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Abstract 
This paper is concerned with an automated system for grading students into an ability level in response to their 
ability to complete tutorials. This is useful in that the student is more likely to improve their knowledge of a 
subject if they are presented with tutorial material at or just beyond their ability. However, dynamically responding 
to a student’s changing knowledge about a subject usually requires the presence of a human teacher, an altogether 
expensive resource. The system discussed here can grade both a student and the questions in a tutorial with 
minimal input from the human teacher. In order to accomplish this a specialist neural network is employed. The 
design and operation of our system is discussed along with arguments as to why a neural network approach is 
suitable for this problem. 
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1 Introduction 

The Tutorial Supervisor (TS) is an automatic system 
for grading a student into an ability level in 
response to the student’s interaction with tutorial 
questions. Once the student has been graded then a 
question or tutorial can be selected which is inline 
with best pedagogic practice (Bergeron 1989). Our 
TS is an expansion of the TS designed by Bergeron 
et al (1989) and is in use in our prototype 
hypermedia system (Mullier et al 1999). Our TS 
improves on Bergeron’s original specification by 
having the additional ability to adapt to both 
students and questions/tutorials as the system is in 
use, as opposed to requiring the system to be taken 
off-line and reprogrammed/trained. The TS’s ability 
to respond in real-time to a student’s changing 
ability and how a population of students perceive a 
particular tutorial or question is brought about by 
the use of a specialist neural network device that is 
able to learn and adapt without human intervention. 
A thorough description of our TS along with 
complete details of its design and testing can be 
found in Mullier (1999, chapter 8). 
 

2 Operation of the Tutorial 
Supervisor 

The TS is simple in operation. A set of questions to 
be given to the student is recorded in a database and 
is graded with a difficulty level by the author of the 
question. A student can then be given an appropriate 
question, depending upon the student’s ability and 
the difficulty of the question. However, in order for 
a student to progress in their learning it is necessary 
to pitch questions so that they sufficiently tax the 
student without it being impossibly difficult 
(Bergeron 1989). Therefore it is necessary to track 

the student’s change in ability as they progress 
through the learning material. Our system achieves 
this by recording the student’s interactions with 
questions and mapping this onto an ability level. 
The system is robust to exceptions in the student’s 
behaviour, since a student may generally perform 
well but make a mistake with one particular 
question. Similarly, the system is able to regrade 
questions in the question database. For example, a 
question may have been graded by the author as 
being relatively easy. However, it may transpire that 
a population of students actually find it difficult. 
This will be bourn out by most students who should 
have performed well with the question actually 
performing poorly. Such a situation negates the 
pedagogy stated above. Our system is able to 
statistically determine that a question has been 
misgraded and is able to remedy the situation. The 
remainder of this paper will discuss the issues 
relating to the design and implementation of our TS 
system. 
 
3 Rationale for Using a Neural 

Network 
A neural network is an Artificial Intelligence (AI) 
system that is able to learn rules in response to 
being presented with many examples. The neural 
network is said to learn the rules from the examples. 
In contrast a traditional rule-based system would 
have rules encoded within it that a designer has 
previously identified. The advantage of neural 
network systems is that it is not always possible for 
a human designer to express and encode rules in a 
reasonable time-frame or even express then at all. A 
further disadvantage of rule-based systems is that if 
the rules change for some reason then it is necessary 



 

  

for the designer to reincorporate the new rules 
within the rule-base (Hagan et al 1996).  

Figure 1 Kohonen versus MLFF neural networks 
 
A further reason for choosing a neural network for 
the TS in preference to a rule-based system is that, 
unlike a rule-based system, a neural network can be 
domain independent. It is unlikely that, for example, 
a high level student produces results in the same 
range for every type of domain. Thus the rule "IF 
SCORE >70 THEN LEVEL 10" is only likely to 
apply to the domain that it was initially defined for. 
This is the reason why Bergeron et al (1989) use a 
neural network for their Tutorial Supervisor. Their 
neural network holds the rules that it has learnt from 
its training data (the first domain). It is then able to 
change its rules in response to new data (new 
domains), by retraining off-line. In this manner the 
neural network can adapt to misconceptions or 
inaccuracies in the original rules and adapt to new 
situations. This would be a difficult and time-
consuming process for a symbolic rule-based 
system, since it would require the re-engineering of 
the rule-base by a designer, in that the new rules 
would have to be identified and then encoded. In 
essence, the neural network is doing the job of the 
human rule designer. Designing such rules is not 
necessarily a simple matter, since it requires the 
human designer to examine many student 
interactions with various questions and tasks so that 
a valid grading of each question can be made (e.g. 
this question was answered well by novice students, 
it is therefore easy and can be presented to other 
novice students). The situation is further 
complicated by the possibility that different 
populations of students (students from different 
classes or tutorial groups) may have different 
previous knowledge of the domain and therefore the 
initial question gradings may not apply to them. It 
would therefore be helpful if an AI system could be 
employed to accomplish the task of dynamic 
question grading and therefore remove some burden 
from the author. However, Bergeron et al’s (1989) 
TS is unable to readapt to different domains without 
being manually provided with new training data and 
then retrained off-line. The remainder of this paper 

