

Using LMC Simulator Assembly Language to Illustrate
Major Programming Concepts

William Yurcik
Larry Brumbaugh

Department of Applied Computer Science
Illinois State University
Normal, IL, 61790,USA

Abstract

Examples are given that describe how the Little Man Computer (LMC) Model and its associated assembly language
code can be used to illustrate a wide variety of core programming topics including a loader program, relocatable and
impure code, array processing, function calls, and multitasking. We share this experience as an example “best
practice” for incorporating core programming concepts within a computer engineering course.

Keywords: simulation, computer engineering, assembly language, operating systems, education

Teaching the basic concepts behind computer operation
is not an easy task. It is complicated by a wide range of
subject domains (electrical engineering, computer
science, mathematics, physics), discrepancy between
theory and practice, wide ranges in level of abstraction,
and the lack of coordinated teaching tools [CASSEL].
There has also been two public academic debates over
pedagogy in teaching computer operation: (1) top-down
versus bottom-up and (2) increasingly higher levels of
abstraction. Top-down argues for teaching the familiar
to the unknown while bottom-up argues for teaching the
unknown to better understand the familiar. The
increasingly higher levels of abstraction argument states
that computer hardware is a commodity such that a
student does not need to learn details they may never
design or directly use but rather they should start their
learning with higher level languages (C, C++, or Java as
opposed to assembly language).

We take the stance for bottom-up learning with
information-hiding only as students learn the lower
layers of abstraction based on the following reasoning:
students can build upon their own knowledge to hide
lower level information only when they have
internalized the lower level information to hide. While
educators may have themselves internalized lower level
computer operation, we feel it would be a mistake to
assume students will do the same especially when faced
with their sometimes strange ideas of how a computer
“really works”. We feel that not only computer science
majors but all IT students and maybe all undergraduates
should have a strong understanding of basic computer

operation. In this endeavor, we have been very
successful in the approach we now report.

This paper first presents a computer system simulator
that implements a hypothetical computer architecture for
instructional purposes. The simulator is accessible via
the Internet and has been used in a classroom setting for
the last two years. The remainder of this paper is
organized as follows: Section 3 surveys previous
relevant work and Section 4 introduces the pertinent
instruction set. Section 5 presents illustrative examples
of specific simulator assembly language projects for
major programming topics. We close with a summary
and future directions in Section 6.

1. THE LMC SIMULATOR

The Little Man Computer (LMC) paradigm was
developed by Stuart Madnick and John Donovan both of
MIT during the 1960s where it was taught to all MIT
undergraduate computer science students. The paradigm
has stood the test of time as a conceptual device that
helps students understand the basics of computer
operation. Irv Englander of Bentley College currently
has a popular textbook that continues the LMC tradition
[ENGLANDER].

The LMC paradigm consists of a walled mailroom, 100
mailboxes numbered 00 through 99, a calculator, a two-
digit location counter, an input basket, and an output
basket. Each mailbox is designed to hold a single slip of
paper upon which is written a three-digit decimal

number. Note that each mailbox has a unique address
and the contents of each mailbox are distinct from the
address. The calculator can be used for input/output,
temporarily store numbers, and to add and subtract. The
two-digit location counter is used to increment the count
each time the Little Man executes an instruction. The
location counter has a reset located outside of the
mailroom. Finally, there is the “Little Man” himself,
depicted as a cartoon character, who performs tasks
within the walled mailroom. Other than a reset switch
for the location counter, the only communication an
external user has with the Little Man is via slips of paper
with three-digit numbers put into the input basket or
retrieved from the output basket.

The analogy between LMC and real computers is not
perfect. In a real computer, memory (mailboxes) are
separated both physically and functionally from the
central processing unit (CPU). In most computers,
registers are available to hold data temporarily while it is
being processed. Although the LMC paradigm has no
registers, the calculator display loosely serves the
purpose of an accumulator. Clock timing and interrupts
are not part of the LMC paradigm. Lastly, the LMC
instruction set is based on the decimal system, not
binary as a real computer would be. In spite of these
deviations from reality, the use of this simple but
powerful model with a more familiar number system
allows students to focus on understanding the tasks
being performed in executing instructions rather than the
sometimes complex details of a specific manufacturer’s
implementation. This LMC simulator can be found at
the following URL:
<http://www.acs.ilstu.edu/faculty/javila/lmc/>

Figure 1. The Little Man Computer Paradigm

2. PREVIOUS WORK

The growing trend toward the use of computer
simulators to teach computer operation is documented in
[YURCIK/WOLFFE/HOLLIDAY] and
[YEHEZKEL/YURCIK/MURRAY]. With the success of
the LMC paradigm, LMC simulators have especially
proliferated. The different types of LMC simulators are
summarized in [YURCIK/OSBORNE]. Despite starting
with the same paradigm and the same goals, each
implementation is distinct with its own strengths and
weaknesses.

