
Growing Testers: Incorporating Testing Concepts
Throughout the CS Curriculum

Ronald Finkbine1

Department of Computer Science, Indiana University Southeast
New Albany, IN, 47250, USA

Peter Macpherson2

Department of Applied Technology, Rogers State University
Claremore, OK, 74017, USA

Abstract

Traditionally, software testing is introduced to students in Introduction to Programming, and then not treated in depth
until an upper level course in Software Engineering. Software testing is often taught as a standalone subject instead of
intertwined with all areas of software development. This treatment indicates to students that testing occupies a minor
role in the field. This paper proposes an alternative approach of integrating testing methods progressively through the
CS curriculum. As students master new CS materials, they will be exposed to the appropriate methods for testing their
programs. In addition, this paper makes the claim that appropriate testing should be a distinct component in the grading
of assignments.

1 rfinkbin@ius.edu
2 macphersonp@acm.org

1. SHOULD TESTING BE TAUGHT
DISTINCTLY?

In the Denning Report (Denning 1983), the design of
algorithms emphasizes the testing, as well as the
implementation of algorithms. In the most recent
ACM/IEEE Computing Curricula (Tucker 1991), testing
is treated within knowledge units SE3 "Software
Requirements and Specifications" and SE5 "Verification
and Validation". Both of these topics are introduced
earlier in the suggested CS1/CS2 courses as well as a
specific Software Engineering course. "Validation" tests
if the system performed according to the specification
while "Verification" tests if the system performs
according to the design. Clearly a consensus has formed
on the importance of software testing as a subject of
interest for academia and industry. Partnership between
academia and universities have been established to
encourage training in software engineering and testing
as have been documented at the Software Engineering
Institute (http). While academia needs to improve the
teaching of software testing for industrial needs (Bach
1997), concentration on developing these skills in
students improves the quality of instruction overall.

Too often, students immediately start coding once a
problem given without fully understanding the problem.
This behavior is sometimes inadvertently reinforced by
the open-lab training methods expressed by many in the
CS field. In such cases the requirements phase
consisting of the written problem description, typically

with sample input/output is given directly to the student.
The design phase is rushed through as the student begins
the implementation. If the final program executes
correctly using the given sample input, the student
considers the project a success. We believe the creation
of the tests should be a distinct portion of the program
grade to force the student to more fully examine the
problem. Typically, the student must develop and
submit their function tests prior to beginning to actual
code the program. Once the program is completed, the
student must show the results of executing their tests.
This approach gives the student a more complete view
of the software cycle.

2. PROPOSED TESTING INTEGRATION

Formalism has been introduced to the field of testing
with the IEEE standard for unit testing (1008-1987) and
testing documentation (829-1983). The field has
matured to the point we can distinguish the types and
purposes of tests. Figure 1 lists the category of testing
and the appropriate class in which to integrate it within
the CS curriculum.

3. HOW TO EVALUATE THE TESTS

Whether the labs are open or closed in CS1, a level of
formalism should be introduced towards testing. While
others have implemented degrees of formalism in CS1
courses (Levy), students have objected to the additional
burdens placed upon them (Hilburn 1997). We propose

a simple implementation: the students should be
required to submit their own test suites prior to coding
of the program. This introduces the students to the idea
of requirements as well as forcing a deeper
understanding of the algorithms in use prior to the
coding.

In order to coordinate test case summary and test case
proof sheets, each test case should be numbered.
Completed test cases require a proof sheet, which
includes a printout of the test case input file, a copy of
the output produced, and any hand-written explanations
by the programmer/tester. This method requires the
programmer to maintain, or save, multiple input files for
successive testing during the life of a program to ensure
consistency in the testing of multiple versions of the
program source code. These efforts increase the
likelihood of producing supportable software.

Performance of regression testing at the completion of
development insures that any modifications required to
pass later test cases did not introduce an error that
causes the failure of a previously passed test case. An
advanced test suite (or harness) would allow sequential
running of all test cases, complete with separate input
and output files for each test case. This test harness
(usually a script or batch file) would allow for complete
regression testing with only one input command from
the programmer/tester.

4. DETAILED EXAMPLE

As a sample project, a data structures course was tasked
to develop a bank queue simulation that will accept up
to N tellers and has a line inside the branch for up to M
customers. The customers arrive according to a Poisson
distribution each with a randomized transaction time.
The user provides the actual values of N and M. The
program should find statistics about the system upon
completion of the simulation, including teller idle time
(efficiency), the average customer wait time, the
minimum wait time, the maximum wait time, and the

overall system throughput. In
addition, the simulation should
allow for customer balking upon
entering the bank and also allow
a customer to balk once they are
in the wait queue.

First, the student should validate
the simulation control values.
Among the things to be checked
are such diverse elements as:
negative number of tellers,
negative maximum number of
customers, valid arrival rate for
customers, and valid service
times.

Next, the program should be
tested with the common cases

shown in Figure 2. Unlike the previous tests these are
valid but often-problematic cases with the exception of
case 22 which might be an error state. To test the rest of
the system the Poisson arrival function should be
circumvented to force the cases.

Most students would use ad hoc testing to validate their
programs. Of those who bothered to test in a systematic
manner, only a very small number would include all of
Figure 2 test cases in a test suite.

