

Client/Server Web Application Development

Mehdi Raoufi
Kimberly Spoa

Zachary Wiggins

Department of Information Systems and Computer Programming
Purdue University Calumet
Hammond, IN, 46323, USA

Abstract

Client Side Web Application Development refers to coding in HTML and/or scripting languages. When a user opens
a web page, which is stored in a server, the file is transferred from the server computer to the client computer and
viewed in the client computer. If it consists of scripts, execution of these programs is done in the client computer. In
Server Side Web Application Development, when a program stored in a server is accessed (usually written in some
scripting language and/or Java along with HTML code), the program is executed in the server computer; HTML code is
generated, which is then transferred to the client computer to be viewed. This tutorial starts with a review of HTML and
how scripting languages as JavaScript/ VBScript can be used together with HTML code to add interactivity to web
pages as Client Side Programming. Server Side Programming is then presented using Microsoft’s dynamic document
technology, ASP (Active Server Pages). The paper ends with an e-commerce application; Internet shopping center. The
objective of the paper is to present client/server web application development not any scripting language, the reader is
assumed to have some familiarity with HTML and a modern programming language.

Keywords: Dynamic document technology, active server pages (ASP), client side programming, server side program-
ming, JavaScript, VBScript, HTML

1. REVIEW OF HTML

1.1 What is HTML?
HTML (Hypertext Markup Language) is a language
used to layout documents. It is called a markup language
because it consists of special tags to mark up the begin-
ning and end of different parts of a document. The
browser does not display the tags; only content between
the tags is displayed according to the type of the tags.
The language also allows a document connect with other
documents through special hypertext links.
1.2 An HTML Document
To be consistent with most authors, we start our first
example in HTML with a document, which displays
“Hello World!”. Use your text editor to create a file
named helloworld with extension of .html or .htm and
save it in your local disk. We use notepad; if you are
using Microsoft Word make sure that save it in ASCII
format, Microsoft Word’s .doc files save hidden charac-
ters that may confuse the browser.

Example 1.2.1:

<!--This is a comment -->
<html><head><title>Hello World</title>

</head>
<body>
<h7>Hello World!</h7>

<h6>How Are You?</h6><p>
Click Here to See
My School’s Web Page</body>
</html>

Use your browser to view the file helloworld.html, the
browser displays:
Hello World!

How Are You?

Click Here to See My School's Web Page

Figure 1.2.1
As you notice, the browser does not display the “<” and
“>” symbols and everything between them.

1.3 Tags, the HTML Building Blocks
The symbols less-than “<” and greater-than “>”, and
everything between them is called a tag. The region
starts where the tag starts for example <html> and con-

tinues until the corresponding end tag is counter
</html>. Some tags do not require end tags like tags;

, which means break to the beginning of next line
or <p>, which means start a new paragraph. Every
HTML document begins and ends with <html> and
</html> tags. The entire document is contained between
these tags. Also every HTML document consists of two
parts: a head and a body each bounded by begin and end
tags. Information about the document goes to the head
and the content of document goes to the body. One im-
portant header tag is title. Select a meaningful title and
enclose it between the <title> and </title> tags as in our
Example 1.2.1.

1.4 Comments, URLs, Hyperlinks, Anchors, and

Images
Every string between <!-- and ending tag --> considered
as a comment. URL (Unified Resource Locator) is an
address or path for a file, web page, or even an email
address. An example of a web page URL is:
http://calumet.purdue.edu/public/index.html. The http://
(Hypertext Transfer Protocol) is the set of rules for
communication between client and server. The
www.calumet.purdue.edu is the domain name or loca-
tion of a particular server where a web page resides. The
/public/ is the directory name and index.html is a file
name. Hyperlinks are links or paths to other web pages.
A hyperlink is like a short cut, you click on it and you
are transferred to another web page. Anchors allow
hyperlinks possible; for example in example 1.2.1, the
tags <a>… are used to create a link to the Purdue
University Calumet campus as <a href =
“http://www.calumet.purdue.edu>Click Here to See My
School’s Web Page<a>. An image is an icon or a pic-
ture. It can also be used as a hyperlink to another web
page. For example in our example 1.2.1, we could re-
place the message “Click Here to See My School’s Web
Page” by an image as <a href =
“http://www.calumet.purdue.edu><img src = “pic-
ture1.gif”><a>.