The Internet-accessible LMC simulator for which this
paper is based is a web-based application implemented
in Java embedded within an applet as described in
[YURCIK/BRUMBAUGH, YURCIK/VILA/BRUMBAUGH].
The only user requirement is a Java-enabled browser
such as Internet Explorer 4.0 (or higher) or Netscape
Navigator/Communicator 3.0 (or higher) and LMC can
be accessed anywhere via the Internet. User
documentation is available via separate web help menus
and within the application itself.

3. LMC INSTRUCTION SET

Table 1 defines the LMC instruction set. These nine
instructions are sufficient to perform any computer
program.

Table 1

LMC INSTRUCTION SET
Opcode Description Mnemonic
1
2
3
4
500
600
700

800
801
802
9

LOAD contents of mailbox address into calculator
STORE contents of calculator into mailbox address
ADD contents of mailbox address to calculator
SUBtract mailbox address contents from calculator
INPUT value from inbox into calculator
OUTPUT value from calculator into outbox
HALT - LMC stops (coffee break)
SKIP
 SKN - skip next line if calculator value is negative
 SKZ - skip next line if calculator value is zero
 SKP - skip next line if calculator is non-negative
JUMP – goto address

LDA XX
STA XX
ADD XX
SUB XX
IN
OUT
HLT

SKN
SKZ
SKP
JMP XX

NOTE: XX represents a two-digit mailbox address

When working with students, we emphasize two things
about the LMC instruction set:

1. although any program can theoretically be

implemented in LMC assembly source code, the
actual implementation may be extremely complex.

2. expanded instruction sets on modern computers do

not change the fundamental operations of the
computer!

inbox

outbox

Address
2 digits

Contents
 3 digits

Walled Mailroom

100 Mailboxes

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
00
00
95
96
97
98
99

500
199
500
399
00
00
00
00
00
00
00
00
00
00
00

00

00

00
00

123

Counter

Little
ManCalculator

Like most assembly language instruction sets, it is
difficult to write useful functions in a small number of
source code lines. We use this to emphasis the
relationship of high-level languages to assembly
language in terms of programmability, user friendliness,
and efficiency. Instruction sets on real computers are
more sophisticated and flexible, providing additional
instructions that make programming easier. However,
these additional instructions do not change the
fundamental operations of the computer. Students learn
the basic concept that a computer is nothing more than a
machine capable of performing simple instructions at
very high speed. We discuss instruction set variations as
the major difference between types of computers and
show examples of different code that performs the same
task.

4. ILLUSTRATIVE EXAMPLES

This section describes specific LMC assembly language
projects we have used in the classroom to illustrate
major programming concepts.

Loader Programs
A Loader program can be written with LMC instructions
to load programs from disk into memory. A copy of the
basic code to do this can be found in the Solutions
Manual that accompanies [Englander]. A very simple
Loader copies one program into memory and then the
operating system executes the program. Since no
assembly is performed, the code loaded into memory
must be in ‘executable’ format, instructions consisting
of opcodes and operands (addresses). A delimiter
separates the program from any input it processes during
execution. A simple loader can be written with ‘impure’
code. This is code that is modified during execution.
The primary STORE instruction is constantly modified
by incrementing its address by 1. The Loader program
can also be written using pure code. The STORE
instruction is replaced by a STORE * (indirect
addressing). Here a pointer identifies where an
instruction is placed in memory.

A more powerful Loader program can be created that
loads multiple programs into memory. When a program
finishes execution, control returns to the Loader, which
loads the next program. As this version of the Loader
copies a program into memory, it examines the
instructions and for each HLT instruction a JMP to the
initial instruction in the Loader is copied into memory
(Figure 2). Like DOS, in this version of the Loader each
program is loaded into the same location in memory and
only one program can be executing. The Loader
becomes (or represents) part of the operating system
kernel.

