic and
data access functions. These beans are then available for
use in other applications, thereby promoting reusability.

Extensibility
JSP is an extension of Java servlets. The JSP specifica-
tion provides for extending the tags. An extended tag
library can be created and used on different systems.
JSP’s also have a close relationship with the Extensible
Markup Language (XML). A JSP page can be written as
an XML document instead of an HTML document.

2. SERVER-SIDE SCRIPTING USING JSP

Types of elements
JSP is composed of five types of elements. The first
three (scriptlets, expressions, and declarations) are
grouped together as scripting elements. The other two
elements are action and directives.

The Scriptlet element allows embedding a Java code
fragment directly into a JSP page. Scriptlets can, but do
not have to, produce output to the page.
<% Java code fragment %>

An Expression element is a Java expression whose
value is evaluated and returned as a string to the page.
<%= Java code expression %>

A Declaration element is used to declare methods and
variables that are initialized and to make them available
to other scripting elements. Declaration elements must
be a complete Java statement that ends with a semicolon
and do not produce output like expression and scriplet
elements. Declarations made with this element are
“global.”
<%! Java code declaration; %>

 3

We also have Directives that send messages to the JSP
engine. Their only purpose is to provide information on
the compilation of the JSP page. We can have include,
page, and taglib directives.
<%@ directive_name %>

Action elements are predefined functions. The Action
element can create and use existing objects. Each action
element has attributes. Two common attributes are the
ID and Scope. The ID uniquely identifies the Action
element and the scope attribute identifies the lifecycle of
the Action element.
< jsp:action_name />

Resource actions specify resources external to the cur-
rent JSP page. They specify the interactions with other
JSP, HTML, and XML pages.

Development Environment
The scripting, using Java, will be demonstrated by using
examples developed in the following environment: Mi-
crosoft NT server, using Internet Information Server
(IIS), Jakarta Java Server and Java Server Pages (JSP).
Oracle is the database used in the examples. However,
the same examples have been executed using an Access
database. The only difference is the Data Source Name
(DSN) that points to the database. All of the application
scripts are embedded within HTML documents that are
stored on the server with the .jsp extension.

Examples
JavaBeans have not been used in the examples. The
reason for this was to keep the examples as simple as
possible and to clearly show the interaction with the
database. An example of querying from a database is
shown first. The steps include connecting to the data-
base, creating a result set using SQL, and then looping
through the result set and placing the resulting data into
an HTML table on the Java Server Page using Java as
the scripting language. Next examples of adding,
changing, and deleting of record occurrences within
tables in an Oracle database are shown. In these exam-
ples the process of connecting to the database and creat-
ing result sets is identical to that of querying from the
database.

The first step on the Java server page is to identify that
the scripting language is Java. This is accomplished
with the following code at the very beginning of the
Web page.

<%@ page language="java"
 import="java.sql.*"
%>

The page language clause identifies the scripting lan-
guage. The java.sql clause imports the classes necessary
for the SQL interaction with the database.
As seen the above code the <% starts scripting and %>
ends scripting. This embedded code is interspersed
throughout the HTML code on the Web page as needed.

Next the embedded script that is necessary to connect
and open a database is shown.

Connecting to the database
The example database is a catalog table that has the
following fields: an id, description, and price. The first
step in interacting with the catalog table in the Oracle
database is to create a connection to the database, and
then open the domain of the database that the catalog
table is within.

First an instance of the connection object is created with
the java.sql.Connection statement. The variable cnn is
user defined. In this example a Java Database Connec-
tion (JDBC) to Open Database Connection (ODBC) is
established to connect to the database. The statement
Class.forName establishes the name of the driver for the
ODBC to JDBC linkage. The next three statements
identify and establish the access for a specific domain
within the Oracle database. The props object created by
the java.util.Properties class allows for the specification
of the userid and password to the database. The actual
connection is made by the getConnection method of the
DriverManager. The argument supplied is a combina-
tion of the JDBC and ODBC linkage along with the
Data Source Name (DSN), which identifies the Oracle
database. In this case the DSN is named demo. The
props clause in the getConnection statement references
the props object, which contains the userid and pass-
word to the database.

