
A Syllabus in Data Warehousing

Edward A. Boyno†
Montclair State University

Abstract

Many texts dealing with database management or data mining include one or two short chapters on data warehousing. I
believe that the subject is worthy of more thorough attention and have devised a syllabus for a course in data
warehousing intended for students who already have a basic knowledge of traditional database functionality. The
course includes a laboratory component that allows students to encounter first hand, and solve, some of the problems
associated with building and using the warehouse.

Keywords: Data warehousing, databases, data Mining, OLAP,

† boynoe@mail.montclair.edu

1. INTRODUCTION AND OUTLINE.

The goal of the course is to give students a basic
understanding of data warehouses. It is intended for
advanced undergraduate students, but could, I believe,
serve as the basis for a graduate course as well. In the
introduction, besides learning basic terminology,
students will learn the need for and uses of data
warehouses and how they differ from traditional
databases. Two sections follow in which the specialized
data model and tools used in data warehouses are
presented. Once students have acquired sufficient
knowledge of the nature of data warehouses, the course
presents an overview of the process by which data
warehouses are designed and populated. The course
concludes with a discussion of some existing
technologies, including SQL, and the degree to which
they address, or don’t address, the requirements of data
warehousing. Laboratory exercises are designed to
demonstrate the difficulties present in some parts the
warehousing process. Specifically addressed are the
problems associated with extraction, transformation and
loading data and the inadequacies of SQL for use in On-
Line Analytical Processing (OLAP).

At the conclusion of the course students should
have knowledge of the theoretical and practical
foundations of data warehousing. They should be able to
work with existing data warehouses and have a basic
knowledge of how they are designed. Finally, they
should be aware of the problems inherent in the data
warehousing process. The outline for the course:

I Introduction (6 hours)
II The Multi-dimensional Data Model (9 hours)
III Specialized Techniques(3 hours)
IV Building the Data Warehouse (12 hours)
V Populating the data warehouse (12 hours)
VI Existing technologies (3 hours)

Examinations (3 hours)

2. THE SYLLABUS

I. Introduction:

I.1 A data warehouse is a special purpose
database. Classic databases, so-called “Operational
Databases” (OD’s), are generally used to model some
enterprise. Most often they are used to support
transactions, a process that is referred to as On-Line
Transaction Processing (OLTP). They are application
oriented (tuned for efficient execution of the
applications); are isolated (not integrated with other
OD’s inside an organization); are continuously updated;
contain only current data values (don’t usually contain
historical data) and are rarely used for ad hoc queries
(transactions applied to the database are by and large
predictable). A data warehouse on the other hand is
designed to support decision-making or so-called On-
line Analytical Processing (OLAP). The general idea is
to prepare data so that useful information can be
abstracted from the data via statistical analysis, artificial
intelligence or other special purpose techniques. This
last process is called “Data Mining”. The purpose of a
data warehouse is to allow an analyst to view an entire
database as if it were one huge spreadsheet (Chaudhury
1998) .

Bill Inmon, (Inmon, 1996) defined a data
warehouse as a subject oriented, integrated, time-
varying, non-volatile (i.e., containing stabilized data
values) collection of data that is used primarily in
organizational decision-making. We can add one more
property to that list in Inmon’s definition: A data
warehouse is often subjected to ad hoc queries, which
are frequently very complex.

We recognize three distinct sub-types:
1.An Operational Data Store, which is a

replicated OLTP database that is used for summary
analysis.

2. A Data Mart, which is a functionally
specialized data warehouse, usually containing a
narrower scope of data, perhaps a single subject or
business process (Sales or Purchasing, etc.). They
usually contain only summary data although they may
be linked to an OLTP DBMS.

3. An Enterprise Data Store (EDS), which
contains information taken from throughout an
organization. It is used for cross-departmental or cross-
functional analysis, executive information systems and
data mining applications.

Given these sub-types, there are four
recognized topologies (Gardner, 1998):

1. A centralized data warehouse. This contains
“properly conditioned” data that is relevant to all the
business units within an enterprise in one location. It
would be the topology of choice for an EDS. It allows
centralized system management.

2. A combination of data marts and data
warehouses. This organization contains three levels.
Clients connect to specific data marts, which obtain
their data from a centralized warehouse. This
configuration provides optimal results for the individual
data mart clients while still allowing cross-functional
analysis via the background warehouse. Data mart
servers are managed individually.

3. A distributed data warehouse. Individual
data warehouses which are connected via a network.
This approach has all the benefits and problems of a
distributed OD: higher availability and local control of
data vs. the expense and difficulty of distributed
processing.

