
 

Server-Side Java: 
A New Direction for Teaching Computer Programming 

 
Robert Stumpf1 

Professor 
Computer Information Systems Department 

California State Polytechnic University 
Pomona, CA  91768, USA 

 
And 

 
Steven Curl2 

Associate Professor 
Computer Information Systems Department 

California State Polytechnic University 
Pomona, CA  91768, USA 

 
 

Abstract 
 
The current direction in software development clearly favors server-side programming – often using the Java language.  
Still, many courses today may not yet be updated to keep pace with this trend.  This paper explores the design of a new 
course, Server-Side Java Programming, which we will be offering at our university.  The course will be the third in a 
three-course sequence that we intend to pilot test during spring 2002 with full implementation beginning in that fall.  
We believe this paper will be of interest to educators, who, much like ourselves, are only now beginning to appreciate 
this new direction in application software development. 
 
Keywords: Java, server, programming, architecture 
 
 

                                                           
1 rvstumpf@csupomona.edu 
2 scurl@csupomona.edu 

1.  THE CIS PROGRAM 
 
Our CIS Department is housed within the College of 
Business Administration.  Other departments within the 
College include Accounting, Finance, International 
Business & Marketing, Management & Human Re-
sources, and Technology & Operations Management. 
The program immerses the students in the object-
oriented paradigm while allowing them to choose a spe-
cialization in application software development, busi-
ness systems analysis, interactive web design, and tele-
communications.  Our school is on the quarter system 
and awards students successfully completing the CIS 
program with the degree of Bachelor of Science in 
Business Administration with an option in Computer 
Information Systems. 

 
Students choosing to specialize in applications software 
development must take courses in object-oriented pro-
gramming with Java, object-oriented systems analysis 
and design using the Unified Modeling Language, tele-
communications networks, interactive web development, 
database, client-server computing with Visual Basic, 
rapid applications development, C++, advanced Java 
programming for business, and a capstone project 
course.  Beginning in fall 2002, all application software 
development students will also take a server-side Java 
programming course.   
 
 
 
 



 

2.  JAVA, JAVA, AND MORE JAVA 
 
We believe that a three-course (120 contact hour) Java 
sequence provides a better match between the emerging 
needs of today's business applications developers than 
we can provide given our previous two-course (80 con-
tact hour) sequence.  In our new curriculum, our first 
two courses will continue to cover fundamental and 
advanced programming concepts using the Java lan-
guage.  Our current texts for our fundamental and ad-
vanced courses are Core Java: Volumes 1 and 2 
(Horstman and Cornell 1999).  These first two courses 
are not the focus of this paper and are omitted from the 
remaining discussion. 
 

3.    WHY SERVER-SIDE JAVA? 
 
Java server programming, or server-side Java, alleviates 
the need for CGI (Common Gateway Interface) scripts 
typically used for writing to files or databases on a 
server and for communicating with HTML pages.  Why 
server-side programming at all?  Server-side program-
ming is important because in a distributed browser-
based environment, programming on the client-side 
means writing applets or using a scripting language.  
Applets are considered to be risky for consumer cites as 
they take longer to download and later versions of Java 
(Java 2+) may not be enabled.  While the versioning 
problem can be alleviated by using "automatic plug-ins" 
(Horstman 1999a), only increased bandwidth can ad-
dress the lengthy download time.  We do not expect a 
return to applet programming until bandwidth capacity 
grows to the point where the installation of plug-ins 
becomes transparent to the consumer. 
 
Restricting programming to an applet-based environ-
ment is also undesirable since applets are, by design, 
limited in their capabilities. To protect unwitting client 
machines from unscrupulous behavior on the part of an 
applet, the Java security model uses a concept called a 
"sandbox" to place limits scope and range of an applet's 
abilities.  Activities outside of the sandbox are not per-
mitted.  In practice, this means placing severe limits on 
what can be accomplished. 
 
Similar arguments apply to scripting.  In practice, a 
scripting language is essentially a cut-down version of 
its full language counterpart.  Scripting languages are 
designed to run within a narrower set of conditions than 
is the case for a full version of the language.  By defini-
tion, this limits the range of available features that are 
supported in the scripting version. 
 
The above restrictions apply only to client-side pro-
gramming, not server-side.  Teaching a server-side Java 
programming course means teaching the full version of 
the language, without limits, in an environment targeted 
at the growing market for electronic commerce applica-
tions. 

4.    WHICH APPROACH TO USE? 
 
In Java, a server program, or servlet, typically exists to 
provide services to a client-side program.  There are 
several ways to communicate between the server and 
client.  Three common approaches are direct calls from 
an HTML page, calls from a Java applet, and using JSP 
(Java Server Pages). 
 
From an instructional standpoint, we need to provide 
some means of communicating with the server, and we 
intend to provide examples using all three of these ap-
proaches.  However, the course will clearly focus on the 
server aspects, including distributed objects and data-
base access. 
 
The question on which approach to use presents the 
instructor with choices.  Two criteria might be used to 
judge which approach is best.  One is how much time is 
available and the other is the student’s background in 
the fundamental concepts of arrays and streams.  
 
