
Views - The 'other' database object 
 

Erick D. Slazinski 
Department of Computer Technology, Purdue University 

West Lafayette, IN  47907-1421, USA 
 
 

Abstract 
 

Database views are a powerful and versatile construct that, if used creatively, can solve several commonly occurring 
business problems.  These problems include integration issues and backwards compatibility, location transparency, 
managing overly complex Structured Query Language (SQL) queries and overcoming some limitations of the SQL 
language.  This paper documents some tips and techniques that the author has found in his many years (12+) in indus-
try.  Database (DB) views are basic objects defined in the ANSI SQL-92 standard.  As an integral part of the SQL lan-
guage, which builds upon the select statement, views are easy to teach and generally well understood by students.  With 
the ease of development of views coupled with the expressive power that is contained in the select statement, it is the 
author’s recommendation that views should be included in any intermediate to advanced database course.   

 

Keywords: Views, RDBMS, SQL, RAD 

 

1. Introduction 

Database views are often underestimated and therefore 
one of the most underused objects in today’s Relational 
Database Management Systems (RDBMSs).  Besides 
offering traditional functionality of information hiding 
(often as a form of security enforcement) and pre-
generated reports - database views can also offer a 
mechanism to insulate software developers from a 
changing database schema (as often occurs in today’s 
Rapid Application Development (RAD) environment), 
provide backwards-compatibility when a system 
evolves, provide location transparency for a distributed 
database environment, reduce query complexity, solve 
integration problems and overcome certain limitations of 
SQL.  

2. Traditional Uses of Views 

“According to the SQL-92 standard, views are virtual 
tables that act as if they are materialized when their 
name appears” (Celko, 1999, p.55).  The term virtual is 
used because the only permanent storage that a view 
uses is the Data Dictionary (DD) entries that the 
RDBMS defines.  When the view is accessed (by name) 
in a SQL from clause, the view is materialized.  This 
materialization is simply the naming, and storing in the 
RDBMS’s temporary space, the result set of the view’s 
select statement.  When the RDBMS evaluates the 
statement that used the view’s name in its from clause, 
the named result set is then referenced in the same fash-
ion as a table object.  Once the statement is complete the 

view is released from the temporary space.  This guaran-
tees read consistency of the view.  A more permanent 
form of materialized views is now being offered by 
RDBMS vendors as a form of replication, and is not 
germane to this discussion. 

The syntax for creating a database view is: 

SQL> create view <name> [<column list>] as  
         <select statement> 

The power of a view is that the select statement is al-
most any select statement no matter how simple or 
complex – various vendors may disallow certain func-
tions to be used in the select statement portion of a 
view’s definition.    

The classic use of views is to implement an organiza-
tion’s security policy.  One such policy could be to re-
strict the data that a user is entitled to see.  In the follow-
ing example, an employee would be allowed to see 
his/her own personal information, but no one else's. 

SQL> create view EMP_DATA as 
          select * from EMPLOYEE  
          where ENAME = User;1

                                                                 
1 User is an Oracle pseudo-column, which contains the 
username that executed the query (Loney and Koch, 
2000, p.68). 



This view is a simple and elegant way of enforcing secu-
rity with a minimal of effort on the database developer's 
part. We now have a mechanism that provides a consis-
tent approach to security.  By implementing security 
policies as a layer of database views, we can remove all 
access rights to the underlying tables and manage access 
rights, since the views are actually performing the secu-
rity checks.  .   

