
Developing Embedded Visual Basic 3.0 Applications for
Win CE 3.0 and the Pocket PC

Jonathan C. Mull1
and

Kyle Lutes2
Computer (Information Systems) Technology Department, Purdue University

West Lafayette, IN 47907-1421 USA

1 mulljc@hotmail.com
2 kdlutes@tech.purdue.edu

Abstract

With the explosive proliferation of mobile computers, an education in modern computer programming languages and
techniques should include exposure to application development for them. This paper’s authors chose to do an inde-
pendent study on eMbedded Visual Basic, a programming language being used with the WinCE operating system. One
element of the study was participation in a Pocket PC programming contest sponsored by Microsoft, which concluded
April 8, 2001. This paper discusses our experiences researching mobile computing platforms, learning eMbedded Vis-
ual Basic, and developing and submitting an application for the contest.

Keywords: eMbedded Visual Basic, Pocket PC, Windows CE, programming contests

1. OVERVIEW OF THE POCKET PC

According to the Gartner Group, sales of mobile com-
puters in the United States will increase 300 percent to
about 28 million over the next four years (Thornton
2001). Pocket PC is Microsoft’s platform for the per-
sonal digital assistant (PDA) market. It currently runs
version 3.0 of the WinCE operating system. Analysts
predict that by 2004, the Pocket PC will own as much as
40 percent of the market, with Palm falling to 45 percent
(Thornton 2001).

WinCE 1.0 was released in 1996. Numerous devices,
including the Sega Dreamcast, support an improved
version, 2.01, released in September 1997. The current
version, 3.0, was released in Summer 2000. WinCE 3.0
can be considered Windows 2000 “light”. It has sophis-
ticated memory management, a scheduler for multi-
threaded programming, and most features of a modern
OS (Yao 2001). It does lack the ability to process 16-bit
applications, and support for a page file, but many fa-
miliar 32-bit APIs are readily available to the developer
(Yao 2001).

On the horizon for WinCE is version 4.0, code-named
“Talisker”. It will use Kerberos to be more secure, will
have support for some .Net services, Bluetooth for wire-
less communication, Universal Plug and Play, USB,
better multimedia with DVD, and SSL (Arar 2001).

2. CONTEST OVERVIEW

The Microsoft Pocket PC Programming Competition
was open to university students (enrolled as of Dec. 1,
2000) whose school is a part of the Microsoft Research
University Relations Student Consultant program. Stu-
dents need to register with the Microsoft Student-
Dev.org group for their school. Anyone working directly
or indirectly for Microsoft, and the university student
consultants were ineligible to participate. The contest
entry deadline was 11:59 pm PT April 8th, 2001.

Participants were asked to develop an original applica-
tion for the Pocket PC to be judged on the following
criteria:

• Innovation and Creativity – 30%
• User Interface Design – 30%
• Stability and Performance – 15%
• Wireless and Mobile usage – 15%

• Use of Exclusive PC Features (i.e. Activesync
integration) – 10%

Prizes are to be awarded at both the school and national
level. The winning team from each school will receive a
Pocket PC device, valued at $500. At the national level,
the winning five entries win cash prizes ranging from
$5,000 for 5th place to $25,000 for 1st place. Those five
winners also receive a trip to Redmond, Washington to
meet with Microsoft recruiting, research, and/or the
Pocket PC development team. Coach airfare, two nights
lodging, and some local transportation are included.
Winners will be notified by mail/e-mail on or about May
28, 2001. Complete contest rules are available online at
http://acm-studentdev.cs.purdue.edu/pocketpc/rules.htm.

3. APPLICATION DESIGN CONSIDERATIONS

The most obvious restriction to developing applications
for the Pocket PC is the small user interface. Pocket PC
supports a screen size of 240 x 320 pixels, which is less
than 1/4th the size of the minimal desktop PC screen
size of 800 x 600 pixels. The use of tab strips, form
show/hide techniques, and scrolling make interaction
with size limitations fairly easy to solve for both devel-
opers and users. The touch screen interface has familiar
events like “mouse up”, “mouse down”, “click” and
“double click” to aid interaction. The small window on
the device does support color, and respectable graphics.
Pocket PC does not recycle memory space for forms that
are shown and subsequently hidden or are no longer
used. As a result, memory considerations quickly be-
come an issue if an application uses numerous forms or
graphics.

Each WinCE process garners 32MB of address space,
significantly less than the 2GB for the typical desktop
Windows application. Presently, the Pocket PC has only
16 to 32 MB of RAM available, so the hardware may be
a bottleneck for memory hogging applications. Addi-
tional memory is available by using shared memory
from a one gigabyte-sized address space.