1.5 Form
We encounter them frequently in our daily life. We have
to fill a form to open a new bank account, or apply for a
driver license, and we have to fill a form to purchase a
product through Internet. Creating a form, using HTML
is very simple. We explain it with a simple example.
Please type the following example using notepad or your
favorite editor.

Example 1.5.1 Edit the following program:

<!-- File name: example1_5_1.html -->
<html>
<head><title>A Simple Form Example</title></head>
<body>
<form method = post action =
"mailto:raoufi@calumet.purdue.edu"

enctype = "text/plain">
First Name:
<input type = text name = firstname size = 20
maxlength = 80><p>
Last Name:
<input type = text name = lastname size = 20
maxlength = 80><p>
Street Address:
<input type = text name = streetaddress size = 20
maxlength = 80><p>
State:
<input type = text name = state size = 2
maxlength = 2><p>
Zip Code:
<input type = text name = zipcode size = 5
maxlength = 5><p>
Telephone Number:
<input type = text name = tel size = 20
maxlength = 80><p>
Sex:
<input type = radio name = sex value = male checked>Male
<input type = radio name = sex value = female>Female
<p>Age:

<select name = age size = 2 >
<option>Under 18
<option>19 to 25
<option>26 to 35
<option>36 to 49
<option>50 or higher</select><p>
Select the degree(s) that you hold (check one or more)
<p>
<input type = checkbox name = highschool value = hs>High
School Diploma

<input type = checkbox name = as value = as>AS Degree

<input type = checkbox name = bs value = bs>BS Degree

<input type = checkbox name = ms value = ms>MS De-
gree

<input type = checkbox name = phd value = phd>Ph.D. De-
gree
<p>
<input type = submit value ="Submit Entries"><p>
<input type = reset value = "Clear Entries">
</form></body>
</html>

If you view this file using a browser, you will view the
following form. Fill up the form as instructed below; in
a moment we will examine each segment in detail:

First Name:
John

Last Name:
Doe

Street Address:
121 1st St

State:
IN

Zip Code:
23444

Telephone Number:

Sex: Male Female

Age:
Under 18
19 to 25

Select the degree(s) that you hold (check one or more)

High School Diploma

AS Degree

BS Degree

MS Degree

Ph.D. Degree

Submit Entries

Clear Entries

Figure 1.5.1

Let’s examine example 1.5.1:
Consider the code:
<form method = post action =
"mailto:raoufi@calumet.purdue.edu"
enctype = "text/plain">
If we are working with one of the sites with no access to
server, we may decide that we like to collect data
through our email address. The data gets emailed to the
email address provided through action attribute of form
tag. With the post method the form data transferred to
the server in separate transmission. The attribute value
of post for method may be replaced with get, which
causes the form to be transferred to the server, appended
to URL. The attribute enctype specifies that the form
data is being submitted unencrypted “text/plain”, which
is unsecured.
We use <input> tag to define any one of number of
common form controls.
The frequently used input control is text entry field. The
text entry field appears in the browser window as an
entry box in one single line. We can specify size of field
with size attribute, and size of maximum length of field
with maxlength attribute.

<input type = text name = firstname size = 20
maxlength = 80>
Next input type is radio button. Radio button gives the
user choice to select an item quickly. In radio button
user can select only one in the group. Using the checked
attribute, we may initially check one of the radio but-
tons. In our example the Male button is selected to have
value checked initially. Name and value attributes are
required for radio buttons. The content of the name at-
tributes of a group of radio buttons must be the same.
The code below will enable the user to select only one of
the items.
Sex:
<input type = radio name = sex value = male checked>Male
<input type = radio name = sex value = female>Female
In <select> tag, we place a list of <option> tags inside
the <select> tag of a form. This creates a pull-down
menu of choices. The name attribute is required for <se-
lect> tag. Unlike the radio button, one may select single
or multiple options. To have multiple option selection
enabled, we must specify the <select> tag with multiple
attribute “<select name = age multiple>”. To select mul-
tiple options, one must use control key and click on the
selected option simultaneously. The size attribute speci-
fies the number of options must be visible to the user at
one time. The following code has five options; only two
will be visible at a time.
Age:

<select name = age size = 2 >
<option>Under 18
<option>19 to 25
<option>26 to 35
<option>36 to 49
<option>50 or higher
</select>

The checkbox form gives user a way to select one or
more items from a group of items quickly and easily.
Name and value attributes are required for checkboxes.
The code below will enable the user to select one or
more of the options.

