
Integrating High Level Programming Languages For
Teaching Business Application Development

Allen B. Zilbert1
Mathematics, Computer Science And Computer Information Systems Department

Molloy College
Rockville Centre, NY 11571-5002

Abstract

Over the last thirty years, the methodology for teaching computer programming has changed. Previously implemented
procedures teaching one computer programming language has moved towards the educating of students with a variety
of computer languages. During this same period of time, we also have seen the business environment move towards
the usage of a variety of computer programming languages. However, the graduating student population is not
achieving the same knowledge when one computer language is implemented compared to using several application
development tools. The focus of this paper will be to compare the two methodologies that have been used as the
instructional tool for educating students in the discipline of computer programming. Also, this paper will recommend
an alternative teaching procedure in which computer application development can be accomplished in the classroom
environment.

Keywords: BASIC, COBOL, C++, Computer Programming Curriculum, Programming Language Integration.

1 azilbert@molloy.edu

1. INTRODUCTION

Today, within the business environment, there is a
multitude of programming languages that are
implemented for software development. Currently,
organizations are using such popular languages as
COBOL, RPG, JAVA, C, C++, Visual BASIC, APL,
FORTRAN, MUMPS, ADA, PASCAL as well as
numerous other high level (third generation)
programming languages. According to the Master List
of Languages for the Dictionary (Master List, 2001) and
the Language List (Ulogov, 2001), there are
approximately over 2,200 computer-programming
languages in existence today. This list is constituted of
different generation programming languages, which
ranges from first generation through fifth generation
programming languages. Also, the composition of the
list is of different versions of the same language such as
FORTRAN I through FORTRAN 90. Finally, this
listing provides different dialects of the same language.
As an example, the BASIC programming language that
was formulated and conceived by John Kemney and
Thomas Kurtz in 1964 at Dartmouth College has evolved

into numerous offspring’s from its predecessor. Table 1
provides an illustration of the current listing of the
BASIC programming language. Still, there are other
companies that are maintaining applications that were
designed in Assembly language (second generation).
The problem that business computer information systems
programs are faced with is what computer programming
language to choose for educating students who either
intend to derive their livelihood from application
development (i.e. become computer programmers) and
for those students that are information systems majors
(non programming track) that are to be cognizant of what
computer programming has to offer and how it has to be
interfaced within the business environment.

2. COMPUTER PROGRAMMING MODEL

As one is well aware, it is physically impossible as well
as inappropriate to teach computer information system
majors, just computer programming. Computer
curriculums must include a diversity of computer courses
such as systems analysis and design, database
management systems, telecommunication and networks

that will provide a well rounded computer education for
business majors. The curriculums implemented by most
schools are very similar in description. Over the years,
professional organizations such as AITP (Association of
Information Technology Professionals), ACM
(Association For Computing Machinery), and AIS
(Association for Information Systems) have formed an
alliance in order to provide the necessary core for the
computer information systems discipline (Model
Curriculum, 1997). These three organizations are
cognizant of the needs of the business community. As a
result, their intention is to provide schools with the
appropriate model curriculum that will support the
growing requirements of the business community.
Presently, undergraduate degree programs in information
systems are able to follow the IS 97 model curriculum.

Most colleges and universities today require computer
information systems majors to take either two or three

programming courses. As indicated in the IS 97 mode
curriculum, one programming course is advocated with
respect to programming proficiency. However,
programming is stressed through several courses within
their curriculum structure. Also, it should be noted that
this prototype does not provide a recommendation in
terms of which computer language should be
implemented in terms of the instruction. The majority of
schools of business with a computer information systems
program offer application development courses in Visual
BASIC, C++, and COBOL. An illustration of the
courses that emphasize computer programming, which
are found in the IS 97 model curriculum for either the
instruction of computer programming or as the
prerequisite for a course is shown in Table 2. Within the
eleven courses that are described by this paradigm, four
out of the eleven emphasize the implementation of
computer programming.

