

The Impact of New Programming Languages
on University Curriculum

Katie L. Emigh
Computer Applications Department, Grand Rapids Community College

151 Fountain NE, Grand Rapids, MI 49503

Abstract

This paper covers the impact that the seemingly continuous introduction of new programming languages has on the
computer information systems curriculum in a university. Computer information systems departments are currently
implementing changes based on the newest languages, Java and C#. The relationship between universities and the
corporations behind these languages, greatly affects how companies interact with these institutions. Before
implementing the latest languages, universities must address if they should continue to offer traditional languages such
as COBOL. This report provides conclusions and recommendations on the transformation a curriculum must undergo
to maintain high levels of enrollment and also demonstrates why it is a challenge for universities to keep an up-to-date
language program.

Keywords: Programming languages, computer information systems, COBOL, object oriented languages, curriculum

1. INTRODUCTION
Implementing changes to a programming language
curriculum in colleges and universities has been, and
will likely always be, a divisive topic in computer
information systems departments. Aside from normal
curriculum issues, the constant introduction of new
programming languages present unique considerations
departments must concern themselves with. A clear
relationship between the corporations behind the newest
languages, Java and C#, and universities demonstrates
the potential dangers with changing the curriculum to
include these technologies.

Programming is the core of the computer information
systems curriculum. Universities are in the midst of
struggling with setting aside traditional programming
courses like COBOL and placing their focus on object
oriented languages. However, with the many factors
affecting curriculum changes, computer information
systems departments often find themselves with
stalemate programs. In addition to the many issues to
consider, departments must also take into account
several questions in order to maintain high levels of
enrollment and to continue to meet expectations of both
students and the information technology industry that
often drives their curriculum.

2. THE CURRICULUM CHANGE
A clear relationship exists between universities and
software developers. From operating systems to
programming languages, a strong relationship has

always existed between how a university chooses to
accept these new technologies and how a company
chooses to implement them. After the original
development of UNIX from Bell Labs in the early
1970’s, universities began to modify the code to make it
work on different machines. Today, as companies
develop and plan the implementation of new
technologies, they rely on the fact that universities are
not only a place for many to learn their innovation, but
also an institution for their technology to grow. With
this relationship in mind, universities must proceed with
caution and consider several factors when changing their
computer information systems curriculum.

2.1 Effects on Implementing a New Course
As the field of computer science continues to grow at a
rapid pace, implementing new courses each semester as
a way to keep the curriculum current is now more
necessary than ever before. Keeping up with the latest
technology, however, poses many problems for
universities. From the ever-present issue of dealing with
bureaucratic red tape when working with institutions
receiving government aide (and most do), to finding
qualified instructors to teach the newest concepts,
computer information systems departments often find
themselves fighting an uphill battle.

The cost of new technology is still a leading factor when
it comes to deciding whether to implement a new course
in the curriculum. Computer hardware typically
becomes obsolete approximately six years after the

initial purchase, and is replaced at an average cost of
$2,500. In order to offset the high costs associated with
system maintenance and budgetary constraints, many
universities are forced to institute a student technology
fee that can often range between $25 and $150 per
student per year (McKinney 1996). Universities adding
fees to the already high cost of education run the risk of
driving the price of tuition out of reach for the majority
of students. With this in mind, many institutions are
unable to adopt curriculum changes because the
requirements of a new programming tool often demands
system resources above their current hardware and
software.

Much of the computer information systems curriculum
is driven by what goes on in the business world.
Advisory boards made up of corporate representatives,
exist to communicate to universities what they want in a
graduate. This would indicate that in addition to budget
constraints and other factors related to changing the
curriculum, computer information systems departments
must also concern themselves with the demands of the
industry. Research has shown that the definition of what
makes a good graduate differs between the information
technology industry and the university faculty. At some
universities, COBOL is still the foundation and seen as
one of the most critical requirements for a first job,
while employers are beginning to look for students with
experience in a multitude of programming environments
(Mawhinney 1998). Universities must choose whether
to stick with their core program that has been the
mainstay for decades, or break free and begin moving
toward a curriculum that will offer the varied
programming experiences so coveted by the industry.