Select the degree(s) that you hold (check one or more)
<p>
<input type = checkbox name = highschool value = hs>High
School Diploma

<input type = checkbox name = as value = as>AS Degree

<input type = checkbox name = bs value = bs>BS Degree

<input type = checkbox name = ms value = ms>MS De-
gree

<input type = checkbox name = phd value = phd>Ph.D. De-
gree
The final two buttons are simple submit, and reset but-
ton. Submit button submits the entries and reset button
clears all of the entries.
The actual data received by submitting the above form
is:

firstname=John
lastname=Doe
streetaddress=121 1st St
state=IN
zipcode=23444
tel
sex=male
age=19 to 25
highschool=hs

2. CLIENT SIDE WEB APPLICATION DEVEL-

OPMENT USING JAVASCRIPT

2.1 What is Client Side Programming?
Client side programming refers to web pages that use
processor of client computer to execute the scripting
program. The client computer is a desktop or a laptop
computer that is used to view a web page. Using client
side programming to do some of the processing im-
proves efficiency, because it shifts some of the burden
away from server computer to client computer. If your
form requires calculations, or input validation you can
do them in JavaScript or VBScript on the user’s ma-
chine without a need to use processor time of your
server. In this chapter we also cover window and
document objects of the browser, which are used in
client side programming.

2.2 A simple client side program

Example 2.2.1: Write a client side program in
JavaScript, which simulates toss of a coin n times. Use
your editor to edit the following program. Save the pro-
gram in a file, name it example2_2_1.html.

<html>
<head><title>Toss a coin n times</title></head>
<body><center>
<h1>This is my First Client Side Program</h1>
</center>
<script language = "JavaScript" >
// the function coin() generate a random integer 0 or 1
// note that javascript does not require return type
// specified in function definition
function coin()
{
 if(Math.random() < .5)
 return 1;
 else
 return 0;
}
tails = 0;
heads = 0;

number = parseInt(window.prompt("Enter an integer number:
",""));
for (i = 1; i <= number; i++)
{
 if(coin() == 0)
 heads = heads + 1;
 else

 tails = tails +1;

}
document.writeln("<p><p>");
document.writeln("The coin is tossed: " + number + " times " +
"<p>");
document.writeln("The number of tails is: " + tails + " <p>");
document.writeln("The number of heads is: " + heads + "
<p>");
</script></body></html>

The scripting portion of the program must start with the
tag <script> and terminate with the tag</script>. You
can inset JavaScript code in different locations of a
document as far as the script tags are used to specify
beginning and end of the code. The attribute, language
is optional in new versions of explorer. Unlike Java and
C++, JavaScript does not require that a variable be de-
clared prior its usage. The user has option to declare the
variable if he desires so. The syntax to declare a variable
in JavaScript is:
var tails; // declares a variable in JavaScript
The function prompt() of the window object is used in
following statement to prompt the user to enter a value
number = parseInt(window.prompt("Enter an integer number:
",""));
The function writeln() of the document object is used to
writes the content of the string parameter on the HTML
document using document object. docu-
ment.writeln("The coin is tossed: " + number + " times "
+ "<p>");
Both window and document are objects of BOM
(Browser Object Model).
Use your browser to view the file example2_2_1.html,
the output, for the input value of 111 is:

This is my First Client Side Program
The coin is tossed: 1111 times
The number of tails is: 545
The number of heads is: 566

2.3 Using client computer to validate input before a

form is submitted:
In this section, we create a form where a user enters his
first name, last name, zip code, and we write a
JavaScript program to do some basic validation of the
form client side, and only post the form if it’s actually
filled in, and zip code field consists of exactly five dig-
its. To validate the zip code field we use a JavaScript
object called RegExp. The statement: var myRegExp =
/\d\d\d\d\d/; creates an object of RegExp object that can
test if an string has exactly five digits using the member
method test(). The statement myRegExp.test(str)); re-
turns true if string str has exactly five digits and false
otherwise. The function alert() of the object window
alerts the user to re-enter an incorrect input.

Example 2.3.1: Edit the following program and
view it using your browser. Test the program with inva-
lid entries.

