

A Neural-Network system for Automatically Assessing
Students

D.J. Mullier
D.J. Moore

1Faculty of Information and Engineering Systems
Leeds Metropolitan University

England
d.mullier@lmu.ac.uk

D.J.Hobbs
2University of Bradford

England

Abstract
This paper is concerned with an automated system for grading students into an ability level in response to their
ability to complete tutorials. This is useful in that the student is more likely to improve their knowledge of a
subject if they are presented with tutorial material at or just beyond their ability. However, dynamically responding
to a student’s changing knowledge about a subject usually requires the presence of a human teacher, an altogether
expensive resource. The system discussed here can grade both a student and the questions in a tutorial with
minimal input from the human teacher. In order to accomplish this a specialist neural network is employed. The
design and operation of our system is discussed along with arguments as to why a neural network approach is
suitable for this problem.

Keywords: automatic assessment, neural network, fuzzy logic

1 Introduction

The Tutorial Supervisor (TS) is an automatic system
for grading a student into an ability level in
response to the student’s interaction with tutorial
questions. Once the student has been graded then a
question or tutorial can be selected which is inline
with best pedagogic practice (Bergeron 1989). Our
TS is an expansion of the TS designed by Bergeron
et al (1989) and is in use in our prototype
hypermedia system (Mullier et al 1999). Our TS
improves on Bergeron’s original specification by
having the additional ability to adapt to both
students and questions/tutorials as the system is in
use, as opposed to requiring the system to be taken
off-line and reprogrammed/trained. The TS’s ability
to respond in real-time to a student’s changing
ability and how a population of students perceive a
particular tutorial or question is brought about by
the use of a specialist neural network device that is
able to learn and adapt without human intervention.
A thorough description of our TS along with
complete details of its design and testing can be
found in Mullier (1999, chapter 8).

2 Operation of the Tutorial
Supervisor

The TS is simple in operation. A set of questions to
be given to the student is recorded in a database and
is graded with a difficulty level by the author of the
question. A student can then be given an appropriate
question, depending upon the student’s ability and
the difficulty of the question. However, in order for
a student to progress in their learning it is necessary
to pitch questions so that they sufficiently tax the
student without it being impossibly difficult
(Bergeron 1989). Therefore it is necessary to track

the student’s change in ability as they progress
through the learning material. Our system achieves
this by recording the student’s interactions with
questions and mapping this onto an ability level.
The system is robust to exceptions in the student’s
behaviour, since a student may generally perform
well but make a mistake with one particular
question. Similarly, the system is able to regrade
questions in the question database. For example, a
question may have been graded by the author as
being relatively easy. However, it may transpire that
a population of students actually find it difficult.
This will be bourn out by most students who should
have performed well with the question actually
performing poorly. Such a situation negates the
pedagogy stated above. Our system is able to
statistically determine that a question has been
misgraded and is able to remedy the situation. The
remainder of this paper will discuss the issues
relating to the design and implementation of our TS
system.

3 Rationale for Using a Neural

Network
A neural network is an Artificial Intelligence (AI)
system that is able to learn rules in response to
being presented with many examples. The neural
network is said to learn the rules from the examples.
In contrast a traditional rule-based system would
have rules encoded within it that a designer has
previously identified. The advantage of neural
network systems is that it is not always possible for
a human designer to express and encode rules in a
reasonable time-frame or even express then at all. A
further disadvantage of rule-based systems is that if
the rules change for some reason then it is necessary

for the designer to reincorporate the new rules
within the rule-base (Hagan et al 1996).

Figure 1 Kohonen versus MLFF neural networks

A further reason for choosing a neural network for
the TS in preference to a rule-based system is that,
unlike a rule-based system, a neural network can be
domain independent. It is unlikely that, for example,
a high level student produces results in the same
range for every type of domain. Thus the rule "IF
SCORE >70 THEN LEVEL 10" is only likely to
apply to the domain that it was initially defined for.
This is the reason why Bergeron et al (1989) use a
neural network for their Tutorial Supervisor. Their
neural network holds the rules that it has learnt from
its training data (the first domain). It is then able to
change its rules in response to new data (new
domains), by retraining off-line. In this manner the
neural network can adapt to misconceptions or
inaccuracies in the original rules and adapt to new
situations. This would be a difficult and time-
consuming process for a symbolic rule-based
system, since it would require the re-engineering of
the rule-base by a designer, in that the new rules
would have to be identified and then encoded. In
essence, the neural network is doing the job of the
human rule designer. Designing such rules is not
necessarily a simple matter, since it requires the
human designer to examine many student
interactions with various questions and tasks so that
a valid grading of each question can be made (e.g.
this question was answered well by novice students,
it is therefore easy and can be presented to other
novice students). The situation is further
complicated by the possibility that different
populations of students (students from different
classes or tutorial groups) may have different
previous knowledge of the domain and therefore the
initial question gradings may not apply to them. It
would therefore be helpful if an AI system could be
employed to accomplish the task of dynamic
question grading and therefore remove some burden
from the author. However, Bergeron et al’s (1989)
TS is unable to readapt to different domains without
being manually provided with new training data and
then retrained off-line. The remainder of this paper