The second classic use of a view is to provide “canned 
queries” to users.  These queries are often used to sup-
port the day-to-day operations and are stored in a view 
in order to save time from re-entering the query and also 
reduces the level of SQL required on the part of the user 
who needs the query.  Advanced queries, such as those 
used in generating reports can be stored as a view.  
These reports frequently contain tedious formatting such 
as splitting apart a customer's first and last name; con-
verting the name into mixed case; performing data trans-
lation such as converting an employee’s department id 
into a department name; complex data transformations 
such as converting the time stored in that database into 
the current time zone or converting temperature reading 
into degrees Fahrenheit or degrees Celsius depending on 
the user’s location.  Additional, more advanced features 
include integrating data possibly stored on multiple 
database servers, providing backwards compatibility to a 
previous schema revision level shall be discussed later 
in this paper.  An example of a canned query follows: 

SQL> create view SALARY_REPORT as 
         select initcap(ENAME) "Name",  
         to_char (SAL, '$99,999') "Salary", 
         to_char (HIREDATE, 
                    'fmddth "of" Month, yyyy')    
                  "Start Date" 
         from EMP;2

Views of Views     

Another benefit of having the select statement is that 
views can be built in a hierarchical fashion, that is one 
view based on another view, which may continue on 
until either a RDBMS imposed limit is reached or per-
formance is severely impacted..  This allows for an in-
cremental build approach to developing SQL solutions.  
The reader must be warned, however, that based on the 
author’s experience, layering views more than 3 levels 
deep can incur a serious performance penalty.  This 
penalty makes sense when one thinks about what is ac-
tually occurring inside the database server itself – each 
layer of views must be materialized in temporary stor-
age, in sequence.  

DML and Views  

In addition to proving a mechanism for storing database 
queries, views can be treated as an insulating layer (a 
                                                                 
2 The functions initcap and to_char are string-
formatting functions. 

feature that we shall exploit later) when executing Data 
Manipulation Language (DML) statements.  It is often 
desirable to execute these basic operations: insert, up-
date and delete against a view, especially if users are 
used to using the view during select operations.  How-
ever, when DML operations are performed against a 
view, the user is sometimes reminded that they are no 
longer dealing with a database table.  Rules regulating 
the conditions that these operations may be performed 
are vendor specific.  Though the regulations can be an-
noying, the integrity of the underlying database objects 
must be maintained.  An example of this follows: 

Given a customer table and associated view to 
support verifying personal information.

SQL> create table CUSTOMER ( 
     CUSTID NUMBER (6) not null, 
     NAME    VARCHAR2(45), 
     ADDRESS VARCHAR2(40), 
     CITY    VARCHAR2(30), 
     STATE   VARCHAR2(2), 
     ZIP     VARCHAR2(9), 
     AREA    NUMBER (3), 
     PHONE   VARCHAR2(9), 
     REPID   NUMBER (4) not null, 
     CREDITLIMIT NUMBER (9,2)); 

 

SQL> create view WEB_CUSTOMER as     
          select NAME, ADDRESS, CITY, 
                   STATE,  ZIP, AREA, PHONE      
          from CUSTOMER; 

To entice new customers to purchase from our company 
over the web, our developers add a “create new cus-
tomer” form where the user enters the required informa-
tion.  However, entering data through our view now 
causes the following error: 

SQL> INSERT INTO WEB_CUSTOMER             
          VALUES ('John Doe',  
                           '123 Any street', 'Any City',  
                           'IN', '47905', 123,  
                           '456-7890'); 

ORA-01400: cannot insert NULL into 
("ERICK"."CUSTOMER"."CUSTID")

It is easy to see why a user can get an error when trying 
to insert data 'through' the (above) view - if the view 
does not have the non-null attributes that its underlying 
objects have, the insert will fail because the user is un-
aware and unable to populate the attributes that are 
required.  Updates are usually another problem area - 
again with an eye towards data integrity the rules and 
restrictions that views have do make annoying sense.   

Database vendors such as Oracle have given the data-
base developer a mechanism to help the end-user - in-
stead-of triggers.  These triggers are actually defined on 
the view.  This may seem a bit odd to some readers since 



the trigger is being placed on a virtual structure, how-
ever, remember that the view is materialized and does 
exist for duration of the query being executed.  Like all 
other triggers, instead-of trigger can be defined to fire 
on any DML statement.  Thus the instead-of trigger will 
intercept the action and apply the DML statement on the 
correct base object(s).  The following instead-of trigger, 
when added to the above view will correct the insert 
error. 