5. BENEFITS OF TESTING

As discussed above, the traditional lecture method
implies to the student that a successful programmer
continually would ask the sole question, “Does this
program calculate the answer I need?” The better
question that a well-qualified professional would ask
would be “Does this program calculate the answer I
need, while continuing to detect common errors from all
inputs? In addition, does it give full information to
users so as to limit the number of times any user will
call me, the programmer, late at night?” Programmers
generally view software testing as a hurdle to be avoided
instead of a path to better software.

Testing does not occur only on software. It can and
should be used on all system deliverables at the
conclusion of each stage of software development.
Testing the requirements document helps determine if
the student truly understands the problem. Testing at
this stage illustrates the ambiguity of human languages
in specifying a problem. Test definition at the design
stage will force the student to define success—what
exactly are the characteristics of successful software
development? Post-coding testing enforces coding
rigor; the student should have developed software that
will execute correctly under all test cases posed prior to
coding. In addition, it forces the student to constantly
question the correctness of his code, thus enforcing that
code is written with specific intent in mind, not

Test Category Class Introduced
System Treats the entire system as a

black box, not allowed to
investigate within system

CS 1

Module/Unit Performed on individual
modules in isolation

Data Structures/CS 2

Integration Checks the components work
together collectively

Data Structures/CS 2

Environment Test after porting to an
environment other than on
which the code was developed

Operating Systems

Glass Box Test within programs, checks
specific execution paths

Software Engineering

Acceptance Satisfies the tests of the end
user/customer

Senior Project

Figure 1. Testing Schedule

ran
pro

Sta
enc
tea
fac
cod
stu
imm
mo
intr
pro
com
des

Dr.
Sci
in
Mi

of Computer Science at Rogers
State University and has a Ph.D.
in Computer Science from
Lehigh University.

8. REFERENCES

Denning, P. J., ed., 1983,
"Computing as a Discipline",
Communications of the ACM,
29, 3 (March 1983), pp. 9-23.

Tucker, A. B., 1991, "Computing
Curricula 1991",
Communications of the ACM,
34, 6 (Jun. 1991), pp 68 – 84.

http://www.sei.cmu.edu/collabor

ating/ed/ed.html

Bach, J., 1997, "SE Education:
We are on our own", IEEE
Software (Nov. 1997)pp. 26-28 .

Levy Kortright, L. M., "From
Specific Problem Instances to
Algorithms in the Introductory
Course", SIGCSE pp.71-75.

Hilburn, T. M. and Towhidnejad,
M., 1997, "Doing Quality Work:
The Role of Software Process
Definition in the Computer
Science Curriculum", SIGCSE
Bulletin, 29, 1 (March 1997), pp
277-281.
Number Test Condition
Invalid 1 <1 teller
Invalid 2 Arrival rate <0
Invalid 3 Service time <0

1 1 teller, 0 customer (divide by 0)
2 1 teller, 1 customer
3 1 teller, 2 customers in sequence (serial) with lag between
4 1 teller, 2 customers serial with no lag
5 1 teller, 2 customers one exits exactly as one enters
6 1 teller, M customers mixed
6 2 tellers, 0 customer (divide by 0)
7 2 tellers, 1 customer
8 2 tellers, 2 customers serial with lag
9 2 tellers, 2 customers serial with no lag

10 2 tellers, 2 customers one exits exactly as one enters
11 2 teller, M customers mixed
12 N tellers, 0 customer (divide by 0)
13 N teller, 1 customer
14 N teller, 2 customer
15 N teller, N<M customer
16 N teller, N>M customers, no balking
17 N teller, N>M customers, balking at door
18 N teller, N>M customers, balking from within line
19 Shrink tellers by 1 (lunchtime)
20 Shrink tellers by 2 (lunchtime)
21 Shrink tellers by N-1 (lunchtime)
22 Shrink tellers by N (tellers on strike)
23 Grow tellers by 1 (after lunch)
24 Grow tellers by 2 (after lunch)
25 Grow tellers by N-1 (after lunch)
26 Grow tellers by N (after lunch)

Figure 2. Test Cases

domly as many programmers (both student and
fessional) seem to do.

6. CONCLUSION

ndard open labs having students code too quickly
ourages limited, short-term thinking. Tradition
ching methods for algorithm-familiarization, where a
ulty member describes a problem, proposes and then
es a solution all within 50 minutes, reinforces the

dent's natural inclination to begin coding
ediately. Many computer science curricula are

ving toward a problem-solving approach to the
oductory course. We recommend the first
gramming course, and the entire curriculum, be
plemented with increased concentration on test case

ign.

7. AUTHOR INFORMATION

 Finkbine is an Assistant Professor of Computer
ence at Indiana University Southeast and has a Ph.D.
Computer Science from the New Mexico Institute of
ning and Technology. Dr. Macpherson is a Professor

http://209.185.131.251/cgi-bin/linkrd?_lang=EN&lah=fdf34a40bf2d2579a43c767a0141e9f3&lat=968428121&hm___action=http%3a%2f%2fwww%2esei%2ecmu%2eedu%2fcollaborating%2fed%2fed%2ehtml
http://209.185.131.251/cgi-bin/linkrd?_lang=EN&lah=fdf34a40bf2d2579a43c767a0141e9f3&lat=968428121&hm___action=http%3a%2f%2fwww%2esei%2ecmu%2eedu%2fcollaborating%2fed%2fed%2ehtml