describes the neural networks used for our Tutorial
Supervisor, which improves upon Bergeron et al’s
(1989) design by allowing the automatic on-line
adaptation to different domains.

4 Tutorial Supervisor
Architecture

The Kohonen self-organising map is a specialist
type of neural network with the ability to learn
without human intervention (Hagan et al 1996).
This is useful in our system since the distinction
between a novice student and an expert student, in
terms of marks at tutorial nodes, may be small, or
may vary significantly from domain to domain. For
example, the majority of students may achieve
marks between 50% and 60%, with a few results
between 60% and 75% percent and a few between
40% and 50%. There are therefore two large ranges
of numbers that occur infrequently (0-40 and 75-
100). If a standard type of neural network were to
be used to model the above problem then these
mark ranges must be identified beforehand or the
neural network’s outputs would have to be designed
to produce student ability levels between 0 and 100,
in order to accommodate a broad range of scores.
Identifying scores beforehand is not likely to be
practical since it would require the collection of a
large amount of data (with no initial benefit for the
student). Designing such a generic neural network
also introduces the following difficulties. The
standard neural network must have enough ability
levels (outputs) to clearly demonstrate the
distinction between students in these highly
clustered areas, necessitating an increase in outputs
for all areas to cover for all possibilities, even those
that are unlikely. The increase in outputs renders the
neural network more complex, resulting in a
network that is more difficult to train. Further, and
most crucially, once the trained standard neural
network is used for different domains, then there is
no direct correspondence between an ability level
for one domain and an ability level for another. This
is because an output of the standard neural network
does not correspond directly to a student ability
level, since the student ability level may vary
between domains. The upshot of this is that the
standard neural network would require complete
retraining for different domains.

A Kohonen network can solve the above problem
by continually adapting to input stimuli whilst it is
being used by students. This is because of the way a
Kohonen network operates. A Kohonen network is
given a number of outputs by the network designer,
representing the number of categories that the
network designer wishes the network to identify
(the number of required student levels in our case).
It is left to the network itself to sort the input data
into this number of categories, since it is not implied
by the training data itself. In the case of a standard
neural network it would be required to include an
example solution with the training data. If there are
ten or more distinct patterns in the data then a
correctly trained Kohonen will learn by itself to
distinguish them (Kohonen 1989, Masters 1993,
Gurney 1997). Therefore, it is irrelevant to the

network if the actual values of the input data
change; it will still attempt to separate them into the
number of categories represented by the number of
outputs that it has. The outputs of a Kohonen neural
network therefore behave as fuzzy sets, whose
boundaries may change over time. The Kohonen
neural network is therefore simpler than the
standard neural network for the TS in this case,
since the number of outputs can be kept small since
is not necessary to design for all unlikely
possibilities (the network will adapt to them if they
occur). This is shown in figure 1. Two standard
neural networks, in our test case Multi-Layered
Feed-Forward (MLFF) neural networks, are shown
in operation with different domains where the
scores of tutorials are different. In order for the
neural network to grade both domains it needs
enough outputs to cope with the two cases, even
though only a subset of the outputs are used for an
individual domain. By contrast the Kohonen neural
network needs only the number of student levels
required, as it will adapt to the differing gradings
between domains.

Training Data
A neural network has a number of inputs, which in
our case represent the student’s responses to
questions and a number of outputs, each one
representing a unique ability level. The inputs to the
Kohonen neural network must incorporate history
data in order to make a more informed evaluation of
the student and therefore avoid a restriction of
Bergeron at al’s (1989) neural network, namely
reacting to a one off error (or success) from a
student. History data can be used to prevent the TS
from making snap judgements on the student. For
example, if the student is generally performing well,
but gets one question wrong, then if no history data
is taken into account the TS is forced to make a
decision based only upon the most recent
presentation and the student is likely to drop a level.
The student ability itself represents a degree of
history data, in that if a student is regarded to be an
expert student, then they must have performed well
in the past. However, the direct incorporation of
history data prevents a continual changing of levels
based upon one interaction only. The incorporation
of history data can be achieved by presenting a
number of previous interactions with tutorial nodes
to the neural network. Each time a new interaction
is presented the previous interactions are shifted
along the inputs to accommodate the new input and
the oldest interaction is lost. Training data supplied
to the neural network are figures that represent a
percentage value of a student’s interaction with a
tutorial. For example, if the student achieved a 50%
success level with a tutorial question, then it is this
figure that is passed to the TS.