describes the neural networks used for our Tutorial 
Supervisor, which improves upon Bergeron et al’s 
(1989) design by allowing the automatic on-line 
adaptation to different domains. 
 

4 Tutorial Supervisor 
Architecture 

The Kohonen self-organising map is a specialist 
type of neural network with the ability to learn 
without human intervention (Hagan et al 1996). 
This is useful in our system since the distinction 
between a novice student and an expert student, in 
terms of marks at tutorial nodes, may be small, or 
may vary significantly from domain to domain. For 
example, the majority of students may achieve 
marks between 50% and 60%, with a few results 
between 60% and 75% percent and a few between 
40% and 50%. There are therefore two large ranges 
of numbers that occur infrequently (0-40 and 75-
100). If a standard type of neural network were to 
be used to model the above problem then these 
mark ranges must be identified beforehand or the 
neural network’s outputs would have to be designed 
to produce student ability levels between 0 and 100, 
in order to accommodate a broad range of scores. 
Identifying scores beforehand is not likely to be 
practical since it would require the collection of a 
large amount of data (with no initial benefit for the 
student). Designing such a generic neural network 
also introduces the following difficulties. The 
standard neural network must have enough ability 
levels (outputs) to clearly demonstrate the 
distinction between students in these highly 
clustered areas, necessitating an increase in outputs 
for all areas to cover for all possibilities, even those 
that are unlikely. The increase in outputs renders the 
neural network more complex, resulting in a 
network that is more difficult to train. Further, and 
most crucially, once the trained standard neural 
network is used for different domains, then there is 
no direct correspondence between an ability level 
for one domain and an ability level for another. This 
is because an output of the standard neural network 
does not correspond directly to a student ability 
level, since the student ability level may vary 
between domains.  The upshot of this is that the 
standard neural network would require complete 
retraining for different domains. 
 
A Kohonen network can solve the above problem 
by continually adapting to input stimuli whilst it is 
being used by students. This is because of the way a 
Kohonen network operates. A Kohonen network is 
given a number of outputs by the network designer, 
representing the number of categories that the 
network designer wishes the network to identify 
(the number of required student levels in our case). 
It is left to the network itself to sort the input data 
into this number of categories, since it is not implied 
by the training data itself. In the case of a standard 
neural network it would be required to include an 
example solution with the training data. If there are 
ten or more distinct patterns in the data then a 
correctly trained Kohonen will learn by itself to 
distinguish them (Kohonen 1989, Masters 1993, 
Gurney 1997). Therefore, it is irrelevant to the 



 

  

network if the actual values of the input data 
change; it will still attempt to separate them into the 
number of categories represented by the number of 
outputs that it has. The outputs of a Kohonen neural 
network therefore behave as fuzzy sets, whose 
boundaries may change over time. The Kohonen 
neural network is therefore simpler than the 
standard neural network for the TS in this case, 
since the number of outputs can be kept small since 
is not necessary to design for all unlikely 
possibilities (the network will adapt to them if they 
occur).  This is shown in figure 1. Two standard 
neural networks, in our test case Multi-Layered 
Feed-Forward (MLFF) neural networks, are shown 
in operation with different domains where the 
scores of tutorials are different. In order for the 
neural network to grade both domains it needs 
enough outputs to cope with the two cases, even 
though only a subset of the outputs are used for an 
individual domain. By contrast the Kohonen neural 
network needs only the number of student levels 
required, as it will adapt to the differing gradings 
between domains. 
 