<%
java.sql.Connection cnn;

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
java.util.Properties props = new java.util.Properties();
props.put("user","CIS435_DEMO");
props.put("password","DEMO");
cnn =
java.sql.DriverManager.getConnection("jdbc:odbc:demo
",props);
%>

Opening a resultset
Next a recordset must be opened. A resultset is collec-
tion of rows selected from one or more tables from the
database. In this example only the Catalog table is used.
First an instance of the java.sql.Statement object must be
created, and also an instance of the java.sql.ResultSet
must be created. In the following statements, stmt and
results are user-defined names for the objects. Then a
metaData instance is created for the purpose of identify-
ing the number of columns within the resultset. This is
accomplished with the ResultSetMetaData method of
java.sql. The statement int numCols established a vari-
able, which will contain the number of columns.

<%
java.sql.Statement stmt;
java.sql.ResultSet results;
java.sql.ResultSetMetaData metaData;
int numCols;

 4

%>

Query from a table in the database
Now that the objects have been created the data can be
extracted from the database.

<%
stmt = cnn.createStatement();
results = stmt.executeQuery("Select * from Catalog");
metaData = results.getMetaData();
numCols = metaData.getColumnCount();
%>

First an instance of the statement object, named stmt, is
created. Next the heart of whole process is accom-
plished the executeQuery method. This executes the
SQL select command, which selects all the rows and all
the columns from the Catalog table and places the data
into the resultset named results. The getMetaData gath-
ers information about the resultset. The meta data of
interest is the number of columns, which is then placed
into the variable named numCols.

Now that the resultset contains the data from the data-
base the contents of the resultset is next displayed on the
Web page by looping through the resultset. This is ac-
complished by creating a row in the HTML table for
each row in the recordset. The number of columns in
the HTML table is determined by the numCols variable.

Creating an HTML table of data from the resultset
The following code shows the entire process of creating
an HTML table of data from the resultset.

<table>
<%
while(results.next()) {
%>
<tr>
<%
for(int i=1; i <= numCols; i++) {
%>
<td><%= results.getString(i) %></td>
<%
} // end of for loop
} // end of while loop
results.close();
%>
</table>

The first step in this process is to start the HTML table
with the <table> command. Then the code for looping
through the resultset is placed within the table. The
while(results.next()) command tests to see if there are
any more rows in the resultset. If there are then the
looping process continues. For each row in the resultset
a row in the HTML table is created with the <tr> state-
ment. Then within each row of the HTML table the for
loop steps through each column of the resultset row and
creates a column within the HTML row with the <td>
statement. Then the heart of this process is accom-

plished by placing the content of column from the re-
sultset into the column within the row of the HTML
table with the statement <%= results.getString(i) %>.
The code <%= places the following value, in this case
results.getString(i) onto the HTML Web page.

Adding a record to a table within the database
Now to the heart of the interaction with the database
where records will be added, changed or deleted. In the
following example a record will be added to the Catalog
table.

The process of adding a record to a database table en-
tails the use of two Web pages. The first page contains
an HTML form where data is entered. The form also
contains a submit button that when clicked submits the
values of the objects on the form into a buffer which is
available to the posted page. Below is the code for the
HTML form.

<form action = "addUpdate.jsp" method="post">
 <table>
 <tr>
 <td>Stuff ID:</td>
 <td><input name="id" type="text" maxlength="8"
size="8"></td>
 </tr>
 <tr>
 <td>Description:</td>
 <td><input name="description" type="text" max-
length="50" SIZE="50"></td>
 </tr>
 <tr>
 <td>Price:</td>
 <td><input name="price" type="text" max-
length="8" SIZE="8"></td>
 </tr>
 </table>
<p><input type="submit" value="Continue"></p>
</form>

In this example, when the submit button is clicked the
three fields – id, description, and prices are posted to the
jsp page named addUpdate.jsp. The values actually go
into a buffer, which is available to the jsp page.