2.2 Keeping the Curriculum Current
Aside from normal curriculum problems such as
accreditation concerns, course development plans,
budget constraints, and finding qualified instructors, the
programming language curriculum faces some unique
challenges. Issues such as choosing the best language to
teach, keeping up with the pace of new types of
languages, and knowing how long a language will be
viable, are all problems a programming language
curriculum must address.

The broad range of topics students study can easily
overwhelm them if a university lacks sufficient
resources. In the past, a curriculum had at most two
programming languages to teach: COBOL and Fortran.
Now, some universities struggle with teaching a variety
of languages such as Java, C++, C, Perl, and COBOL.
Lacking sufficient funds in the budget, some universities
attempt to teach these languages without having proper
compilers or hardware to facilitate the learning.
Students are forced to struggle with the concepts and the
syntax, without the proper environment to test their code
(MSDN Magazine 2000).

Research on how the programming language is taught

indicates several new issues as more and more
programming environments are bogged down with bells
and whistles. One study shows that since the
introduction of recent programming languages such as
Java, more research needs to focus on the expanding
knowledge of what students and teachers learn, and how
that affects their perception of understanding
programming concepts. The study of computer
programming by Douglas Clements investigates how the
unique features of various programming environments
interact with the goals and content of the subject matter
domains (Clements). It is suggested that the many
features of certain environments, such as Microsoft’s
Visual Studio and Sun’s Java Development Kit, may
interfere with how a teacher promotes learning and
development of core programming concepts.

Developing a programming language curriculum that is
up-to-date also requires that a university is willing to
invest in the education of its educators. The lack of
knowledge of instructors results in no new curriculum
development (Kuras 1999). Teachers must continuously
enrich their qualifications, implement new training
methods and techniques supplemented with practical
experience; while teaching a new language that is as
new to them as it is to their class. With current heavy
course loads, budget constraints, lack of sufficient
resources, and little support from outside influences
such as advisory boards and government regulators,
teachers find themselves forced to take on the additional
work with little compensation and no easing of their
current class load (Gal-Ezer 1998). This burden is
something that many say is just too much – and they
continue to teach an outdated curriculum that is of little
use to a new graduate.

3. WHAT IS THE RIGHT LANGUAGE?
Programming is the heart of virtually all computer
information systems programs. More so than operating
systems, a greater variety of choices in programming
languages in academics have existed over the past
twenty years. Traditionally, languages with substantial
academic usage have been Pascal, C, COBOL, and Ada.
More recently, C++, Java, and the latest introduction of
C# have been making their way into computer
information systems curriculum. How can a university
know they are choosing the best language to teach?

Bjarne Stroustrup, the creator of C++, states that a
programming language must be a multitude of things to
serve its diverse set of users. The only thing that a
language cannot be to survive is a mere collection of
‘neat’ features (Stroustrup 1994). As computer
information systems departments enjoy the increasing
enrollment numbers, they also face the problem of
designing programming courses for these new students.
Today’s students do not seem interested or equipped to
handle the rigor of a traditional computer information
systems program. Students enter programs wanting to
learn specific applications like Visual BASIC and

Visual C++ and their ‘neat’ features, instead of data
structures and algorithms (Koffman 1999).

Some universities are responding to the hordes of
students who would rather push aside the knowledge of
programming concepts where it might not matter what
language to teach, and are focusing on training students
on technicalities of a particular language. Yet, no matter
which direction the curriculum places its emphasis, the
larger dilemma still remains. If a university trains on
technicalities, they simply use multiple programming
languages. However, if a university opts to teach the
core concepts, answering what is the best language to
teach becomes; how can the language be used as a tool
to teach programming concepts? But even those
universities still struggle with what is the right language
to teach and how can they successfully modify their
program to incorporate the latest technology and
continue on with the foundation languages.