Obtaining input from users can be accomplished through
the use of the stylus and the Soft Input Panel (SIP) key-
board function, the SIP HWX handwriting recognition
functionality, or keyboard input while Activesync-ed to
the desktop. Because there typically is not an attached
keyboard, it is beneficial to automate data entry and re-
entry with dropdown lists over combo-boxes, and help
users complete phrases to minimize stylus character
input.

4. DEVELOPMENT TOOLS

There are two development tools available for WinCE
3.0 -- Microsoft Visual Tools 3.0 and Microsoft Plat-
form Builder 3.0. Embedded Visual Tools is freely
available at
http://www.microsoft.com/mobile/downloads/dev_all.as
p. Information about obtaining Platform Builder is
available at
http://www.microsoft.com/windows/embedded/ce/tools/
pb30faq.asp. Within Visual Tools 3.0, the developer can
choose between eMbedded Visual C++ (eVC++) and
eMbedded Visual Basic (eVB). Platform Builder, for-
merly Windows CE Embedded Toolkit, is used to create
custom configurations of the CE operating system itself,
and is needed by developers wishing to embed CE into a
device like a digital camera or cell phone. Visual Tools
3.0 looks very much like Microsoft Visual Studio 6.0,
and functions very similarly as well. Visual Tools not
only allows the developer step through code on a linked
device, which can be very slow, it also includes an emu-
lator to run on the desktop. The emulator is indeed
faster, and works with Windows NT 4.0 or Windows
2000, but not Windows 95, Windows 98, or Windows
ME.

eVC++ is the more powerful of the two visual tools.
There are very few differences between the functionality
of eVC++ when compared to Visual C++ for Windows.
eVB includes an integrated development environment
(IDE) similar to that of Visual Basic 6.0 for Windows
(VB), but the programming language is more closely
related to VBScript than it is to VB, which means it is
much less powerful and robust.

5. EMBEDDED VISUAL BASIC

eVB in the IDE is in appearance very much like VB 6.0.
However, the similarities don’t last long. All variables in
eVB are of type Variant, which can accept values for
any data type (string, double, boolean, etc.). Unfortu-
nately, object-oriented programming techniques, and
user-defined types (UDTs) are not supported as they are
in VB. The lack of these and other expected modern
programming language features severely limit interac-
tion with the WinCE API functions. For example, the
ability to access the Pocket PCs Voice Recorder func-
tions. eVC++ can be used to create custom DLLs to
circumvent this problem.

eVB does use functions and methods like one would
expect, and supports the use of dynamic arrays. File
access is handled with an ActiveX control rather than
direct code, and common dialog boxes are supported to
provide a desktop feel. eVB can access data sources
using ActiveX Data Objects for WinCE (ADOCE), and
the Pocket PC supports the Pocket Access database.
Debugging in eVB is also more difficult than with VB.
eMbedded VB does not have a good exception handling
mechanism, but the developer can still determine if a
run-time error occurs by coding On Error Resume Next

before any statements that might throw errors, and test-
ing the Err object’s Number property immediately to see
if anything has gone wrong. See Figure 1. This tech-
nique is crude but effective.

 With its drag-and-drop interface development, common
ActiveX controls, and the benefit of a familiar IDE,
eMbedded VB is robust enough to develop applications
easily, though lacking in advanced functionality. The
biggest issues with development are ferreting out subtle
syntax differences, and learning to interact with specific
API references, such as Pocket Outlook’s Object Model
(POOM) (Tirschwell 2000).

'Continue processing code if an error
'occurs
On Error Resume Next

lFilename = App.Path & "/data.pck"

'This line will change the Err.Number if
'lFilename cannot be opened
File1.Open lFilename, fsModeInput
lHeadArray = File1.InputFields(5)
File1.Close

If Err.Number <> 0 Then
'An error has occurred, do error
'processing

MsgBox
"An Error has occurred.", vbOKOnly

File1.Close
Exit Sub

End If

'Resume system exception handling
On Error GoTo 0

Figure 1. File Input using eVB with Exception Handling

6. POCKET CLOCKIT

The concept for Pocket ClockIt arose from students’
discussion of the Pocket PC contest. The Pocket ClockIt
application aims to help PDA users log hours worked on
specific tasks. This could be attorneys logging phone
consultation time, programmers tracking time spent
coding, engineers billing time spent between concurrent
jobs, etc.