Re-grading Questions Using Fuzzy Logic
Each question level is generally presented to a
student of the same level, or just below, a pedagogy
used with success by Bergeron et al (1989), in that a
level x student should be able, overall, to answer a
level x question. A question may however, be
graded incorrectly by the domain author. This can
be determined by the system after a number of

interactions with different students (a population of
students who should be, generally, getting a
question right are getting it wrong or vice versa). It
is not suitable to immediately re-grade a question
with respect to an interaction with one student,
however. As has been discussed earlier, a student is
a complex entity and it is difficult to formulate rules
describing them accurately. In order to resolve this
problem each question level is modelled as a fuzzy
set. This allows a question's level to be adjusted
slightly, within the level, without necessarily
affecting the overall level (as presented to the
student), thus there is a buffering effect and the
question does not rapidly leap back and forth
between levels. The use of fuzzy sets also provides
a mechanism for allowing a question to belong to
more than one question level set, providing a
smoother transition between levels. This differs
from Bergeron et al’s (1989) approach in that they
collect data from the students and then periodically
use it to update the training of the neural network.
There is therefore a delay, which ensures that the
question levels do not suddenly change, which
could potentially result in the question level
continually changing and thus be distracting to the
students. However, the drawback is that this is a
manual process that requires the direct intervention
of the system designer. The process for regrading
questions described below is achieved
automatically, whilst still maintaining the delay
between the question being presented to a student
and changing its level.

A question is re-graded by a population of students’
interactions with the question being determined as
incorrect by the TS, for the reasons described above.
Such erroneous interactions cause the question
ability to move within the fuzzy set until it crosses
into a different fuzzy set.

Figure 2 Regrading questions with fuzzy sets

A question’s ability level is therefore only changed
after a number of erroneous interactions with
students, the actual number being dependent upon
the size of the fuzzy set, the fuzzy set is therefore
acting as a buffer. A simple fuzzy processor
accomplishes question re-grading. The fuzzy
processor compares the level of the current question
and the student level output of the TS neural

L
4

L
3

L
2

L
1

x
Q-LEVELf

network. The buffer can be implemented using three
fuzzy rules:

1 IF S_LEVEL > Q_LEVEL THEN

Q_LEVELf = Q_LEVELf + 1

2 IF S_LEVEL < Q_LEVEL THEN

Q_LEVELf = Q_LEVELf – 1

3 IF S_LEVEL = Q_LEVEL THEN

Q_LEVELf = Q_LEVELf (remain unchanged)

where
S_LEVEL is the level assigned to a student
Q_LEVEL is the level of the question, used to decide
whether it is suitable for the student.
Q_LEVELf is the fuzzy membership number of the
question.

Using the figure 2, a question may belong to one or
two of four levels. If the question has a value of
Q_LEVELf corresponding to x, then the question is
regarded as both level three and level four. If
however, as a result of interactions with several
students, rule one is repeatedly fired, then the value
of Q_LEVELf will increase and the question will
become graded as level four only. Conversely, if
rule two is repeatedly fired then the value of
Q_LEVELf will decrease and the question will be
graded as level3 only. Such changes may result in
further increases or decreases in the value of
Q_LEVELf, which may become any of the levels
available. The utilisation of this fuzzy system
ensures that the level of a question is not changed
(in terms of presenting to students) in response to
individual interactions with students. The fuzzy
logic is able to distinguish overall trends and is
therefore robust in the presence of exception data.

The changing of levels is dependent upon the size of
the fuzzy sets, since the size of the fuzzy set directly
affects how many interactions are required before a
question migrates from one level to another. These
start and end points also define whether a question
can belong to more than one level or not. It is
intuitively sensible to provide a small overlap of
neighbouring fuzzy sets. This provides a simple
buffer that will help the question to find its true
grade. For example, if fuzzy sets were to be defined
separately (or as a discrete set) then a question may
be presented as a difficult level but become graded
as an easier level after several interactions. Once
this change has occurred then the question is no
longer presented to the original class of students that
graded it. This may result in the question becoming
stuck at a particular level. If instead the question is
presented to both the original class of student and
the new class of student, then a smoother
progression from one level to another may result
and the extra information enables the question level
to settle more easily. If the fuzzy sets are defined so
that a question may belong to more than two levels,
then the question level may not settle at all, as one
level of student may push the value of Q_LEVEL
one way and another level may push it in the
opposite direction.