3.1 When to Stop Teaching a Language
Moving to new programming languages such as Java
and C# and pushing aside older languages is not just a
technical issue. One theory on the success of a
programming language is that the acceptance of a new
language is also a social and evolutionary process
(Gabriel 1996). Many students who attend universities
to learn the newest programming language are
experienced programmers already working in the field.
Universities face a new challenge of teaching Java or C#
to programmers whose popular image of what a
language should be is quite different from the language
they already have a close bond with. Yet their
employer, or the lack of current job skills, forces them to
break ties and learn the latest fad.

Some believe that a student can forget Pascal and
Fortran the minute they walk off campus. C usage is
only important because C++ and Java borrow heavily
from it. And while C++ has only been around for ten
years, Java has already outdated it (Swanke 1999).
What will C# do? How does a university know when to
stop teaching a particular language, if at all?

The transition from procedural to object oriented
programming has been a struggle for many universities.
While most have stopped teaching Fortran, many
universities are having a hard time when it comes to
parting with COBOL. For more than fifteen years,
programmers and educators have been asking ‘Is
COBOL dead?’, ‘I thought COBOL was dead’, ‘Should
we continue to teach COBOL?’ (MacDonald 1989). For
several decades, COBOL has been the central language
of programming curriculum. But at some point there
has to be a change. Or not?

Keeping COBOL as a foundation in computer
information systems curriculum has several benefits. A
young programmer who knows COBOL can enter a new
job and quickly establish a way to relate with

experienced programmers who saw the beginning of
procedural languages. Veteran programmers who may
have emotional ties to COBOL may not view the
freshman as a threat with his/her knowledge of the
newest technologies if they can relate with common
COBOL. Even if the new programmer uses their skills
in Java more frequently than COBOL, a bridge between
first-generation procedural programmers and second-
generation object oriented junkies can be established.

COBOL is a mature language that has been an integral
part of business applications for over 40 years. There
are billions of lines of code currently in use (MacDonald
1989). While there is a vast cadre of experienced
programmers, many of them are near retirement.
Companies can opt to do mass overhauls of programs,
however, they may not have the sufficient financial
resources to handle such a change. Furthermore, some
legacy systems cannot be ‘re-written’ with the newer
object oriented languages. The ease of data file
manipulation in COBOL is not present in the newer
languages. The simplest solution for many companies
would be to hire more COBOL programmers – perhaps
a solid business reason to keep COBOL in the
curriculum. If Java, C++, or C# cannot completely
replace COBOL in the business world, should it replace
it in the curriculum?

Additionally, COBOL standards are still supported by
ANSI. While that issues is a matter of debate in the
COBOL community, the COBOL world is changing
(COBOL Report 2001). COBOL is now used to create
web applications and object oriented methodologies.
The community is currently upgrading their COBOL
skills in order to teach the new tools for the next
millennium. Many argue that there may not be a need to
go to another language for web access, thus having to
retrain or replace existing COBOL programmers may
not be an issue. But, the question remains; how does the
computer information systems educator know?

3.2 Java and C#
Many universities have been teaching Java since its
introduction. Some are scurrying to make plans for C#.
Others are waiting. Waiting for what?

The Computing Curricula 2001 (CC2001) project,
which is due out the summer of 2001, will impact how
many universities modify their programming
curriculum. The task force responsible for creating
CC2001 will focus on defining the body of knowledge
associated with several areas including Programming
Fundamentals and Programming Languages (Joint Task
Force on Computing Curricula 2001). Many
universities are waiting for CC2001 to restructure their
programming curriculum – perhaps hoping for a
suggestion on how to implement the newest languages.

Under new guidelines proposed by the Accreditation
Board for Engineering and Technology and the

Computing Sciences Accreditation Board, computer
information systems departments will have greater
flexibility than the past, but must provide a coherent
rationale for their curriculum. Curricula 2001
anticipates a plan to assist computer information
systems departments in designing their computing
curriculum and prepare them for the rationale required
by the new accreditation criteria. CC2001 will address
the role of programming and offer suggestions on how
computer information systems departments can offer
skills and training that meets many of the needs
expressed by students, employers, and non-CS faculty,
and still meet the needs of universities that want to
retain their model that is focused on keeping programs
centered on fundamental programming issues (Joint
Task for on Computing Curricula 2001).