SQL> create or replace trigger   
     WEB_CUST_IBR 
     instead of INSERT on WEB_CUSTOMER           
     for each row 
     begin 
       insert into CUSTOMER values   
             (CUST_ID.NEXTVAL, :new.NAME, 
              :new.ADDRESS, :new.CITY,  
              :new.STATE, :new.ZIP,  
              :new.AREA, :new.PHONE,  
             999, 1000); 
      end WEB_CUSTOMER_IBR;3

 

Now, when the insert statement is run, we have a suc-
cessful transaction. 

SQL> INSERT INTO WEB_CUSTOMER 
     VALUES ('John Doe', '123 Any street',  
                      'Any City',  'IN', '47905', 123,  
                      '456-7890'); 

1 row created. 

If instead-of trigger functionality is not available from a 
specific vendor – DML-specific stored procedures could 
provide the similar functionality, though not as transpar-
ent.  For example, you could create an 
INSERT_CUSTOMER stored procedure that correctly 
stored the data in the database. 

3. Solving Integration Issues or Providing 
Backwards Compatibility 

Integration and backwards compatibility are really the 
same problem that a developer must face at different 
points in a system’s lifecycle.  Integration issues can 
arise when bringing together systems that were not cre-
ated to be compatible.  While backwards compatibility is 
a strong motivation when enhancing an existing or de-
veloping any replacement system, the cost of meeting 
this requirement may be prohibitive.  In either situation, 
the goal is the same; we need to get some existing code 
to work with a new schema.   

In the following example, we have a table that maintains 
information about courses.  A new requirement stating 
the need to store an additional description attribute is 
                                                                 
3 CUST_ID.NEXTVAL is an Oracle sequence for auto-
generating a unique set of integer values. 

required to support the condensed summer version of 
the course.  The database architect has decided to nor-
malize the descriptions out into a separate table.  

Original table: 

SQL> CREATE TABLE COURSE ( 
       CRS_NO           varchar2(5) not null, 
       DESC                varchar2(2000) not null, 
       CREDITS           number, 
       EQUIV_CRS_NO  varchar2(5)); 

Becomes: 

SQL> create table COURSE_REV2 ( 
       CRS_NO    varchar2(5) not null, 
       CREDITS   number, 
       EQUIV_CRS_NO  varchar2(5)); 

SQL> create table COURSE_DESCRIPTION 
         (crs_no         varchar2 (5)  not null, 
          semster_desc varchar2 (2000)  not null, 
          summer_desc varchar2 (2000)); 

This has the adverse effect of causing all of the existing 
code that accesses the course table to stop functioning.  
To get the legacy code to access the new database struc-
ture, we created a view that had the name of the original 
course table. To ensure backwards compatibility, the 
following was added: 

SQL> CREATE VIEW COURSE 
          (CRS_NO, DESC, CREDITS,    
            EQUIV_CRS_NO) as 
          select CB.CRS_NO,        
                    CD.SEMSTER_DESC,  
                    CREDITS, EQUIV_CRS_NO 
          from COURSE_REV2 CB,   
                  COURSE_DESC CD 
         where CB.CRS_NO = CD.CRS_NO;

With the view in place, all of the original queries should 
work as originally intended.  To complete the insulating 
layer (by handling DML statements), instead-of triggers 
or stored procedures are used to hide the fact that a view 
is actually being referenced, instead of an actual table.   

All new code would be written against the new database 
structure (either the views or actual tables) and any time-
critical portions of the legacy code may also need to be 
rewritten. 

4. Location Transparency 

In the modern world of Global corporations, acquisi-
tions and mergers, IT professionals often find them-
selves in a situation where they must produce an inte-
grated set of corporate databases.  Normally, this is a 
large undertaking that upper management is not con-
cerned about.  In order to satisfy the immediate need of 
producing what looks like an integrated set of corporate 
databases, while a thorough analysis of what an inte-
grated set of corporate databases looks like, database 
developers can again use database views to solve the 



immediate need.  Once again we use advanced features 
in our select statements, this time to provide location 
transparency – that is to provide a single unified set of 
tables that can be queried and accessed, even though the 
data is not co-located. 