Table 1 – Versions Of The BASIC Programming Language

The Usage Of Computer Programming Within The IS 97 Curriculum Model

Course Number Course Title Course Type

IS'97.5 Programming, Data, File And

Object Structures
Instructional Programming

IS97.8 Physical Design And
Implementation With DBMS

Programming Background
Required

IS97.9 Physical Design And
Implementation With A
Programming Environment

Programming Background
Required

IS97.10 Project Management And
Practice

Programming Background
Required

Table 2 – Programming In IS 97 Model Curriculum

Current Dialects Of The BASIC Programming Language For The Microcomputer

Applesoft BASIC EBASIC L-BASIC RBASIC Utah BASIC
bs Future BASIC MBASIC RealBASIC Visual BASIC
CBASIC GW-BASIC Omikron BASIC Tiny BASIC Waterloo BASIC
Chipmunk Basic Info BASIC Power BASIC

(Turbo BASIC)
True BASIC XBASIC

Dartmouth BASIC KBASIC QBASIC UBASIC ZBASIC
Data/BASIC
(Pick BASIC)

Liberty BASIC Quick BASIC UNBASIC

Twenty years ago, students would have to take either a
beginning course in programming followed by an
advanced course in programming. The schools that
would mandate three courses normally had a beginning,
intermediate, and an advanced course in programming.
Usually, one programming language was selected as the
teaching tool to provide the learning experience for the
students. The trend with respect to using one
programming language has changed over the last ten
years. Now, educational institutions are implementing
between two and three different languages with respect
to the programming courses.

3. ADVANTAGES OF TEACHING MORE THAN

ONE COMPUTER LANGUAGE

There are several advantages in teaching more than one
programming language to students who intend to make
their careers as computer programmers. The most
important advantage that one must address is diversity.
Most organizations do not program in just one computer
language. Granted, companies will have a primary
environment for developing their software. However,
this principal language may not easily support certain
application creation. Organizations as a result will turn
to other computer languages to subsidize their
development requirements. In order to enhance their
marketability to companies, students having knowledge
of more than one programming language will be
extremely desirable to these companies. Also, not all
industries will create software implementing the same
principal language. Different areas of specialization tend
to dominate one computer language over another. For
example, hospitals have the majority of their application
development prepared in either MUMPS or COBOL. In
the early 1960’s, the MUMPS language was explicitly
designed for the medical industry. The name MUMPS is
an indicator that it was produced for the medical
platform. MUMPS comes from the acronym
Massachusetts general hospital Utility Multi-
Programming System. However, financial institutions
have their software development written in COBOL, C,
and C++. In business, the legacy language COBOL
(COmmon Business Oriented Language) is even now
striving as an instrumental software development tool for
over forty years. But, organizations in business are not
sitting quietly. Many firms are supplementing their
program creation by either implementing JAVA or J++.
Other organizations are contemplating whether they
should commence program development in a new
language from Microsoft called C# (Truppin, 2000).
Still today, actuarial programs are being designed in the
scientific language APL.

Another benefit for instructing students with more than
one language is the opportunity to use features that are
only prevalent within that language. One of the major
benefits for using C++ for application instruction is the
ability to use a programming option known as

overloading (Zak, 2001). This characteristic of the C++
language allows for the development of procedures and
functions with non-unique names. As long as the
parameters are different for these operations, the names
can be the same. An example of overloading procedures
in C++ for the purpose of counting the number of items
of different data types within a list is shown in Figure 1.
Unlike other application development tools, the COBOL
programming language has a built in operation that
permits for the sorting of data (Stern, 2000). Normally,
programmers would have to write their own algorithms
in other programming languages in order to accomplish
the sort process. However, invoking a few simple
commands immediately generates the function that will
arrange the data into any desired order. Figure 2
illustrates the command implemented by COBOL to
collate data. Designing a front-end application program
interface can be a tedious as well as time-consuming
procedure for a computer programmer. By
implementing Visual BASIC, for the purpose of
developing the GUI (Graphical User Interface), the
screen input design can be expedited. Visual BASIC is
enhanced with the tools to simplify screen design (Zak,
1999). Also, it provides the integration of the video
input and output with respect to event trapping in order
to process the users’ data.

Visual BASIC, C++, and COBOL also have other
attributes that are unique to their languages respectively.
However, the purpose of this article is not to illustrate
the features that one can benefit from learning each of
these languages. The objective is to provide an
understanding of the benefit for learning more than one
computer programming language during the students’
study of application development.