Training Data 
A neural network has a number of inputs, which in 
our case represent the student’s responses to 
questions and a number of outputs, each one 
representing a unique ability level. The inputs to the 
Kohonen neural network must incorporate history 
data in order to make a more informed evaluation of 
the student and therefore avoid a restriction of 
Bergeron at al’s (1989) neural network, namely 
reacting to a one off error (or success) from a 
student. History data can be used to prevent the TS 
from making snap judgements on the student. For 
example, if the student is generally performing well, 
but gets one question wrong, then if no history data 
is taken into account the TS is forced to make a 
decision based only upon the most recent 
presentation and the student is likely to drop a level. 
The student ability itself represents a degree of 
history data, in that if a student is regarded to be an 
expert student, then they must have performed well 
in the past. However, the direct incorporation of 
history data prevents a continual changing of levels 
based upon one interaction only. The incorporation 
of history data can be achieved by presenting a 
number of previous interactions with tutorial nodes 
to the neural network. Each time a new interaction 
is presented the previous interactions are shifted 
along the inputs to accommodate the new input and 
the oldest interaction is lost. Training data supplied 
to the neural network are figures that represent a 
percentage value of a student’s interaction with a 
tutorial. For example, if the student achieved a 50% 
success level with a tutorial question, then it is this 
figure that is passed to the TS.  
 
Re-grading Questions Using Fuzzy Logic 
Each question level is generally presented to a 
student of the same level, or just below, a pedagogy 
used with success by Bergeron et al (1989), in that a 
level x student should be able, overall, to answer a 
level x question. A question may however, be 
graded incorrectly by the domain author. This can 
be determined by the system after a number of 

interactions with different students (a population of 
students who should be, generally, getting a 
question right are getting it wrong or vice versa). It 
is not suitable to immediately re-grade a question 
with respect to an interaction with one student, 
however. As has been discussed earlier, a student is 
a complex entity and it is difficult to formulate rules 
describing them accurately. In order to resolve this 
problem each question level is modelled as a fuzzy 
set. This allows a question's level to be adjusted 
slightly, within the level, without necessarily 
affecting the overall level (as presented to the 
student), thus there is a buffering effect and the 
question does not rapidly leap back and forth 
between levels. The use of fuzzy sets also provides 
a mechanism for allowing a question to belong to 
more than one question level set, providing a 
smoother transition between levels. This differs 
from Bergeron et al’s (1989) approach in that they 
collect data from the students and then periodically 
use it to update the training of the neural network. 
There is therefore a delay, which ensures that the 
question levels do not suddenly change, which 
could potentially result in the question level 
continually changing and thus be distracting to the 
students. However, the drawback is that this is a 
manual process that requires the direct intervention 
of the system designer. The process for regrading 
questions described below is achieved 
automatically, whilst still maintaining the delay 
between the question being presented to a student 
and changing its level.  
 
A question is re-graded by a population of students’ 
interactions with the question being determined as 
incorrect by the TS, for the reasons described above. 
Such erroneous interactions cause the question 
ability to move within the fuzzy set until it crosses 
into a different fuzzy set. 

 
Figure 2 Regrading questions with fuzzy sets 
 
A question’s ability level is therefore only changed 
after a number of erroneous interactions with 
students, the actual number being dependent upon 
the size of the fuzzy set, the fuzzy set is therefore 
acting as a buffer. A simple fuzzy processor 
accomplishes question re-grading. The fuzzy 
processor compares the level of the current question 
and the student level output of the TS neural 
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network. The buffer can be implemented using three 
fuzzy rules: 
 
1 IF S_LEVEL > Q_LEVEL THEN  

Q_LEVELf = Q_LEVELf + 1 
 
2 IF S_LEVEL < Q_LEVEL THEN  

Q_LEVELf = Q_LEVELf – 1 
 
3 IF S_LEVEL = Q_LEVEL THEN  

Q_LEVELf = Q_LEVELf  (remain unchanged) 
 

where  
S_LEVEL is the level assigned to a student 
Q_LEVEL is the level of the question, used to decide 
whether it is suitable for the student. 
Q_LEVELf is the fuzzy membership number of the 
question. 
 

 
Using the figure 2, a question may belong to one or 
two of four levels. If the question has a value of 
Q_LEVELf corresponding to x, then the question is 
regarded as both level three and level four. If 
however, as a result of interactions with several 
students, rule one is repeatedly fired, then the value 
of Q_LEVELf will increase and the question will 
become graded as level four only. Conversely, if 
rule two is repeatedly fired then the value of 
Q_LEVELf will decrease and the question will be 
graded as level3 only. Such changes may result in 
further increases or decreases in the value of 
Q_LEVELf, which may become any of the levels 
available. The utilisation of this fuzzy system 
ensures that the level of a question is not changed 
(in terms of presenting to students) in response to 
individual interactions with students. The fuzzy 
logic is able to distinguish overall trends and is 
therefore robust in the presence of exception data. 
 