There are several ways to achieve location transparency.  
Most RDBMSs allow access to a remote server’s data, 
by prefixing the traditional owner.tablename with a 
remote database name (of course, access protocols must 
be enforced by the appropriate database administrators 
(DBAs)).  Access mechanisms can vary depending on 
the vendor.  For instance, Oracle provides remote access 
through database links and synonyms.   

The following example is from a class project, which 
entailed the bringing together of 3 related, but different 
database schema for the purposes of providing the end 
user (the instructor) with a single report, regardless of 
the data source.  (This particular report was a log of all 
patient check-in / out activity at three different medical 
clinics.)  Read access was granted to each member of the 
team, by each member, therefore no additional mecha-
nisms were required. 

create or replace view PATIENT_IN_OUT_LOG as 

SELECT 'C' AS TYPE, TO_DATE(LOG_TIME, 'MM 
DD YYYY HH24:MI:SS') AS DATETIME, Pa-
tient_Name AS NAME, In_Or_Out AS IO 
FROM STUDENT1.PATIENT_LOG 

UNION 

SELECT 'E' AS TYPE, TO_DATE(LOG_TIME, 'DD 
MM YYYY HH24:MI:SS') AS DATETIME, 
PATIENT_NAME AS NAME, IN_OR_OUT AS IO 
FROM STUDENT2.PATIENT_LOG 

UNION 

SELECT 'F' AS TYPE, TO_DATE(PATIENT_IN, 
'Month DD, YYYY HH:MISS AM') AS DATETIME, 
PATIENT_ID AS NAME, 'I' AS IO 
FROM STUDENT3.PATIENT_LOG 
WHERE PATIENT_OUT IS NULL 

UNION 

SELECT 'F' AS TYPE, TO_DATE(PATIENT_OUT, 
'Month DD, YYYY HH:MISS AM') AS DATETIME, 
PATIENT_ID AS NAME, 'O' AS IO 
FROM STUDENT3.PATIENT_LOG 
WHERE PATIENT_IN IS NULL; 

 

In this example, a fairly involved select statement is 
used for the view.  The statement uses the SQL Union 
operator for combining the result sets from several indi-
vidual queries into a single result set.  In addition to 
combining the result sets, the individual SQL statements 
are executing some transformation logic in order to have 
a consistent set of output.  Some items of note:  to iden-

tify the data’s original source an appropriate string con-
stant ('C', 'E', 'F') was assigned to each data 
row, not only does this identify the data, but provides 
the end user a mechanism to group, order and sort the 
data when retrieved from the view.  The TO_DATE 
function, transforms a date time string into an Oracle 
date object.  In this particular group, one individual 
(STUDENT3) didn’t store the action (of checking in or 
out) explicitly, but used a separate date field to record 
each action’s occurrence.  This caused the group to have 
to create an additional select statement to map the data 
into the final form. The resulting dataset could then be 
manipulated into any of the required reports required by 
the project. 

If the database administrator (DBA) is providing access 
to remote data through the use of a database link, then 
this implementation detail can and should be hidden in a 
view.   

To create the database link, the DBA gives the link a 
unique name, can connect using a specific user or the 
connected user and determines the remote server’s con-
nect string. 

SQL> create database link remote_site 
          using ‘NYC’; 

SQL> create view NYC_EMP_DATA as 
          select * from NYC.EMP; 

The view provides the DBA with the flexibility of mov-
ing the remote data to another database server with 
minimum impact to the developed code.  Also security 
can be maintained at the view level, instead of having to 
manage access rights on the links. 

5. Reducing Query Complexity 

In addition to the real world applications, views can be 
used as a mechanism to teach incremental development 
of SQL solutions to business questions.  When students 
first learn SQL, they are typically taught the basics of 
the querying a RDBMS via the SQL select statement.  
They are then taught to add complexity to the select 
statement, to achieve more robust outputs.  With this 
learning cycle, students will often struggle to translate a 
business requirement into a single SQL Query, often 
resulting in (the vernacular) monster queries, which 
usually have terrible performance and are very difficult 
to maintain.  Just as modular programming led to better 
applications, so too can modular SQL.  Views can and 
should play an important role in teaching students how 
to break business problems down into step-wise solu-
tions that are simpler to develop, easier to maintain and 
often more efficient. 