An additional rationale for educating students with more
than one computer language is that some vernaculars will
be more efficient than other dialects while performing
the same exact operation. As an example, file operations
are available within all computer languages. However,
COBOL is one of the most efficient languages that can
be implemented for the purpose of input and output. File
handling is prevalent within C++, but this functionality is
extremely weak for this purpose. On the other hand, it
is more desirable to perform calculations in C++ rather
than it is to do the same mathematical operations in
COBOL. C++ provides higher precision with respect to
financial computations.

4. ADVANTAGES OF TEACHING ONE
COMPUTER LANGUAGE

Educating students is simplified when one programming
language is implemented within the curriculum. Using
one language facilitates the instruction of a significant
amount of material. Advanced programming topics can
be discussed in detail once students are provided with the
foundation material. Students’ proficiency in

application designed is strengthened when a sufficient
amount of time is spent using one computer

programming language. Highly sophisticated and
organized programming projects can be assigned, which
can span within a two-semester course sequence (Bend,
1990). Table 3 illustrates the curriculum that normally
would be covered in a two-semester programming course
curriculum.

When multiple languages are taught in a programming
curriculum, the topics found in Table 3 are discussed in a
one-semester time period. However, the majority of
students do not grasp most of the necessary
programming concepts. There is a higher student
satisfaction as well as ease in the understanding of
programming as a result of multiple semesters of the
same language. When an enormous amount of
information is doled out during a one-semester course,
the majority of students taking the course tend to result
in disliking programming. On the contrary, when more
than one-semester is implemented for teaching computer
programming, there is a higher fondness of application
tool design.

Overload

void c
void c
void c
void c
void c
void c

Figure 1 – Declarations Implemented

Sorting

SORT employe
 ON A

 COLL

 INPU
 OUTP

Figure 2 – COBOL Syn

ing In C++

ount (int []);
ount(short int []);
ount (long int []);
ount(float []);
ount(double []);
ount(char [][]);

 In An Overloading Operation In C++

In COBOL

e-file
SCENDING KEY
 sort-employee-last,
 sort-employee-first,
 sort-employee-mi
ATING SEQUENCE IS sort-order
T PROCEDURE IS unsorted-rtn
UT PROCEDURE IS sorted-rtn.

tax For Sorting File Data

5. AMALGAMATING THE PROGRAMMING
TOOL

Currently, when students are taught more than one
language, they are reintroduced to programming logic
that was previously covered in a different programming
course. As has been discovered in other educational
findings, the reinforcement of teaching the same material
does benefit student learning (Sutton, 1998). However,
the question that needs to be addressed is how much
reinforcement should students be receiving. Many
educational institutions will permit students to take
several courses in programming. In fact, these students
are being introduced to a variety of programming tools
as an introductory perspective. However, these same
students are not being given the opportunity to address
the advanced material mandated in order to be able to get
a job. When advanced topics are encountered in the
multi-language programs they are either covered
expeditiously or too minutely. In either case, students
are not provided the appropriate education that they
deserve.

Selecting either just one computer programming
language or several programming languages for
instructional purposes is not the answer. Both
methodologies do have positive positions. However,
both options also have negative arguments. What is
mandated is an integration of the positive attributes of
the aforementioned procedures. It has been proven that
it is easier for children to learn to speak more than one
language when they are at a very young age. Why not
use the same technique, and teach more than one
programming language within the same course.

In terms of feasibility, it would not be possible to teach
all of the components of several languages within one,
two, or even three course. However, it would make
logical sense to provide the most important components
of each language in a new application development
curriculum. By implementing a three-semester sequence
of computer programming, it would be possible to
incorporate the subject matter that is relevant from the
languages C++, Visual BASIC, and COBOL.

Students would be introduced to the components that are
applicable to that aspect of the computer program. Also,
students would learn how to interface different computer
languages. Currently in business, the incorporation of
diverse computer programming languages for the
function of software development has become a
conventional methodology for writing an application
(Rippin, 2001). However, computer-programming
curriculums do not cover the interfacing of computer
applications using diverse programming languages.
There would be a primary benefit for students to be

educated in how computer programs can have their data
shared by passing parameters between different
computer languages. For example, Visual BASIC could
be implemented as the front-end of the application. C++
could be taught in terms of the processing components of
the program. And, COBOL could be used as the back-
end of the application.