The next step is then for the jsp page, in this case ad-
dUpdat.jsp, to get the values from the buffer and insert a
record into the database with the values.

As in the case of the query from the database, a connec-
tion to the database must be made. Once that connection
is made the values posted from the Web page with the
form are then accessed and placed into variables. The
below code explains that process.

<%
// Get the values from the form and place into variables
String tmpID = " ";
int cnvID = 0;
tmpID = request.getParameter("id");
cnvID = Integer.parseInt(tmpID);

 5

String tmpDescr = " ";
tmpDescr = request.getParameter("description");
String tmpPrice = " ";
double cnvPrice = 0;
tmpPrice = request.getParameter("price");
Double tmpValue = Double.valueOf(tmpPrice);
cnvPrice =tmpValue.doubleValue();
%>

The three fields are accessed with the re-
quest.getParameter() method. The request object refer-
ences the buffer area. Then content of each field is
String. Therefore the number fields must be converted
from string to either int or double, the explanation of
which is outside the scope of this paper.
Now that the values are in variables on the Web page,
and the database is connected, a record can now be in-
serted into the database table. First a determination is
made as to whether a record with the same id is already
in the table as follows.

<%
// Verify if the record is already on file
sql = "Select * From Catalog Where Cat_ID = " + tID;
stmt = cnn.createStatement();
results = stmt.executeQuery(sql);

// If the record is on file go to invalid page
if (results.next()) {

results.close();
%>
<jsp:forward page = "onFile.jsp" />
<%;

} // end if

A resultset is created that will either contain one record
or no records. If the resultset contains one record then
the record is already in the table and the add process is
terminated by closing the resultset and forwarding to a
notification page.
If the record is not on file then a record is inserted into
the table, and the resultset is closed.

<%
Statement insert = cnn.createStatement();
int rowInserted = 0;

// Insert the record into the table
sql = "Insert Into Catalog Values (";
sql = sql + tID + ", ";
sql = sql + "'" + tDescription + "', ";
sql = sql + tPrice + ")";
rowInserted = insert.executeUpdate(sql);
// Close the recordset
results.close();
%>

A create statement must be created, in this case named
insert. Also, an int variable that will receive the result of
the insert, which is named rowInserted, must be created.
Then a String variable named sql is built with the SQL
command that will insert the three fields into table. The

row is actually inserted with the executeUpdate method
using the sql variable as the argument. Since the ab-
sence of a duplicate record was already determined the
use of rowInserted is not necessary.

Changing a record in a table within the database
The process of changing a record in a database table is
similar to that of adding a record. The values, which are
posted from the Web page with the form, are in a buffer
available to the jsp page. The example for the add proc-
ess would apply to the change except the jsp page will
now be changeUpdate.jsp.

Again a connection to the database must be made, and
the values from the form are then accessed and placed
into variables. As in the case of the add process, a de-
termination is made as to whether the record exists or
not. In the case of the change if the record does not
exist the process is terminated. If the record is on file
then the record is modified and the resultset is closed.

<%
int rowModified = 0;
Statement modify = cnn.createStatement();
// Modify the record in the table
sql = "Update Catalog Set Description = '" + tDescrip-
tion + "'";
sql = sql + Price = " + tPrice;
sql = sql + " Where Cat_ID = " + tID;
rowModified = modify.executeUpdate(sql);
%>

A create statement must be created, in this case named
modify. Also, an int variable that will receive the result
of the update, which is named rowModified, must be
created. Then a String variable named sql is built with
the SQL command that will modify the three fields in
the row of the table. The row is actually modified with
the executeUpdate method using the sql variable as the
argument. Since the presence of the record was already
determined the use of rowModified is not necessary.

Deleting a record from a table within the database
The process of deleting a record from a database table is
almost identical to that of changing a record. The most
notable exception is the sql command that either updates
or deletes a record. The other exception is that the only
value from the buffer is the id field, which is the primary
key in the database table. The name of the jsp page will
now be deleteUpdate.jsp.