<html>

<head><title>Validate Input</title>
</head><body>
<script>
// The function isValidZipcode() uses Regular //Expression
object to test
// if str is a valid zip code; if str is a valid zip code, it //returns
true otherwise false.
function isValidZipcode(str)
{
 var myRegExp = /\d\d\d\d\d/; // exactly 5 digits
// You can also replace the above statement with var myRe-
gExp = /\d{5}/;
 return (myRegExp.test(str));
}
</script>
<script>
// The function validInput() returns true if first name and //last
name fields
// are not null and zip code is valid, otherwise prompts //the
user to reenter.
function validInput()
{
 // if input text is null string
 if (document.regform.firstname.value == "")
 {
// the method alert() is a member method of object //window
// the default object is window, can also be written as
//window.alert()
 alert("Please enter your first name: ");
 document.regform.firstname.focus();
 return false;
 }

 if (document.regform.lastname.value == "")
 {
 alert("Please enter your last name: ");
 document.regform.lastname.focus();
 return false;
 }

 if (!isValidZipcode(document.regform.zipcode.value))
 {
 alert("Please enter your zip code: ");
 document.regform.zipcode.focus();
 return false;
 }
 return true;
}
</script>
<form method = post name = regform
// The form is submitted only if function validInput() //returns
true
onSubmit = "return validInput()"
action = "mailto:raoufi@calumet.purdue.edu"
enctype = "text/plain">
First Name:
<input type = text name = firstname size = 20
maxlength = 80><p>
Last Name:
<input type = text name = lastname size = 20
maxlength = 80><p>

Zip Code:
<input type = text name = zipcode size = 5
maxlength = 5><p>
<input type = submit value ="Submit Entries">
<p>
<input type = reset value = "Clear Entries">
</form></body>
</html>

The program will not submit the entries as long as the
validating functions validInput() return false. The func-
tion validInput() should be embedded in the tag form as:
<form method = post name = regform
// The form is submitted only if function validInput() //returns
true
onSubmit = "return validInput()"
action = "mailto:raoufi@calumet.purdue.edu"
enctype = "text/plain">
The definition of function validInput() is explained in
the body of the program:

3. SERVER SIDE WEB APPLICATION

DEVELOPMENT USING ASP/VBSCRIPT

3.1 What is Server Side Web Application Develop-
ment?
As we mentioned earlier, the client side program must
be downloaded to the client, to be executed by the client
computer. Server side programs run directly on the
server and generate HTML code to be viewed by the
browser on client computer. The common places to en-
counter these programs are search engines, up-to-date
stock reports and shopping through Internet. There are
different technologies for server side Web Application
Development; these technologies are called DDTs (dy-
namic document technologies). Other dynamic docu-
ment technologies beside ASP are CGI (Common
Gateway Interface), JSP (Java Server Pages), and PHP
(Personal Home Pages). ASP is a Microsoft’s technol-
ogy and is used in this paper.

3.2 Request and Response objects: A web page (.html
or .asp extension), which asks a user to enter infor-
mation and returns the user’s response to another
ASP page to display on a document
Before we start our first example in server side pro-
gramming, we need to learn a little about ASP files and
their contents. Every ASP file has extensions .asp. A file
in ASP may consist of scripts written in VBScript,
JavaScript and/or HTML. When browser requests a file
with extension .asp, if the file contains any scripts, it is
executed on the server, HTML code is generated, and
then browser is used to view the generated HTML code.
An ASP program can contain one or more of the follow-
ing codes; client side script, server side scripts, and
HTML. For the server to distinguish the client side
scripts from server side scripts, some rules must be fol-
lowed.
The client side scripts must begin with the tags <script>
and end with the tag </script>:

<script language = “VBScript”> client side script here </script>
or
<script language = “JavaScript”> client side script here
</script>.
The attribute, language is optional in later versions of
the explorer browser. The server side scripts also use
tags <script> and </script>, but attribute runat =
“server” must be included with the script tag as
<script runat = “server”> server side script </script>
Also, the tags <% and %> can be used to mark the be-
ginning and end of a server side script as
<% server side script here %>
We prefer the tags <% and %> for server side scripts
and will use them in our examples.

Example 3.2.1: Let’s modify example 1.5.1 to
send the form to an ASP program instead of an email
address. The form sent to ASP program may be a regis-
tration form, an airline reservation form, an order form
to purchase a product through Internet, etc.
In this example we replace the email address attribute of
the form with the address of the ASP program that must
receive and process the information in the form. In this
example, we name the ASP file processreg.asp. Please
note that for simplicity, we have only retained the fol-
lowing fields from example 1.5.1: first name, last name,
street address, state, and zip code. Edit the following
program and save it under example3_2_1.asp.
<html>
<head>
 <title>Registration Form</title></head>
<body>
<form name = registrationform method = post action = "proc-
essreg.asp">
First Name:
<input type = text name = firstname size = 20
maxlength = 80><p>
Last Name:
<input type = text name = lastname size = 20
maxlength = 80><p>
Street Address:
<input type = text name = streetaddress size = 20
maxlength = 80><p>
State:
<input type = text name = state size = 2
maxlength = 2><p>
Zip Code:
<input type = text name = zipcode size = 5
maxlength = 5><p>
<input type = submit value ="Submit Entries">
<p>
<input type = reset value = "Clear Entries">
</form></body>
</html>