4. A hybrid topology. A combination of
bottom-up development of data marts together with a
top-down, high-level data model. This technique may
actually inhibit cross-functional analysis since the
individual data marts may be developed with no regard
to each other. However, it is also much quicker and
cheaper to develop and can serve as an easy way for
organizations to begin development. Finally, legacy
systems are relatively easy to embed in such a topology.

I.2 The three-tiered architecture. Data
warehouses normally implement what is called the
three-tiered architecture (Chaudhury, 1998):

The bottom tier is usually a relational database
server, or perhaps flat files.

The middle tier is comprised of the OLAP
server, either ROLAP or MOLAP (below).

The top tier consists of clients, query and
reporting tools, analysis tools and data mining tools.

I.3 Separation of the warehouse and the
ODS. A data warehouse should be kept separately from
the operational database for both performance and
functional reasons.

Performance:
1.The ODS is tuned for transaction

processing. Tables are highly normalized, indices and

physical considerations like buffering schemes are all
designed for transaction processing. Queries generated
in an OLAP environment are often very complex,
involving large multitable joins for which the set up of
the ODS is not suitable. Attempting to do OLAP on the
ODS would be inefficient and would probably degrade
the OLTP performance as well.

2. Special data organization, access and
methods are needed for OLAP. Data is often de-
normalized and/or replicated and specialized schemata
and indexes are used to make processing more efficient.

3. Concurrency control (lock contention) in a
mixed OLTP, OLAP environment can seriously degrade
performance.

Functional:
1. Decision support typically requires

historical data which is not usually kept in an ODS.
2. Decision support requires aggregation from

multiple heterogeneous sources: the operational
database, external sources, the web, etc.

3. Different data sources typically use
different data representations, which must be reconciled
before OLAP processing.

II The Multi-dimensional Data Model:
In the multi-dimensional data model we

visualize a record as if it were a point in some multi-
dimensional space

Fig. 1. (Chaudhuri 1998)

Each axis represents a different “dimension” and it is
easy to imagine many more dimensions than three. One
can always represent a multi-dimensional data set as a
relation.

Each point in a multi-dimensional data model
representation is called a “fact” and the table itself a fact
table. We sometimes call the multi-dimensional data
structure a “cube”. It is usually appropriate to maintain
more detailed information on one or more of the
dimensions in a multi-dimensional database. In the
above example we might certainly want to know more
about the items, the location and the customers and
would naturally construct tables to do so. All of these
so-called “dimensional” tables would be related to the
fact table by the presence in the fact table of the key
attribute of the dimensional table as a foreign key. The
appearance of the schema, with the fact table at the
center and the dimensional tables surrounding it, has
caused people to call this a “star” schema. If the “rays”
of the “star” themselves have subordinate tables, the
schema is rather poetically named a “snowflake”. In

large warehouses, fact tables may be shared by multiple
dimension tables. These schemata are often called
“constellations”.

The basic Multi-dimensional operations are:

 Aggregation of detailed data to create
summary data, sometimes called dimension reduction.

a. Simple aggregation: Find total
items sold by location.

b. Multiple aggregations as the name
implies, aggregate data along multiple
dimensions. There are two recognized sub-
types:
“Rollup” is a multiple aggregation operation

in which the order of the dimensions makes a difference
in the way the aggregate is performed;

rollup total items sold by item, location and
color produces the following aggregations:

total items grouped by item, location, color
total items grouped by item, location
total items grouped by item
while
rollup total items sold by location, color and

item produces
total items grouped by location, color, item
total items grouped by location, color
total items grouped by location
“Cube” treats all dimensions the same and

produces all possible aggregations;
cube total items by item, location and color

produces the following aggregations:
total items grouped by item, location, color
total items grouped by item, location
total items grouped by location, color
total items grouped by item, color
total items grouped by item
total items grouped by location
total items grouped by color

(The term rollup is sometimes used to describe any
aggregation operation)

Navigation (often called “drill down”) moves
from an aggregate to detailed data, i.e. , to navigate is to
“explode” aggregated data by unaggregating it. For
example, given the aggregate sales for a store, display
the monthly sales figures.

Selection (often called “slicing”) defines a
sub-cube. It the equivalent of the geometric projection

operation and is accomplished by fixing one or more
dimensions as in “ Find all sales where city = ‘Reno’ ”.
A variant of selection, which involves a range query, is
sometimes called “Dicing”. An example of dicing might
be “Find the sales for products whose advertising budget
is greater than $100”.