Microsoft’s newest object oriented programming
language, C#, was introduced in 2000. C# is an object-
oriented programming language designed to exploit the
power of XML-based web services on the .NET
platform (Microsoft Press Pass 2000), similar to the
power of JAVA minus the .NET. As more
programming languages continue to be introduced,
universities must carefully weigh the reasons behind the
new languages existence. Will teaching the newest,
hottest language actually improve computer information
systems curriculum? Do universities really need to
adopt another language just because it exists or are they
falling victim to the developers competitive market?

For several years, Microsoft has been in the education
market making several offers to universities. In March
1998, Microsoft sealed a $6 million deal with Indiana
University to upgrade its infrastructure and to supply
students and faculty with Microsoft products including
their programming studios. Under a new licensing
program, the Microsoft Campus Agreement, the
company encourages colleges and universities to offer
its products to faculty, staff, and students in discounted
packages (Krigel 1998). Is this because Microsoft’s
leader Bill Gates is a great philanthropist or he sees the
investment as security for his company? Over 100,000
students at Indiana University will be taught with
Microsoft’s applications. Why would they switch when
they leave the university for the job market?

Some universities may be weary of Microsoft’s motives
and offers – putting off implementing C# into the
curriculum until it is not only a success in other
universities, but also a needed employment qualification
in area businesses. In June 1998, California State
University (CSU) pulled out of deal similar to the one
with Indiana University. Microsoft’s plan was strongly
opposed by students and staff from CSU’s 23 campuses
who feared it would limit their choice. Many viewed
Microsoft’s Campus Agreement as a continuation of the
type of anticompetitive behavior that has invited
government investigations of the company (Macavinta
1998). With Microsoft implementing this new

agreement just prior to the introduction of C#, some
might view this as Microsoft’s way of pushing C# on
curriculum that already offers Sun’s Java. With many
universities struggling for funds to update technology,
they are easy prey to offers like those from Microsoft –
somewhat strong-armed into new applications even if it
does not fit into their curriculum values.

When a university is faced with updating their
curriculum, they must also address the issue of
programming life cycles. In a university, it takes at least
four years for a student to graduate and start working as
a programmer. Even if the current curriculum teaches a
new programming language such as Java, there is no
guarantee that language will be the language employers
look for when the student enters the work force nearly
four years after they begin their studies. Many
universities who teach C/C++ as their core programming
language are looking to migrate to Java. Factoring in
the two years it could take to implement the new course
and the four years it takes for a student to graduate, a
newer programming language could dominate the
industry before the students mails out his/her first
resume. Calculating the probability of a language’s
existence is an art – not a science.

4. CONCLUSIONS
The impact of new programming languages on a college
curriculum has an effect on the local industry, students,
and the university as a whole. Retaining the
fundamentals of programming will ensure a successful
program. While some languages are better than others,
any language can be used for that purpose. What
universities must attend to is the demand in the
workplace. When deciding how and if new languages
should be implemented, consider some of the following
questions:

1. Is the curriculum focused on knowledge-based
or skill-based?

If the curriculum focuses on core
concepts, then being the first university in
the community to teach C# may not be so
crucial. The main focus is on educating
students with the concepts of data models,
algorithmic skills, and other fundamental
programming theories. The syntax and
capabilities of a particular environment
can be learned easily after a student fully
comprehends the complete concept.

If the curriculum focuses on training
students in the multiple environments that
industry employers are searching for, the
curriculum should quickly adopt the
newest language once it has been
established. Students typically are
interested in how to use a specific
programming environment.

2. Does the curriculum place emphasis on an

objects-first model or a functional-first model?

If the curriculum follows an objects-first
model, then the program should adopt the
newest programming language as soon as
possible. This type of system emphasizes
the principles of object-oriented
programming and design in the first
courses of a curriculum (Joint Task Force
on Computing Curricula 2001). In order
for this concept to be a success, students
should have exposure to object-oriented
environments.

If the curriculum follows a functional-first
model, this provides more time to allow
the newest language to succeed before a
curriculum must adopt it. Since the
courses on object-oriented programming
come later in the program, it is not as
critical to implement C# as soon as the
language hits the market.