Upon submission of this form the content of the form
will be transferred to the server, and can be returned
using Request object of ASP. In our example the con-
tent of the form sent by the user is available to the file
processreg.asp using Request object. The content of

each field of the form can be returned by the function
Form() of the object Request, for example the value of
the field firstname can be returned using:
Request.Form(“firstname”);
The function Write() of the object Response of ASP can
be used to display the content of the field:
Response.Write ”Request.Form(“firstname”)”
In general the program processorreg.asp can process the
information in the form as instructed by the program-
mer. Another application may be to modify content ofa
Database based on user’s input.
Please also note that the symbol “=” can be used to dis-
play field firstname instead of Response.Write:
= ”Request.Form(“firstname”)”
Use your editor to create the following file and save it
under the name processreg.asp in the same directory as
example3_2_1.asp:
<!--file name processreg.asp -->
<html><head>
<title>Registration Response</title>
</head><body>
<center><h1>Registration Response</center>
<p>
The information that you entered:</h1><p>
First Name: <%Response.Write ”Request.Form(“firstname”)”
%><p>
Last Name: <%Response.Write ”Request.Form(“lastname”)”
%><p>
Street Address: Last Name: <%Response.Write ”Re-
quest.Form(“streetaddress”)” %><p>
State: <%Response.Write ”Request.Form(“state”)” %><p>
Zip Code: <%Response.Write ”Request.Form(“zipcode”)”
%><p>
</body>
<html>

Please note that the code

<%Response.Write ”Request.Form(“firstname”)” %>

will be executed by the server. The statement Re-
quest.Form(“firstname”) returns the content of the field
firstnsme and statement Response.Write displays the
returned value on HTML document.

The output viewed by the user after the file exam-
ple3_2_1.asp is submitted is:

First Name:
Last Name:
Street Address:
State:
Zip Code:

3.3 An e-commerce application for an Internet shop-
ping center.
In this section we implement an e-commerce store at
which a user can shop for items, put them into a cart,
and check them out. Since we need an inventory of some
kind we have prepared a file “shopdata.txt”. The items

in the file are tab separated and have the following form:
product id, product name, supplier name, category,
quantity, price and description.

Example 3.3.1: The Shop Till Drop Internet store
has following main areas:

1. The shopping center (shop.asp): this is where
the inventory is displayed dynamically from
text file. The user is allowed to select the cate-
gories using checkboxes and submission but-
ton that loads a page with only items in the
checked categories. Next to each item is a
checkbox that allows the buyer to place an
item into the cart. In submission your choice
of items are added to the shopping cart and a
link on web page takes you to the shopping
cart (cart.asp) web page that displays the con-
firmation of the buyer’s choices.

2. The shopping cart (cart.asp): The shopping
cart web page displays the current content of
the cart and total cost. There are also an input
item next to each item where buyer can enter
the quantity desired and a recalculate button to
recalculate the total cost.

3. The item page (item.asp): This will dynami-
cally display all of the available items at the
store.

4. The checkout page (checkout.asp): There is a
login for this page that asks information
(name, credit card number, address, etc.). Af-
ter logging in, the buyer will be taken to a
page bringing up the order from the cart, and a
submit button will submit the order.

All of the files of examples3.3.1: shop.asp, cart.asp,
itempage.asp, checkout.asp, shopdata.txt, and all exam-
ples of this tutorial are available at:

http://www.cis.calumet.purdue.edu/raoufi/isecon01

First we go over the procedure that is needed to make
the content of the file shopdada.txt available for reading:

<% CONST ForReading = 1, ForWriting = 2, ForAppending =
8
 CONST TristateUseDefault = -2, TristateTrue = -1, Tristate-
False = 0
' Procedures openFile()
sub openFile(objFileTextStream, strVirtualPath)
DIM strPhysicalPath
strPhysicalPath = Server.MapPath(strVirtualPath)
DIM objFSO, objFile
Set objFSO = CreateObject("Scripting.FileSystemObject")
Set objFile = objFSO.GetFile(strPhysicalPath)
Set objFileTextStream = ob-
jFile.OpenAsTextStream(ForReading, TristateUseDefault)
end sub