Once again a connection to the database must be made.
As in the case of the change process, a determination is
made as to whether the record exists or not. If the re-
cord does not exist the process is terminated. If the
record is on file then the record is deleted and the result-
set is closed.

<%
int rowDeleted = 0;
Statement delete = cnn.createStatement();
// Delete the record from the table

 6

sql = "Delete From Catalog Where Cat_ID = " + tID;
rowDeleted = delete.executeUpdate(sql);
%>

A create statement must be created, in this case named
delete. And an int variable that will receive the result of
the delete, which is named rowDeleted, must also be
created. Then a String variable named sql is built with
the SQL command that will delete the row from the
table. The row is actually deleted with the executeUp-
date method using the sql variable as the argument.
Since the presence of the record was already determined
the use of rowDeleted is not necessary.

3. CONCLUSIONS

When developing interactive Web page applications
several options are available. One of those options is
Java Server Pages. This paper has given examples of
the fundamental processes for interactive Web page
development - querying from a database, adding records
to a database, and changing or deleting records. In each
of these processes the type of scripting must be identi-
fied, in this case Java. A connection must also be made
to the database.

In the case of the query, data is extracted from the data-
base and placed into a resultset. The content of this
result set is then displayed on the Web page. Although
not necessary, for clarity of display the placement of the
data into an HTML table is preferable.

For add, change, and delete processes two Web pages
are necessary. The first page contains a form, which is
used for data entry, and the values from the objects on
the form are then posted into a buffer area, which is
available to the JSP page that will interact with the data-
base. On the JSP page the values from the buffer area is
placed into variables on the Web page. These values are
then used to add a record, change a record, or delete a
record.

4. REFERENCES

Avila, John, 2001, Server-Side Java Programming for

Web Developers. Scott/Jones Inc., El Granada,
CA.

Annunziato, Jose, & Stephanie Fesler Kaminaris, 2001,

Sams Teach Yourself JavaServer Pages in 24
Hours. Sams Publishing, Indianapolis.

Ben-Natan, Ron, & Ori Sasson, 2000, WebSphere

Starter Kit. McGraw-Hill, New York.

Bhamidipati, Kishore, 1998, SQL, Programmer’s Refe-

rence. McGraw-Hill, New York.

Fields, Duane K. & Mark A. Kolb, 2000, Web Develop-
ment with Java Server Pages, A practical guide for
designing and building dynamic Web services.
Manning, Greenwich.

Gittleman, Art, 2001, Internet Applications with the

Java 2 Platform. Scott/Jones Inc., El Granada, CA.

Hougland, Damon, & Aaron Tavistock, 2001, Core JSP.

Prentice Hall, Upper Saddle River, NJ.

Powell, Thomas A., 1998, HTML, the Complete Refe-
rence. McGraw-Hill, New York.

Sharma, Vivek and Rajiv Sharma, 2000, Developing e-

Commerce Sites, an Integrated Approach. Addison
Wesley, Boston.

Staugaard, Andrew C., Jr., 1999, Java for Computer

Information Systems. Prentice-Hall, Upper Saddle
River, NJ.

Tremblett, Paul, 2000, Instant JavaServer Pages.

McGraw-Hill, New York.

	Abstract
	1
	1. INTRODUCTION
	Dynamic Content
	Tiered Development Approach
	JSP Compared to CGI Implementation
	Mechanics of JSP
	Component Development with JavaBeans and EJBs
	Extensibility
	2. SERVER-SIDE SCRIPTING USING JSP
	Types of elements
	We also have Directives that send messages to the JSP engine. Their only purpose is to provide information on the compilation of the JSP page. We can have include, page, and taglib directives.
	Action elements are predefined functions. The Action element can create and use existing objects. Each action element has attributes. Two common attributes are the ID and Scope. The ID uniquely identifies the Action element and the scope attribute identi
	Development Environment
	Examples
	
	Connecting to the database
	Opening a resultset

	Changing a record in a table within the database
	4. REFERENCES