3. What are area employers asking for from

computer information systems graduates?

If the greatest requirement in a new
graduate from an employer is that they
have experience in a multitude of the latest
programming languages, the curriculum
should be able to train students quickly in
the newest environments. Keep in mind
the fast growing technical centers whose
main focus in on this type of training. The
enrollment could drop significantly if a
university does not respond to the pressure
of industry desires.

If the curriculum focuses on core
programming concepts and turns out a
high percentage of students who are able
to obtain employment in the industry right
out of college, then the impact of the
newest programming languages will be
less. While the curriculum will still need
to respond, the magnitude in which it
adopts the new languages is not as great as
other institutions.

How a computer information systems department
responds to the implementation of a new programming
language is crucial to their survival. From the vital issue
of concluding why languages exist and guessing how
long a language will be viable; to knowing when a
language should be removed from the curriculum, are all
critical concerns that must be addressed. No matter the
speed of implementing new programming languages, the
fact that it must happen is inevitable.

5. REFERENCES

Clements, D., “The Future of Educational Computing
Research: The Case of Computer Programming”.
Information Technology in Childhood Education
Annual, 147-179

COBOL Report, 2001, “COBOL Faculty Grant
Program”. The COBOL Report URL:
http://cobolreport.com

COBOL Report, 2001, “Reaffirmation or withdrawal of
the ANSI COBOL standard?” The COBOL Report
URL: http://cobolreport.com

Gabriel, R. P., 1996, Patterns of Software. Oxford
University Press

Gal-Ezer, J., and D. Harel, 1998, “What (Else) Should
CS Educators Know?” Communications of the ACM

Joint Task Force on Computing Curricula, 2001,
Computing Curricula 2001. ACM Ironman Draft
Volume: II

Koffman E., 1999, “IT Programs and CS Departments”.
Communications of the ACM, 417-418

Krigel, B., 1998, “Microsoft’s new college curriculum”.
CNET.com URL: http://www.news.cnet.com/news

Kuras, M., 1999, “Changing IS Curriculum and
Methods of Instruction”. Communications of the
ACM, 36-39

Macavinta, C., 1998, “College tech deal folds”.
CNET.com URL: http://www.news.cnet.com/news

MacDonald, L., 1989, “COBOL: Still the major
language for business applications programmers”.
Journal of Information Systems

Mawhinney, C., J. Morrel, G. Morris, and S. Monroe,
1998, “Updating the IS Curriculum: Faculty
Perceptions of Industry Needs”. Communications of
the ACM, 219-221

McKinney, K., 1996, “Technology in Community
Colleges”. ERIC Digest

Microsoft Press Pass, 2000, “Microsoft Introduces
Highly Productive .NET Programming Language:

C#”. Microsoft URL:
http://www.microsoft….Pass/press/2000/jun00/Csha
rpPR.asp

MSDN Magazine, 2000, “Sharp New Language: C#
Offers the Power of C++ and Simplicity of Visual
Basic”. Microsoft URL:
http://msdn.microsoft.com/msdnmag/issues/0900/cs
harp/csharp.asp

Rebelsky, S., 2000, A Web of Resources for
Introductory Computer Science

Rocheleau, B., 1997, “Computing in Higher Educational
Institutions in an Era of Sea Change”. Journal of
Educational Technology Volume: 28 Issue: 2

Smith, J., 1999, “Psychological aspects of programming
language choice: Why is the choice of
programming language so emotionally charged?”.
MIT URL:
http://www.media.mit.edu/~jsmith/sas/languages4.ht
ml

Stroustrup, B., 1994, The Design and Evolution of C++.
Addison-Wesley

Swanke, J., 1999, “Coding Forever? Think twice about
how you want to spend the rest of your life”. URL:
http://www.acm.org/pubs/articles/j…/drdobbs/1999/
9913/9913e/9913e.htm

	INTRODUCTION
	2. THE CURRICULUM CHANGE
	2.1 Effects on Implementing a New Course
	2.2 Keeping the Curriculum Current

	4. CONCLUSIONS
	5. REFERENCES