Calculation also has two variations:
a. within a dimension...e.g., calculate (sales -

expenses) by office, i.e., within the office dimension
b. across dimensions…e.g., divide the cost of

advertising for a family of products by market share of
the individual products...note that these numbers
probably exist at different levels of the cube.

Ranking or the presentation of ordinal data.
For example find the top 3% of offices by average
income.

Visualization is the ability to modify the view
of the data.

a.Nesting, which is the act of viewing multi-
dimensional data in two dimensions. Fig. 1

can be represented in two dimensions as a tree:

 1 2 3
 / | \ / | \ / | \
 LA SF NY LA SF NY LA SF NY
 /
J C M Cr T S
Etc.
 b. pivoting or rotating the cube which is the
act of presenting a different “face” of the cube.

II.2 Multi-dimensional data models come in
two basic flavors:

ROLAP: Extended relational DBMS’ that
map multi-dimensional operations to standard relational
ones, and

MOLAP: Array based storage structures that
directly implement multi-dimensional operations.

III. Specialized OLAP tools and Data Manipulation:

III.1 Bit mapped indices. Given an attribute
that can assume only a small number of values, a bit-
mapped index is a collection of vectors, one for each
possible value of the attribute. For every row, the
corresponding position in the bit vectors will be 1 in the
vector whose value occurs in that row and 0 in the
others.
 Bit-mapped indices are extremely useful in
answering two common kinds of queries: Disjunctive
queries such as “Find all female employees in the NY
office” and certain aggregate queries such as “How
many employees are there in NY?” In the first case, the
query processor can perform a bit-wise AND with the F
vector and the NY vector to isolate those rows. The
second, of course, is merely the number of 1's in the NY
vector.

III.2 Join Indexes. Efficient joins are
desirable in any database. One technique that can be
used to this end is the construction of indices especially
for this purpose. The idea is simple; for every pair of

joinable rows we place a pair consisting of their
respective row identifiers (rids) into the index. If , for
example, we knew that we would frequently be joining
the Products table with the Customers table, we might
construct an index whose entries have the form (p, c)
where p is the rid of a row in Products and c is a
customer rid and the corresponding rows participate in
the join. The net effect of a join index is to consciously
“pre-join” the tables. If a selection condition exists on
one or both of the tables involved in the join, we can
incorporate it in the choice of rids, excluding those rows
which do not meet the condition.

The idea is easy to extend to more than two
tables and may be particularly useful in the case of star
schemata.

Unfortunately, the number of join indices can
get quite large as one is required for every possible
combination of joined tables and selection conditions. A
solution to this problem is to form a join index for every
attribute of every dimension table, which occurs in a
selection condition in the following way:

Suppose that dimension table, D, joins with
the fact table, F, subject to some selection condition
involving attribute A of D. Let v be a value of A
occurring in a row of D that joins to a row in F and let r
be the rid of that row in F. We place the pair (v, r) in
the join index. Given a join that involves multiple tables
and multiple selections on multiple rows, we can take
the intersection of the rid sets produced by the indices to
discover the required rows of F. If it happens that the
attributes described above have only a few values, this
index can be bit-mapped and the resulting intersection
of rid sets would be very efficient to calculate.

III.3 Materialized views. Creation and
maintenance of materialized views can be a significant
benefit to performance. Materialization of all possible
views would be enormously expensive in terms of space,
so one must carefully choose which views to
materialize. When designing such a scheme one must
keep in mind the type, frequency and cost of the queries
to be run. The scheme must also take into account the
broader context of physical design such as the existence
of indices.
 III.4 Star query optimizing. Queries on a
star schema usually involve joins in which the fact table
is joined with multiple dimension tables. Since the fact
table is often very much larger than the dimension
tables, traditional join techniques may not yield the best
result. Special join techniques and optimization are
necessary.
 III.5 Partitioning. It is often advisable to
divide the warehouse into smaller more manageable
pieces. These partitions are created in essence by
applying “select-from-where” clauses to a warehouse
object. The partitions themselves can be sized so as to
minimize direct I/O. Transactions applied to the pieces
individually may result in substantial performance gains.

IV Building the Data Warehouse:
 There are as many techniques for designing a
data warehouse as there are authors on the subject. (
Bieber 1999; Chaudhury 1997 ; Debevoise 1999 and
Gardner 1998). The outline presented here is a
synthesis of these.
 IV.1 The process.
A. Plan the warehouse

1. Identify Users.
2. Perform a requirements analysis, that is

uncover business rules and data requirements
3. Establish the warehouse architecture

 4. Model the data:
 a. Produce a high level model using
a structured tool such as ERD’s or UML

 b. Identify attributes
 c. Identify transactions

B. Design and implement the warehouse
1. Identify the location of the data, design and

implement scripts for data extraction, loading and
refreshing.