If time is short, using HTML pages is clearly the easiest 
as it is very simple.  HTML communication to the serv-
let uses simple commands involving parameters.  HTML 
has the added benefit of simplicity, as no scripting lan-
guage is required – only basic knowledge of HTML 
forms.   
 
Using applets to servlets requires knowledge of arrays 
and streams.  This approach is also much more difficult 
and time consuming to handle in the classroom.  At our 
school, we have already attempted to introduce server-
side programming using applets to servlets.  Unfortu-
nately, not all students were able to finish the projects 
because at this time the students had only one Java 
course behind them.  We expect this to be less of a prob-
lem after the third Java course is fully implemented next 
year.   
 
The third approach is to use Java server pages.  The 
difficulty with this approach is that a greater knowledge 
of building HTML pages is required.  If the students are 
not very familiar with HTML pages using forms, addi-
tional class time will be required on this topic. 
 
Another way to answer this question is to ask which 
method is preferred by business clients.  We have been 
informed by the consulting companies that build web 
sites for customers in a business to customer environ-
ment, that JSP or HTML pages connecting to a server 
are best due to the unsophisticated nature of the con-
sumer (Hsu 2000).  In practice, this means support for a 
modem connection with a browser that may not be Java 
enabled.  Thus, applets would either take too long to 
download or just not work because of lack of version 
support. 
 



 

However, in a business to business environment, the 
reverse is true.  We have been informed that in this con-
trolled environment, there is likely to be a high-speed 
connection and enforceable minimum browser standards 
(Hanna 2000).  Thus, the desktop can use applets for 
data validation or local processing while the server can 
be saved for calls to databases.  This of course reduces 
the need for large servers. 
 

5.  COURSE OVERVIEW 
 
The text for our course is Marty Hall's Core Servlets and 
JavaServer Pages (Hall 2000).  Because of prerequi-
sites, we expect that students will still have access to 
both of the Horstman and Cay texts.  As discussed ear-
lier, the course is designed for a quarter system school 
with students meeting four hours per week for ten weeks 
(not including final exams).  Note that we have elimi-
nated any discussion of CGI from the course. Our course 

outline appears in Figure 1. 
 
The course begins with an introductory lecture on web-
enabled applications, distributed software architecture, 
and the role of server-based programming.  We follow 
this with a discussion on the anatomy of a Java servlet, 
including both its internal architecture and public inter-
face.  Lectures 3 through 6 cover the dialog between 

client and server, first from the client side where we 
examine handling client requests and then from the 
server side where we examine the server generated re-
sponse to these requests.  In lecture 7 through 9 we in-
troduce the first of the three approaches to server com-
munication discussed earlier as we look at HTML-server 
communication, the supporting role of cookies, and 
need for session tracking.  At this point, we conclude the 
first half of our course with a midterm exam. 
 
We begin the second half of the course with a discussion 
on Java server pages.  This is the second approach to 
server communications discussed earlier and is followed 
closely by a look at Java beans and their supporting role 
in a component-based architecture.  No server-based 
programming course should be without a database com-
ponent and so lectures 13 and 14 cover database connec-
tivity and its place in a distributed processing environ-
ment.  In lectures 15 and 16, we introduce applets as our 
third approach to server communication.  The remaining 
lectures, 17 through 20, provide support for the above 
material.  In these lectures, we examine several related 
topics, including programming for sockets, the perform-
ance benefits of connection pooling, and the whys and 
wheres of distributing objects.  The course concludes 
with a look ahead to examine whatever new topics may 
be of interest with a discussion on emerging issues in 
server programming.   
 
The course uses between three and five programming 
assignments, with each assignment building on its 
predecessor so that in the end the students will complete 
one large project.  At present, we have two projects 
developed: one is a rental car reservation system; the 
other an online store and shopping cart. 
 

6.    JAVA ENVIRONMENT 
 
A reputable Java course needs a solid development envi-
ronment.  In reviewing the range of available tools, we 
feel fortunate that so many vendors provide excellent 
support for the Java language. While we have not yet 
reached a final decision on a programming environment, 
some of our considerations include support for the latest 
version of Java, features of the development environ-
ment, hardware requirements, ease of use, and price.  
Thus far, in preparing for our course, we have tried tools 
by Sun, IBM, and Jakarta.  All of these tools are avail-
able free of charge to students.  No single product ex-
celled in all areas.  
 