The changing of levels is dependent upon the size of 
the fuzzy sets, since the size of the fuzzy set directly 
affects how many interactions are required before a 
question migrates from one level to another. These 
start and end points also define whether a question 
can belong to more than one level or not. It is 
intuitively sensible to provide a small overlap of 
neighbouring fuzzy sets. This provides a simple 
buffer that will help the question to find its true 
grade. For example, if fuzzy sets were to be defined 
separately (or as a discrete set) then a question may 
be presented as a difficult level but become graded 
as an easier level after several interactions. Once 
this change has occurred then the question is no 
longer presented to the original class of students that 
graded it. This may result in the question becoming 
stuck at a particular level. If instead the question is 
presented to both the original class of student and 
the new class of student, then a smoother 
progression from one level to another may result 
and the extra information enables the question level 
to settle more easily. If the fuzzy sets are defined so 
that a question may belong to more than two levels, 
then the question level may not settle at all, as one 
level of student may push the value of Q_LEVEL 
one way and another level may push it in the 
opposite direction. 
 

5 Experimental Trials 
Our TS was designed using a Neural Network 
package, NeuroShell2 by Ward Systems. Several 
configurations of neural network were built and 
tested with both simulated data and real student 
interactions. The most successful architecture is 
discussed below. A full description of the 
experimental trials can be found in Mullier (1999, 
chapter 8). 
 
The Kohonen neural network proved to be a 
successful neural network architecture for the 
problem of grading students into ability levels. Most 
permutations of parameters produced neural 
networks that converged upon a solution. A fast and 
reliable neural network could be produced with 
between five and twenty inputs or outputs. It is 
possible to increase this number, but this is unlikely 
to be required, since it is not desirable to use 
information from too far in the past, since the 
network does not have any knowledge of time. It 
has been experimentally determined that the number 
of outputs should not rise above twenty. If more 
levels are required then the outputs may be 
combined to form fuzzy sets. 
 
Parameters for a generic Kohonen Tutorial 
Supervisor, i.e. one that will converge on a solution 
and provide a high degree of student grading for a 
variety of domains are suggested as the following: 
 
• 5 Inputs – this has been found to provide the 
network with enough information with which to 
evaluate the student. It is suggested that an input 
filter, as described above is employed if more than 
this number of inputs is required. 
 
• 10 Outputs – corresponding to ten student levels, 
if more levels are required then it is advised that 
thirty levels is the upper limit, beyond this the 
neural network becomes less likely to activate all of 
its outputs.  
 
• Any form of data extraction may be used to form 
the training set, however a large number of 
examples are required to produce a fully trained 
network. One thousand student interactions provide 
enough examples. Note therefore, that for a network 
to be trained with real student data is probably 
impractical. However, since the Kohonen network is 
fully adaptable, it is suggested that a network be 
trained upon generated data and then allowed to 
adapt to real students. The generated data could be 
designed to represent realistic but uncomplicated 
situations. For example, training the network to 
model simple rules such as “If result in the range 
40-50 THEN set student level to 5”. The neural 
network is then able to adapt to any misconceptions 
present in these rules. Once a neural network has 
been trained it may be saved and replicated.  
 

6 Discussion and Conclusion 
The Tutorial Supervisor is intended to be an 
automatic system for gauging a student’s abilities 
with tutorials. This imposes a restriction upon the 
kind of material that can be offered in a tutorial, 



 

  

since it must be suitable for automatic assessment. 
Automatic assessment effectively rules out 
assessments that cannot be graded in a relatively 
simple fashion. For example, it would not be 
possible, with current technology, to have an essay 
automatically assessed, since this would require a 
complex understanding of the essay on the part of 
the assessor. Automatic assessment is limited to 
tasks that can be broken down into elements that 
can then be individually marked. A tutorial may, for 
example, take the form of ten questions, each of 
which could be answered by the student and graded 
as right or wrong, or graded as containing relevant 
keywords. However, assessment is not the role of 
the TS, which is presented with completed 
assessments (results). Assessment is therefore 
limited to multiple-choice questions or identifying 
that the student has visited certain nodes (or a 
combination of both). 
 