6. Overcoming SQL limitations 

In data warehousing, especially when working large sets 
of sales data, limitations of SQL as a reporting tool start 
to appear.  For example, if you wish to discover daily 
averages, or averages of averages, most RDBMSs will 



not even try to parse the query.  A developer could re-
sort to coding the daily average logic in procedural ex-
tensions that DBMS vendors provide, or use a 3GL 
application, or they could stay with the SQL environ-
ment and create database views.  The ability to break the 
problem down into manageable pieces serves developers 
well in this situation. 

An example of the daily average problem can be found 
in Kimball’s Data Warehouse Toolkit  (1996) 

If a row in a query result is supposed to contain the 
combined inventory level for a cluster of 3 products, 4 
stores and 7 time periods (i.e. what is the average daily 
inventory of a brand in a geographic region during a 
given week), using the SQL AVG function would divide 
the summed inventory value by 3*4*7=84.  The correct 
answer is to divide the summed inventory by 7, which is 
the number of time periods. (p.50).   

To solve this problem we create a view that contains the 
average for a given week, grouped by brand and store.  

create or replace view national_bottle_avg_sales as 
select avg(dollar_sales) as   
             Average_Dollar_Sales,    
          brand, store_state, this_day 
from sales_fact, time, product, store 
where 
  sales_fact.product_key=product.product_key 
  and sales_fact.time_key=time.time_key 
  and sales_fact.store_key=store.store_key 
  and brand = 'National Bottle' 
  and store_state = 'TN' 
  and this_day between  
                     '1-Oct-94' and '7-Oct-94' 
group by brand, store_state, this_day; 

Now we are able to query the newly created view and 
average the weekly data.  This allows us to create some 
interesting analytical reports without having to resort to 
a third party tool. 

column brand format a20 
column sales_region format a20 
column this_day format a20 

select brand, store_state, this_day,   
          avg(Average_Dollar_Sales) as Sales 
from national_bottle_avg_sales 
group by brand, store_state, this_day; 

4.  Conclusion 

As we have seen, views are simple constructs that if 
used creatively can help solve some problems that face 
today’s database developers.  Views in their simplest 
form are stored queries.  They can provide a consistent 
access layer to data, thereby enforcing an organization’s 
data security requirements.  With some creative thinking 
views can lower the cost of system upgrades.  With the 
power of the select statement coupled with vendor-
supplied SQL functions, a view can be used to transform 

incompatible data sets into compatible data sets, thus 
accelerating and lowering the cost of integration efforts.  
Remote data can be integrated and viewed as a single 
data set though the use of remote access mechanisms.  
Finally, we have seen that certain limitations of the SQL 
language can be worked around using views.   

Anyone who has been exposed to SQL understands the 
basics of the select statement.  Views are merely an ex-
tension of this concept and provide an important mecha-
nism to allow individuals to modularize their SQL into 
simpler, more maintainable code, which results in a 
lower total cost of ownership for the system. 

7. References 

Celko, Joe, 1999, Joe Celko’s Data & Databases Con-
cepts in Practice. Morgan Kaufmann Publishers, San 
Francisco. 

Kimball, Ralph, 1996, The Data Warehouse Toolkit. 
John Wiley & Sons, Inc., New York.  

Loney, Kevin and George Koch, 2000, ORACEL8i The 
Complete Reference. Osborne/McGray-Hill, New York. 


	Erick D. Slazinski
	Department of Computer Technology, Purdue University
	West Lafayette, IN  47907-1421, USA
	Abstract
	I
	Introduction
	Traditional Uses of Views
	Views of Views
	DML and Views

	Solving Integration Issues or Providing Backwards Compatibility
	Location Transparency
	Reducing Query Complexity
	Overcoming SQL limitations
	4. 	Conclusion
	References