5 Experimental Trials
Our TS was designed using a Neural Network
package, NeuroShell2 by Ward Systems. Several
configurations of neural network were built and
tested with both simulated data and real student
interactions. The most successful architecture is
discussed below. A full description of the
experimental trials can be found in Mullier (1999,
chapter 8).

The Kohonen neural network proved to be a
successful neural network architecture for the
problem of grading students into ability levels. Most
permutations of parameters produced neural
networks that converged upon a solution. A fast and
reliable neural network could be produced with
between five and twenty inputs or outputs. It is
possible to increase this number, but this is unlikely
to be required, since it is not desirable to use
information from too far in the past, since the
network does not have any knowledge of time. It
has been experimentally determined that the number
of outputs should not rise above twenty. If more
levels are required then the outputs may be
combined to form fuzzy sets.

Parameters for a generic Kohonen Tutorial
Supervisor, i.e. one that will converge on a solution
and provide a high degree of student grading for a
variety of domains are suggested as the following:

• 5 Inputs – this has been found to provide the
network with enough information with which to
evaluate the student. It is suggested that an input
filter, as described above is employed if more than
this number of inputs is required.

• 10 Outputs – corresponding to ten student levels,
if more levels are required then it is advised that
thirty levels is the upper limit, beyond this the
neural network becomes less likely to activate all of
its outputs.

• Any form of data extraction may be used to form
the training set, however a large number of
examples are required to produce a fully trained
network. One thousand student interactions provide
enough examples. Note therefore, that for a network
to be trained with real student data is probably
impractical. However, since the Kohonen network is
fully adaptable, it is suggested that a network be
trained upon generated data and then allowed to
adapt to real students. The generated data could be
designed to represent realistic but uncomplicated
situations. For example, training the network to
model simple rules such as “If result in the range
40-50 THEN set student level to 5”. The neural
network is then able to adapt to any misconceptions
present in these rules. Once a neural network has
been trained it may be saved and replicated.

6 Discussion and Conclusion
The Tutorial Supervisor is intended to be an
automatic system for gauging a student’s abilities
with tutorials. This imposes a restriction upon the
kind of material that can be offered in a tutorial,

since it must be suitable for automatic assessment.
Automatic assessment effectively rules out
assessments that cannot be graded in a relatively
simple fashion. For example, it would not be
possible, with current technology, to have an essay
automatically assessed, since this would require a
complex understanding of the essay on the part of
the assessor. Automatic assessment is limited to
tasks that can be broken down into elements that
can then be individually marked. A tutorial may, for
example, take the form of ten questions, each of
which could be answered by the student and graded
as right or wrong, or graded as containing relevant
keywords. However, assessment is not the role of
the TS, which is presented with completed
assessments (results). Assessment is therefore
limited to multiple-choice questions or identifying
that the student has visited certain nodes (or a
combination of both).

A key issue of concern regarding the TS is the
number of student levels that the TS is to recognise
and output. Each student level should have tutorial
material generated for it; since it is important to
target tutorial tasks at the student’s ability, this is
seen as being of more educational benefit than
offering the same tutorials to all students and then
assigning a student level based upon the grade that
the student achieves (Bergeron 1989), although
there is no technical reason why the latter could not
be done. The number of student levels therefore
may change between domains, since some domains
may have a richer set of assessment questions than
others (for a number of possible reasons). A
possible conflict therefore could arise between the
number of student levels that has been designed into
the TS by the system designer and the number of
student levels that are required by the current
domain author. A possible solution to this problem
is for the system designer to provide a TS that is
capable of outputting a large number of student
levels and then each domain author can allow it to
adapt to their domains and ignore the inactive
outputs from the TS that will naturally arise if there
is not sufficient input student levels. The benefit of
this approach is that one TS configuration could be
used for many domains without the need for
reconfiguration. However, the drawback is that
some outputs of the TS will always remain inactive,
although the experiments carried out as part of the
research demonstrated that active outputs tend to
cluster together and so are easily identifiable. A
problem related to the number of outputs is the
number of inputs.