The procedure openFile() used in this example to read
input file. Please note that in this procedure we have
used the FileSystemObject object of ASP. This object
provides functionality to manipulate the files; it is at the
top of the hierarchy and has several child objects: Drive
object, Folder object, and File object, for more discus-
sion of these objects please refer to (Morneau 2001)

We can use the CreateObject function of Server object
of ASP to create an instance of the FileSystemObject
object. Once a FileSystemObject object is created, it can
be incorporated into VBScript as:

DIM objFSO
Set objFSO = CreateObject("Scripting.FileSystemObject")

We use the method GetFile() of FileSystemObject object
to get a file object, where physical path of the file is
provided as parameter:

 Set objFile = objFSO.GetFile(strPhysicalPath)

Please note that physical path; physical location of a file
can be obtained using the logical (virtual) path of the
file. In our example the file name shopdata.txt is logical
path and we can use the method Mappath of Server
object to obtain the physical path of the file shopmap.txt
as:

strPhysicalPath = Server.MapPath(strVirtualPath)

And finally the procedure needs to open the file as a text
stream:

Set objFileTextStream = ob-
jFile.OpenAsTextStream(ForReading, TristateUseDefault)

Where first parameter equal to 1 is for reading and sec-
ond parameter –2 is the default character format.

The TextStream object can be used to manipulate the
information contained in the file.

After the content of the file is available for reading, the
following program segment reads and displays the
buyer’s choices:

<form action="cart.asp" method="post" >
<% DIM strPathInfo
 strPathInfo = "shopdata.txt"
 DIM objFTS
 call openFile(objFTS, strPathInfo)
 Response.Write "<TABLE "
strLine = objFTS.Readline
WHILE objFTS.AtEndOfStream <> TRUE
 strResults = split(strLine, vbTab)
 strID = strResults(0)
 strName = strResults(1)
 strSupplierName = strResults(2)
 strCategory = strResults(3)

 strSizeQ = strResults(4)
 strPrice = strResults(5)
 strDescription = strResults(6)
 if Request.Form("catBeverages") = "on" and strCategory
= "Beverages" then
 call writeLine()
 end if
 if Request.Form("catCondiments") = "on" and strCategory
= "Condiments" then
 call writeLine()
 end if
 if Request.Form("catProduce") = "on" and strCategory =
"Produce" then
 call writeLine()
 end if
 if Request.Form("catConfections") = "on" and strCategory
= "Confections" then
 call writeLine()
 end if
 if Request.Form("catMeat/Poultry") = "on" and strCategory
= "Meat/Poultry" then
 call writeLine()
 end if
 if Request.Form("catDairyProducts") = "on" and strCate-
gory = "Dairy Products" then
 call writeLine()
 end if
 if Request.Form("catSeafood") = "on" and strCategory =
"Seafood" then
 call writeLine()
 end if
 if Request.Form("catGrains/Cereals") = "on" and strCate-
gory = "Grains/Cereals" then

 call writeLine()
 end if
 strLine = objFTS.Readline
 WEND

1. CONCLUSION

This paper has exemplified client/server application web
development for e-commerce application. We recom-
mend the material in this tutorial for every student in the
field of Information Systems.

5. REFERENCES

Castro, E., 2000, HTML for the World Wide Web,

Peachpit Press

Kauffman, J., Llibre, J., Sussman, S., 1999, Beginning

Active Server Pages 3.0, Wrox Press Ltd.

Mornear, H., Batistick, J., 2001, Active Server Pages,

Course Technology

Musciano, C., Kennedy, B., 2000, HTML & XHTML:

The Definitive Guide, O’Reilly

Negrino, T., Smith, D., 1999, JavaScript for the World

Wide Web, Peachpit Press

Ullman, C. Buser, D., Duckett, J., Francis, B., Wilton,

P., 2000, Beginning JavaScript, Wrox Press Ltd.

	REVIEW OF HTML
	
	
	
	
	How Are You?

	Figure 1.2.1

	Example 1.5.1 Edit the following program:
	Example 2.2.1: Write a client side program in JavaScript, which simulates toss of a coin n times. Use your editor to edit the following program. Save the program in a file, name it example2_2_1.html.

	This is my First Client Side Program