2. Connect sources: gateways, ODBC drivers,
and wrappers

3. Design the physical warehouse including
placement of data, partitions and access methods.

4. Design and implement applications
including data mining application.

5. Integrate database and OLAP servers,
storage and client tools.

6. Design and implement the warehouse
support and management tools.

7. Roll out the warehouse and the applications
C. Use, Support and allow the warehouse to evolve.

1. Provide hardware and software support.
2. Optimize Performance.
3. Expand the system by including new

applications, users or by increasing the use of current
applications.

4. Update the system and provide for system
growth.

IV.2 Metadata Through all phases of the
data warehouse design process, the maintenance of
metadata, data about the data, is essential. It is usually
maintained and managed in a separate “repository.” The
repository should provide searchable, understandable
access to the metadata. Several kinds of metadata should
be maintained (Chaudhury 1998):
 1. Administrative information including ODS
schemata; gateway descriptions; the warehouse
schema, including view definitions; the partition
scheme; logical and physical data mapping;
transformation rules and defaults; data refreshing and
purging rules; a dictionary of applications; security and
any other data necessary for using the warehouse. The
repository may also contain data relating to system
performance.
 2. Business information including business
terms and definitions; data ownership information and
charging policies.

 3. Operational information that is, information
collected during the operation of the warehouse,
including data lineage, currency of data and monitoring
information.

V Populating the data warehouse:
 There are significant challenges to be
overcome when data is drawn from multiple
heterogeneous sources into a central repository (Bieber
1999 ; Chaudhury 1998 and 1999 ; Han 2001; Kimball
1997; Moss 1998 and Pyle 1999).
 V. 1. The challenges include:
1. Differences in data type. This can occur across
products or even within various releases of a single
product. The string “ISECON” stored in v6 of Oracle
with a data type char(20) will not match the exact same
string in v7 of Oracle because the latter’s char(20) data
type right pads the string with blanks (Corey 1998)
2. Data may be encoded differently in different ODS or
in different parts of the same organization. The sex field
in an employee record may have domain {‘M’,’F’} in
one file and {‘Male’, Female’} or even { 0,1 } in
another.
3. Records may have the same primary key but might
have different data. This can occur if primary keys are
reused or when one entity acquires another. It can also
happen if the same primary key used by different parts
of an organization for different purposes.
4. There are often multiple ways to denote a name.
“UVA”, “Virginia, Univ. of “ and “University of
Virginia” are all the same. Similarly, some legacy
applications may use “Calif” in addresses rather than
“CA”.
5. Multiple primary keys for the same entity. This can
arise when different segments of an entity design
databases independently of one another.
6. Invalid Data. A POS terminal may require a
customer’s phone number, and, if the customer refuses
to give it, a clerk may enter 999-999-9999.
7. Same name for a field but different meaning of the
data. “Yearly Sales” may mean total sales for a fiscal
year to one part of the user population and total sales for
a calendar year to another.
8. Required fields left blank.
9. Different formats for primary keys. At my institution,
social security numbers are sometimes represented with
imbedded dashes, sometimes not.
10. Erroneous data. For example when the state field is
“CA” but the zipcode is for New York.
11. Dealing with Null values presents a special set of
problems. Missing data can occur for a wide variety of
reasons and can be represented in an OD in several
ways: using system nulls; using default values or using
user-defined nulls.
 V. 2. We can identify five distinct phases in
the loading process:
1. Extraction: Collection of data from the native format
of an ODS. Sources of data include ASCII files, legacy
mainframe data perhaps in VSAM files or other

proprietary systems and/or commercial DBMS format.
2. Conditioning (data transformation) : Conversion of
data from the source data type to the target data type.
This step may include aggregation, smoothing
(removing “noise” from the data) and normalization (
scaling attribute values to fall within a specified range).
3. Scrubbing (data cleansing): Making sure that the data
meets all the validation rules that have been decided by
the warehouse designers. This includes handling null or
missing data; violations of data type; uniform date
formats and validating data.

Techniques for this part include: using domain
experts to decide on the proper representation of data;
parsing and fuzzy matching to decide matches;
designating a preferred source, and database rules and
triggers.
4. Loading: The actual placement of the data in the
target warehouse. This step includes some or all of the
following operations: computation of views, integrity
checking, index building and partitioning. These
operations are usually accomplished via regular
operations and/or utilities supplied by the commercial
database.