An even more versatile Loader program can switch back
and forth between:
a) loading part of one program
b) let another program execute

c) resume loading operations on the first program
d) let another program execute, etc.
This requires that programs be loaded at different
locations in memory. An address translation may need
to occur for programs not loaded at specific addresses.
This is a non-trivial function to perform with the
existing version of LMC. The code to do this can be
described, but it has not been implemented with only
100 memory locations.

 ADDR Instruction Program Loaded Code

Figure 2. Loader Program

Relocatable Programs and Impure Code
In order to execute a program, the instructions and the
data it processes are copied into memory. The data is
considered part of the program. When absolute and
direct addressing is used, the program is NOT
relocatable since addresses identify specific locations in
memory. There are several basic problems with non-
relocatable code: it requires specific memory locations,
prohibits other programs from using those locations, and
only one copy of the program can be executing.
However, if only relative, immediate and
base/displacement addressing are used, the program is
automatically relocatable.

There are several basic problems with impure code. It
cannot be stored in Read Only Memory. The executing
program cannot be restarted in mid state and when
execution is finished, it cannot be rerun.

As mentioned with the Loader, impure code can usually
be converted to pure code by using indirect addressing.
Comparable results can be achieved with base
displacement addressing or even relative addressing, in
some circumstances.

Arrays
As with most programming languages, using arrays
greatly increases the capabilities of the LMC language.
Many common array processing functions can be
performed using LMC instructions. Three basic
parameters are specified for each function: the initial
location in the array (Location N in memory), the final
location in the array (Location N+M) and the size of an
array element. The direction of processing is assumed
to begin at Location N and continue through Location
N+M.

HLT

HLT

00

01

80

JMP 80

Loader
Code

JMP 80

JMP 80

unchanged

unchanged

unchanged

Typical array processing operations include:

a) Find the largest (or smallest) element in the
array

b) Find the sum of the elements in an array
c) Search the array for an element. If it is found,

in what location(s)?
d) Sort the elements in an array
e) Merge two sorted arrays into a third array

 a) initial location in the array

 b) size of one array element,
 one memory location
 (3 digits)
 c) final location in array or length

 LMC Pseudo Code For Arrays
 Initialize start to N
 Initialize end to N+M or M-1
 Test for not at end of array Use SKP
 If not done, perform body of loop
 Increment the array pointer and
 process the next element in the array

Figure 3. Array Processing

Mailbox Instruction Comments

 00 LDA 95 N ; this loads “LDA 41”… N=41
 01 STA 04 ; into address 04 in memory
 02 LDA 41 ; largest element found so far
 03 STA 94 ;stored in location 94
 04 0 ; loads next element in the array
 05 SUB 94 ; subtract largest element found to this point
 06 SKP ; is a new largest number found?
 07 JMP 10
 08 ADD 94 ; new largest number (new# - old# + old#)
 09 STA 94 ; and it is stored
 10 LOAD 04 ; retrieve the instruction in address 04
 11 ADD # 1 ; increment address in instruction +1
 12 STA 04 ; instruction has now been changed
 13 LDA 93
 14 SUB #1 ;decrement the counter
 15 STA 93
 16 SKN ; has the end of the array been reached?
 17 JMP 04 ;not done, continue array processing
 18 LDA 94 ; processing finished
 19 OUT ; display answer
 20 HLT
 93 DAT 14 M-1 ;final array location identified (15 locations)
 94 DAT ;holds largest number found to this point
 95 LDA 41 ;processed as data/executed as instruction

Figure 4. Array Processing Example: This program determines the largest element in the array that occupies locations
41 to 51 in memory.

Increasing the Size of the LMC Instruction Set
Multiplication and division can be implemented using
repeated addition and repeated subtraction respectively.
Remainders can also be calculated. The multiplication
of M and N can be optimized by adding M to itself N
times, where N is the smaller of the two numbers. A
comparison is performed prior to the addition.

A corresponding optimization is not apparent with

division. However, repeated addition can also be used
with division. To divide 14 by 3, add 3 to itself until the
sum exceeds 14. Here 3+3+3+3+3=15. One less 3 is
the answer, here 4. The remainder is 14-12=2.