6. CONCLUSION

There are two objectives that must be focused on within
the present computer-programming curriculum. The first
is the educating of the students, and the second is
fulfilling the requirements for the business environment.
These two goals can be culminated simultaneously by
revising the structure of the current curriculum. By
joining the necessary components of each of the most
widely implemented computer-programming languages
(COBOL, Visual BASIC and C++), students will be
instructed appropriately. This in turn will result for the
business sector to acquire a pool of graduating college
students who will possess the knowledge mandated for
their entry-level job positions. In either case, two
problems will be solved from the modifications that are
mandated within the computer-programming curriculum.

7. REFERENCES

Application Extension Product Capability Matrix, 2001,
http://www.merant.com/products/
microfocus/product_focus/techwhite.asp

Computer Programming Curriculum

Topic Level

Data Names and Constants Introduction
Arithmetic Operations Introduction
Conditional Statements Introduction
Report Formatting Introduction
Classes Introduction or Advanced
Loops Introduction or Advanced
File Handling Introduction or Advanced
Arrays Advanced
Pointers Advanced
Character Manipulation Advanced
Sorting Advanced
Searching Advanced

Table 3 – Introductory And Advanced Programming Topics

Bend, Robert., 1990, Basic: An Introduction to
Computer Programming, Brooks/Cole Publishing,
California.

Defining Computing Curricula for the Modern Age
Computer, 2001,
http://www.merant.com/products/microfocus/.

Forsyth, Richard., 1978, The Basic Idea, Chapman and
Hall Publishing, New York.

Mashaw, Bijan., 1985, Basic, Mayfield Publishing
Company, London.

Master List of Languages for the Dictionary, 2001,
 http://cgibin.erols.com/ziring/cgi-bin/cep/

cep.pl?_get=epl_masterlist.phtml.

Model Curriculum and Guidelines for Undergraduate
Degree Programs in Information Systems, 1997,
www.aitp.org.

Rippin, Wayne., 2001 Developing Mixed Visual

BASIC/ COBOL Applications,
http://www.merant.com/products/microfocus/
product_focus/techwhite.asp

Stern, Nancy and Stern, Robert. 2000. Structure COBOL

Programming, John Wiley And Sons, New York.

Sutton, Richard S. and Andrew G. Barto., 1998,

Reinforcement Learning: An Introduction, MIT
Press, Massachusetts.

Truppin, Joshua., 2000, Sharp New Language: C# Offers

the Power Of C++ And Simplicity Of Visual
BASIC, MSDN Magazine, www.microsoft.com/
msdmag/issues/0400/vbnexgen/print.asp

Truppin, Joshua., 2000, The Future Of Visual BASIC:

Web Forms, Web Services, and Language
Enhancements Slated For Next Generation, MSDN
Magazine, www.microsoft.com/msdmag/issues/
0400/vbnexgen/print.asp

Ulogov, Vladimir I., 2001, Language List,

oop.rosweb.ru/Other/

Zak, Diane. 2001.An Introduction To Programming With

C++, Course Technology, Massachusetts

Zak, Diane. 1999. Programming With Microsoft Visual

BASIC 6.0, Course Technology, Massachusetts.

	Mathematics, Computer Science And Computer Information Systems Department
	Abstract
	1
	1. INTRODUCTION
	2. COMPUTER PROGRAMMING MODEL
	Current Dialects Of The BASIC Programming Language For The Microcomputer
	Table 1 – Versions Of The BASIC Programming Language
	The Usage Of Computer Programming Within The IS 97 Curriculum Model
	
	Course Number

	Table 2 – Programming In IS 97 Model Curriculum
	3. ADVANTAGES OF TEACHING MORE THAN ONE COMPUTER LANGUAGE
	Visual BASIC, C++, and COBOL also have other attributes that are unique to their languages respectively. However, the purpose of this article is not to illustrate the features that one can benefit from learning each of these languages. The objective is
	4. ADVANTAGES OF TEACHING ONE COMPUTER LANGUAGE