The first product we used was JSDK (Java ™ Servlet 
Development Kit) version 2.1 from Sun Microsystems, 
Inc.  It is free and Sun grants you a non-exclusive and 
non-transferable license for internal use only.  This 
makes it available to educators.  Its major advantage is it 
is simple to install (just extract a zip file and it is ready 
to execute).  Most of the time no adjustment in path or 
class paths are needed.  This assumes a Java Develop-

Course Outline: 
 
Mtg  Topic 

1. Server-based Programming Architecture 
2. Anatomy of a Servlet 
3. Handling Client Requests - 1 
4. Handling Client Requests - 2 
5. Generating Server Reponses - 1 
6. Generating Server Reponses - 2 
7. HTML-Servlet Communication 
8. Cookies 
9. Session Tracking 

10. Midterm Exam 
11. Java Server Pages (JSP) 
12. Java Beans 
13. Database Connectivity - 1 
14. Database Connectivity - 2 
15. Applet-Servlet Communication - 1 
16. Applet-Servlet Communication - 2 
17. Sockets 
18. Connection Pooling 
19. Distributed Objects 
20. Emerging Issues in Server Programming 
21. Final Exam 
 

Figure 1: Course Outline 



 

ment Environment is already installed.  It also is a sim-
ple download (367 KB).  Its disadvantage is that it 
opens the DOS (Disk operating System) console in win-
dows.  However, no entries are required in this envi-
ronment. 
 
The second product we used was IBM Visual Age for 
Java™.  Many versions of Visual Age are available on 
IBM’s web site for free downloading.  However to run 
server side Java, requires either the enterprise or profes-
sional edition.  This, in turn,  requires IBM to authorize 
its use.  Since we have a close working relationship with 
IBM, we were able to obtain copies, and also make addi-
tional copies that we placed in our library for students to 
check out.  Our first experience was with the enterprise 
edition, version 3.0.  It was a very stable, but slow prod-
uct.  It required at least 128 MB of random access mem-
ory and, at 73 MB, proved too large for many students 
to download.  Its major advantage was that it allowed 
one to put break points in the sever code to enable de-
bugging.  It was also possible to put breakpoints in cli-
ent code as well.  This package uses a scaled down ver-
sion of IBM WebSphere ™.  It worked fine.  We had to 
stop using it as it only includes the JDK 1.7, which did 
not have all the latest collection classes.  Also its version 
of the Java “Swing” classes was dated.  Since it was not 
possible to change the Java JDK it uses, we had to dis-
continue the product.  Then we tried to use IBM's new 
3.5 version professional edition.  As of this time, we 
found it to be a very unstable product that was unable to 
export correct code.  We had to return to Sun's JSDK in 
order to complete the course. 
 
A more successful product is “Tomcat” provided by the 
Apache Software Foundation.  Its license states “distri-
bution and use in source and binary forms, with or with-
out modification, are permitted.”  It is a reliable product 
that is almost as easy to set up as the one from Sun.  
Actually, it evolved from the JWDK from Sun.  Its ma-
jor difficulty was in setting paths – which requires more 
than a little of knowledge of DOS.  Its only other disad-
vantage is that it does not do enough to aid in debugging 
code.  On the plus side, we found this package to be a 
simple download (3 MB) and comes with the added 
advantage of enabling students to upload web pages and 
servlets to the server by FTP (File Transfer Protocol) 
without turning off the web server.  We were also 
pleased to find that students can test their work on a 
server using any web browser.  Currently this is the tool 
we are using. 
 
We have considered products such as Visual Café and 
JBuilder™ from Borland.  The difficulty is that versions 
that support server side Java are not free.  Since the cost 
to our students is a major criteria we are concentrating 
on no or low cost options. 
 
 
 

7.  COMPUTING SUPPORT 
 
Besides running in a standalone environment, students 
are required to upload and run their programs on our 
server, which we have dedicated for this purpose.   This 
machine is configured with Windows 2000 Server and 
TOMCAT.   Upload and execution of programs is done 
by students using anonymous FTP to a common folder 
with students granted write-only access.  Individual 
programs are distinguished by students prefixing their 
initials to the project name and adding and an optional 
version number.  As a security precaution, a directory 
listing is not provided so that students cannot see the 
progress of others.  All administrative support is per-
formed by the faculty member teaching the course. 
 

8.   CONCLUSION 
 

Developing a new course is always challenging, but 
more so when the course involves cutting-edge informa-
tion systems technology.  In this paper, we have exam-
ined the rationale, placement, and structure for a server-
side Java programming course.  For us, this course is the 
logical next step in our ongoing process of curriculum 
revision and we believe this may be the case for other 
schools as well. 
 

9.   ACKNOWLEDGMENTS 
 
We wish to thank Robert Hanna, Jet Propulsion Labora-
tory, Pasadena, California and Fong Hsu, IBM Center 
for Innovation, Santa Monica, California, for sharing 
their knowledge and insights with us. 
 

10.   REFERENCES 
 
Hall, Marty, 2000, Core Servlets and JavaServer Pages 

(JSP), Englewood-Cliffs, NJ: Prentice-Hall. 
 
Hanna, Robert, 2000, Interview notes: Jet Propulsion 

Laboratory, Pasadena, California. 
 
Horstman, Cay and Gary Cornell,  1999a, Core Java 2, 

Volume 1 – Fundamentals, Prentice-Hall. 
 
Horstman, Cay and Gary Cornell,  1999b, Core Java 2, 

Volume 2 – Advanced Features, Prentice-Hall. 
 
Hsu, Fong, 2000, Interview notes: IBM Center for Inno-

vation, Santa Monica, California. 


	Abstract