Function/Subroutine Calls
A fundamental programming concept is the function or
subroutine call. It contains five important components:
These include: (1) the actual transfer of control, (2) the

LocN+M

LocN

return from the function to the next statement following
the call, (3) passing parameters between the calling and
called routines, and (4) a return code generated by the
called function. Note: (3) and (4) are part of (5), a
general save area. These basic application and system
programming concepts are implemented using LMC
code.

The code to transfer control and then resume is at the
next instruction is:

LDA !3 ;load address instruction 3 beyond current
STA 90 ;return address, where execution resumes
JMP XX ;function address & control transfers to
 ;function

 LDA 91 ;address of instruction stored in location 90
 ;LDA retrieves return code from subroutine

The final lines executed in the function should be:

 ;this comment is the first line in the function
 ;executable function statements
 ;next to last statement in function –
 ; return code has been calculated
 STA 91 ;return code is in Location 91
 JMP *90 ;return to the address stored in location 90

The above code illustrates several of these points. Here
it is assumed that location 90 (or more commonly a
register) holds the location of an instruction where
execution is to resume when the function finishes.
Ordinarily it is the next instruction. Likewise, the
function uses location 91 to return a code to the calling
routine identifying success or failure. It is important
that both programs understand the role of locations 90
and 91 in memory and not use them for any other
purpose. A general save area and parameter passing can
use a designated area in memory agreed upon by the
calling program, the function and (perhaps) the
operating system.

Multi-Tasking
A multi-tasking component of the operating system
(consisting of the Loader and any additional code) can
be created that executes several programs concurrently.
The operating system needs to be resident in memory.
The operating system needs to remember the next
instruction it is to execute. These need to be stored
somewhere along with the data the program is using.
Some of the programming specifics are included with
the Functions topic above. For simplicity, the unit of
time allocated to each executing program is two
instructions (or one if there is an abend or the program
ends normally). The concept of a thread could be
introduced here as one program executes in several
different places.

5. SUMMARY

In this paper we have presented examples of how a web-
based computer simulator can be used to convey major

fundamental computer engineering concepts. We are
convinced by class performance and feedback that
interactive visualization of computer architecture and
assembly language is a powerful tool to help students
understand both low-level computer operation as well as
higher-level language programming constructs.

6. ACKNOWLEDGEMENTS

The authors would like to thank the following students
who were instrumental in developing the ideas of this
paper: (1) Rahul Gedupudi who programmed the latest
version of LMC as a Masters Project and continues to
maintain and provide upgrades and (2) the students
within the ACS 254 classes at Illinois State University
from Fall 1999 to Spring 2001 who learned along with
us the value of active learning using interactive
simulation.

7. REFERENCES

Cassel, Lillian (Boots), Deepak Kumar et. al., (to

appear). “Distributed Expertise for Teaching
Computer Organization and Architecture,”
ITiCSE Working Group Report July 2000.

Englander, Irv, 2000, The Architecture of Computer

Hardware and Systems Software 2nd edition,
John Wiley & Sons, Inc.

Yehezkel, Cecile, William Yurcik, and Murray Pearson,

January 2001, "Teaching Computer
Architecture with a Computer-Aided Learning
Environment: State of the Art Simulators,"
2001 Intl. Conf. on Simulation and
Multimedia in Engineering Education (ICSEE
2001), Soc. for Computer Simulation (SCS).

Yurcik, William and Larry Brumbaugh, February 2001,

“A Web-Based Little Man Computer
Simulator”, 32nd Tech. Sym. of Computer
Science Education (SIGCSE), pp. 204-208.

Yurcik, William and Hugh Osborne, December 2001,

“A Crowd of Little Man Computers: Visual
Computer Simulator Teaching Tools,” Winter
Simulation Conference (WSC).

Yurcik, William, Joaquin Vila, and Larry Brumbaugh,

August 2000, “An Interactive Web-Based
Simulation of a General Computer
Architecture”, IEEE Intl. Conf. on
Engineering & Computer Education (ICECE
2000), São Paulo Brazil.

Yurcik, William, Greg Wolffe, and Mark Holliday, July

2001, “A Survey of Simulators Used in
Computer Organization / Architecture
Courses”, Summer Computer Sim. Conf.
(SCSC), Soc. for Computer Simulation (SCS).