A key issue of concern regarding the TS is the 
number of student levels that the TS is to recognise 
and output. Each student level should have tutorial 
material generated for it; since it is important to 
target tutorial tasks at the student’s ability, this is 
seen as being of more educational benefit than 
offering the same tutorials to all students and then 
assigning a student level based upon the grade that 
the student achieves (Bergeron 1989), although 
there is no technical reason why the latter could not 
be done. The number of student levels therefore 
may change between domains, since some domains 
may have a richer set of assessment questions than 
others (for a number of possible reasons). A 
possible conflict therefore could arise between the 
number of student levels that has been designed into 
the TS by the system designer and the number of 
student levels that are required by the current 
domain author. A possible solution to this problem 
is for the system designer to provide a TS that is 
capable of outputting a large number of student 
levels and then each domain author can allow it to 
adapt to their domains and ignore the inactive 
outputs from the TS that will naturally arise if there 
is not sufficient input student levels.  The benefit of 
this approach is that one TS configuration could be 
used for many domains without the need for 
reconfiguration. However, the drawback is that 
some outputs of the TS will always remain inactive, 
although the experiments carried out as part of the 
research demonstrated that active outputs tend to 
cluster together and so are easily identifiable. A 
problem related to the number of outputs is the 
number of inputs. 
 
The amount of history data presented to the TS 
directly affects the grading of the student, in that the 
more history data presented to the neural network, 
the greater the effect of previous results with 
tutorials. This is a similar situation to that of the 
number of student levels, in that it is possible to 
design a TS with a large number of inputs and then 
use only the required amount.  However, it is not a 
simple matter to determine how much history data 
to present to the neural network in order to aid the 
student the most. This issue is difficult to reconcile 
without extensive trials with real students and even 

if this were done it would still be unlikely that any 
real conclusions could be drawn since proving the 
effectiveness of educational systems is notoriously 
difficult in the educational field (Dillon and 
Gabbard 1998). The purpose of the TS here is to 
explore the technical issues relating to the feasibility 
of providing an automatic student grading system. 
Whether this facility is useful is open to educational 
debate. However it is likely to be the case that it will 
be useful should the correct set-up of the TS be 
achieved during trials with real students, since 
Bergeron et al (1989) found their TS to be useful. 
 
Further issues arise concerning the adaptability of 
the neural network used for the TS. The neural 
network architecture used by Bergeron et al (1989) 
requires off-line training and is therefore under the 
control of the system designer. The drawback with 
this approach is that it requires the manual 
intervention of a person who can interpret the 
student interaction data with tutorials and determine 
whether it should be represented to the neural 
network. The advantage of the Kohonen neural 
network architecture is that it is able to train 
continually without any intervention from a human. 
However, there are situations where this adaptation 
is undesirable, most notably when different skill 
levels of students use the same domain at different 
times. For example, if a class of first year students 
use the system followed by a class of final year 
students. However, this is not a problem if the 
questions and tutorials have been adequately 
assigned a difficulty level, since the first year 
students will only be offered easier tutorials and so 
can be graded only as lower level students (although 
they can still progress if they continue to achieve 
success with the tutorial). Problems can arise only if 
both the student abilities and the question 
difficulties are unknown beforehand. This is 
because the TS acts as a bi-directional mapping 
device, in that if either the student abilities or the 
question difficulties are known beforehand then the 
TS can produce the unknown parameter. It is not, 
however, able to produce values when nothing is 
known beforehand. The TS’s ability to re-grade 
questions automatically is an exploitation of this bi-
directional mapping facility, in that the student 
ability can be changed in response to improving 
results and the question difficulty can be changed if 
a significant proportion of students who should get 
the question right in fact get it wrong.  
 
Research into the TS has demonstrated that a fully 
adaptable system for automatically grading students 
is possible and practical. The approach of using an 
automatic tutorial supervisor has been practically 
justified by Bergeron et al (1989). However, their 
system requires manual periodic retraining which 
renders it unsuitable for a generic tutorial system, or 
a tutorial system that can be used without the need 
for reprogramming or otherwise rearranging the 
program code of the system.  
 
Further research is concerned with incorporating the 
TS within a hypermedia tutoring system (Mullier et 
al 1999, Mullier 1999) so that the students’ 
interactions with the TS can be studied. It is 



 

  

anticipated that such a study will prove useful for 
determining how the TS reacts to different domain, 
where the rules that describe ability are different, 
with a view to reengineering the TS so that it is able 
to learn such a vast set of rules without conflict. A 
“superTS” such as this would be useful in a more 
generic tutoring environment such as may become 
more prevalent on the WWW. 
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