The Pocket ClockIt user-interface is relatively simple.
See Figure 2. It employs the Timer control, which runs
code every x milliseconds, to count up elapsed time and
integrates it with Microsoft Pocket Outlook data existing
on the Pocket PC. After logging a time block, the user
can round the time spent to a range of intervals (5 min-

utes to 60 minutes), and set data about the activity dur-
ing that time, any rate of payment information, and gen-
eral comments. The user can then add this time log to
new or existing Outlook appointments, tasks or contacts
by adding data to the item’s note property. Outlook
appointments, tasks, or contacts can be created from
within the Pocket ClockIt application. New Pocket Out-
look items are created with common dialogs that Pocket
PC uses to create new items. When Outlook is Active-
sync-ed to the desktop, any notes added to appoint-
ments, tasks, and contacts will be integrated with their
desktop countertops.

The key elements to making Pocket ClockIt work were
learning to use the file object, the Pocket Outlook Ob-
ject Model, and the syntax of everything in between.
The file object is an ActiveX control, and was easily
included in the project, and most syntax is close to, if
not identical to VB. Learning to use the POOM was a
bit more challenging.

To access the POOM, one must logon to a POOM ses-
sion. After which, the default folders storing tasks, ap-
pointments, and contacts are available. The properties
for each item are manipulated by adding a collection of
POOM items to an array, making changes, and calling
the item’s Save method to write them back to the default
folder.

This study’s greatest failure with Pocket ClockIt cen-
tered around the Pocket PC’s Voice Recorder function.
As mentioned earlier, eVB does not support UDTs or
object creation, but it can use existing objects. The
Voice Recorder, which was in the initial Pocket ClockIt
design, would have allowed users to paste audio clips
into their Pocket Outlook notes along with the time log
data. The Voice Recorder API requires the use of a
UDT, and as the deadline for entering the contest
loomed, the authors had yet to learn to use C++ to create
the .DLLs that are necessary to connect to the voice
recorder API. The help files and developer message
boards used throughout this independent study did not
point in this direction, instead highlighting the ability to
include existing .DLL files. Though able to point the
application at the Voice Recorder’s .DLL file, the neces-
sary variables defined to interface with it do not natively
exist in eVB. Hence, inclusion of the Voice Recorder
functions in Pocket ClockIt version 1.0 was scrapped
though they will be included it in any subsequent ver-
sions.

Figure 2. The Pocket ClockIt User Interface

Once the project was completed, submission to the
Pocket PC contest was elementary. Student entrants
needed only email to the StudentDev.org coordinator at
their school an entry consisting of:
• The .vb file, or precompiled code to run on Pocket

PC
• Any required .dll files
• Program documentation (i.e. screenshots and de-

scriptions)

7. CONCLUSION

Entering the Pocket PC programming contest was a
good experience, despite the sometimes-difficult task of
learning new syntax. Visual Tools 3.0 (eVB and
eVC++) are tools that current developers will be com-
fortable working with, though they are new and have
limitations.

Should eVB be taught in the college classroom? Perhaps
in conjunction with a Visual Basic 6.0 course, as an
example of a related language used on a different operat-
ing system. It could also be taught in conjunction with
eVC++ in a course on WinCE software development.
But as a stand-alone language, eVB is just not rich
enough to warrant an entire semester course.

Developing applications for mobile computers is a rela-
tively new field of study, and the maturity of develop-
ment tools and languages will only come with time. The
influence of mobile computers on the future of IT can-
not be denied, and curriculum teaching students to de-
velop for the desktop, LAN, WAN, and WWW should
begin to include the languages of handheld devices as
well.

8. REFERENCES

Arar, Y. (2001, February 6). “Microsoft Pushes Win-
dows for Non-PC Devices.” PC World. Retrieved
April 17, 2001, from the World Wide Web:
http://www.pcworld.com/news/article/0,aid,40582,
00.asp

Thornton, C. (2001, February 23). “Palm vs. Pocket

PC.” PC World. Retrieved April 17, 2001, from
the World Wide Web:
http://www.pcworld.com/features/article/0,aid,4146
6,pg,1,00.asp

Tirschwell, M. (2000). “Programming with eMbedded

Visual Basic and the Pocket Outlook Object
Model.” Retrieved April 17, 2001, from the World
Wide Web:
http://www.microsoft.com/mobile/pocketpc/stepbys
tep/evbpoom.asp

Yao, P. (2001, January). “Windows CE: eMbedded

Visual Tools 3.0 Provide a Flexible and Robust
Development Environment.” MSDN Magazine.
Retrieved April 17, 2001, from the World Wide
Web:
http://msdn.microsoft.com/msdnmag/issues/01/01/
CETools/CETools.asp

	Jonathan C. Mull
	Abstract

	1
	1. OVERVIEW OF THE POCKET PC
	2. CONTEST OVERVIEW
	3. APPLICATION DESIGN CONSIDERATIONS
	4. DEVELOPMENT TOOLS
	5. EMBEDDED VISUAL BASIC
	6. POCKET CLOCKIT
	7. CONCLUSION