The amount of history data presented to the TS
directly affects the grading of the student, in that the
more history data presented to the neural network,
the greater the effect of previous results with
tutorials. This is a similar situation to that of the
number of student levels, in that it is possible to
design a TS with a large number of inputs and then
use only the required amount. However, it is not a
simple matter to determine how much history data
to present to the neural network in order to aid the
student the most. This issue is difficult to reconcile
without extensive trials with real students and even

if this were done it would still be unlikely that any
real conclusions could be drawn since proving the
effectiveness of educational systems is notoriously
difficult in the educational field (Dillon and
Gabbard 1998). The purpose of the TS here is to
explore the technical issues relating to the feasibility
of providing an automatic student grading system.
Whether this facility is useful is open to educational
debate. However it is likely to be the case that it will
be useful should the correct set-up of the TS be
achieved during trials with real students, since
Bergeron et al (1989) found their TS to be useful.

Further issues arise concerning the adaptability of
the neural network used for the TS. The neural
network architecture used by Bergeron et al (1989)
requires off-line training and is therefore under the
control of the system designer. The drawback with
this approach is that it requires the manual
intervention of a person who can interpret the
student interaction data with tutorials and determine
whether it should be represented to the neural
network. The advantage of the Kohonen neural
network architecture is that it is able to train
continually without any intervention from a human.
However, there are situations where this adaptation
is undesirable, most notably when different skill
levels of students use the same domain at different
times. For example, if a class of first year students
use the system followed by a class of final year
students. However, this is not a problem if the
questions and tutorials have been adequately
assigned a difficulty level, since the first year
students will only be offered easier tutorials and so
can be graded only as lower level students (although
they can still progress if they continue to achieve
success with the tutorial). Problems can arise only if
both the student abilities and the question
difficulties are unknown beforehand. This is
because the TS acts as a bi-directional mapping
device, in that if either the student abilities or the
question difficulties are known beforehand then the
TS can produce the unknown parameter. It is not,
however, able to produce values when nothing is
known beforehand. The TS’s ability to re-grade
questions automatically is an exploitation of this bi-
directional mapping facility, in that the student
ability can be changed in response to improving
results and the question difficulty can be changed if
a significant proportion of students who should get
the question right in fact get it wrong.

Research into the TS has demonstrated that a fully
adaptable system for automatically grading students
is possible and practical. The approach of using an
automatic tutorial supervisor has been practically
justified by Bergeron et al (1989). However, their
system requires manual periodic retraining which
renders it unsuitable for a generic tutorial system, or
a tutorial system that can be used without the need
for reprogramming or otherwise rearranging the
program code of the system.

Further research is concerned with incorporating the
TS within a hypermedia tutoring system (Mullier et
al 1999, Mullier 1999) so that the students’
interactions with the TS can be studied. It is

anticipated that such a study will prove useful for
determining how the TS reacts to different domain,
where the rules that describe ability are different,
with a view to reengineering the TS so that it is able
to learn such a vast set of rules without conflict. A
“superTS” such as this would be useful in a more
generic tutoring environment such as may become
more prevalent on the WWW.

6 References
Bergeron B, A Morse, R Greenes, 1989, “A

Generic Neural Network Based Tutorial
Supervisor for C.A.I”. In 14th Annual
Symposium on Computer Applications in
Medical Care. IEEE Publishing, pp 435-439

Gurney K 1997, “An Introduction to Neural
Networks”, UCL Press; ISBN: 1857286731

Hagan M T, H Bemurth, M Beale, 1996, “Neural
Network Design”, Pws Publishing Co; ISBN:
0534943322

Kohonen T, 1989, “Self-Organisation and
Associative Memory”. Springer-Verlag; ISBN:
3540620176.

Mullier D J, D J Hobbs, D J Moore, 1999,” A
Hybrid Semantic/Connectionist Approach to
Adaptivity in Educational Hypermedia
Systems”. In Proceedings of ED-MEDIA’99,
Seattle, WA. 1999

Mullier D J, 1999, “The Application of Neural
Network and Fuzzy-Logic Techniques to
Educational Hypermedia”. PhD thesis.
Available from
www.lmu.ac.uk/ies/comp/staff/dmullier

	Abstract
	1
	1	Introduction
	2	Operation of the Tutorial Supervisor
	3	Rationale for Using a Neural Network
	4	Tutorial Supervisor Architecture
	Training Data
	Re-grading Questions Using Fuzzy Logic

	5	Experimental Trials
	6	Discussion and Conclusion
	6	References