Some issue that need to be addressed during
the loading phase are:
 •The huge volume of data that may need to be
loaded
 •The need to take the warehouse off line
during the loading process. There is usually a very small
window when this can happen (weekends and nights)
 •When can or should summary tables and
indices be built?
 •Transaction management. During a normal
transaction, the transaction manager would log every
change made to the database. During a load the log file
used for this purpose would rapidly overflow causing a
system shutdown, so one would normally disable
logging during the load but this means that a failure
during the load might leave the database in an
inconsistent state.
 It would be very useful if the system
administrator were able to monitor the status of the load,
suspend, resume, cancel it or change the load rate.
 Some solutions to these problems include
loading the data in parallel and/ or loading it
incrementally.
5. Refreshing: Propagating changes from the source
databases into the data warehouse. There are two basic
considerations: How to refresh and when to do it.
Options for the first step are:
 •fully reloading a table with updated data.
This would take as long as the original load and the old
table must be maintained until the updated table is ready
and the transaction commits. This may be the only
option for legacy databases.
 •use of incremental techniques (below).
As to when to refresh, there are again two options:
 •on every update. This is very expensive but
might be necessary if OLAP requires current data, as in

stock market data
 •periodically. That is every hour, every day,
or after Asignificant events@
 Generally, refresh policy should be set by the
system administrator, based on user needs, and may in
fact be different for different users. We also note that
during refreshment it may be difficult to maintain
correctness of derived tables and that optimization
could be effected
 V 3. Incremental processing. A load may be
broken into a sequence of shorter transactions, perhaps
after some number of records or some amount of time.

Refresh via full table refresh may be
accomplished by the same technique or by only updating
changes made to the tuples of the base tables. To do
this, such changes must be detected and propagated to
the warehouse. This may be accomplished via
AReplication servers@ used by various DBMS= ,
including Oracle and IBM, to manage distributed
databases or via the use of Atriggers.@ Sybase has a
feature called “transaction shipping@ that can also be
used. There are some problems associated with this
approach:

1. The sequence of transactions may interfere
with queries.

2. It is difficult to ensure consistency between
the base tables, derived tables and indices.

 V. 4. Other operations during loading.
There are a couple of other operations that can be
applied during the population process or to the data
itself to make other operations easier:

Auditing. Attempting to uncover unusual
facts.

Merging. If a single occurrence of a target
datum is found in multiple sources, a single schema
must be chosen.
 Validating. Making sure that the data has
maintained its integrity during the transformation
process.

VI. Existing technologies:

VI.1. The insufficiency of SQL. Many of the
operations required for a data warehouse are difficult if
not impossible to express in SQL: Consider the
following "natural" warehouse-type queries:

Assuming the schema Sales(Sales_id, Store_id,
Product_id, Sales_Rep, amount, date)

1. Comparisons (with aggregation).Compare
last year’s sales with this year’s sales for each product
 2. Multiple Aggregation. Given the sales
schema above, find the total sales by store and by
product.
 3. Ordinal Data. Given the schema above, find
the top 25% of sales reps by total sales.
 4. Statistical data: Find the 30 day moving
average of an product’s sales.
 5. Time series: Given the schema
Transactions(Tx_id, begin_time, end_time,
commit). Find all Tx’s that began while T1 was

executing and ended while T2 was executing.
 VI.2. DB2 DB2 provides the following
additional functionality for OLAP: Intelligent
partitioning; parallel database operations
including: table and index scans, joins, backup and
recovery, specialized indices and index processing,
roll up and cube, star query processing, support for
de-normalization via outer-joins and predicate
transitive closure. (Bontempo, 1998)
 VI.3 Oracle Oracle allows bit-mapped
indices, hash joins and partitions and partition-wise
joins. It also supports star schema optimization and
provides additional tools for building the warehouse
(Oracle Warehouse Builder) and data mining (Oracle
Express). The server contains some extensions to SQL
such as a “rank by” clause. (Corey, 1998)
 VI.4. Redbrick, from Informix. Redbrick
provides various data warehousing tools. The server
manages partitions and supports some specialized
indexing and join techniques. Redbrick’s Intelligent
SQL (RISQL) extends SQL with scalar functions for
moving sum and average, percentile and rank. (
Redbrick 1998)

3. EDUCATIONAL TECHNOLOGY

By and large the course uses conventional
education technology. The exercises are assigned at
appropriate times during the course so that students can
learn first hand of the difficulties in the warehousing
process and gain experience in solving the problems that
arise.

Students have access to an existing data
warehouse implemented in Oracle 8 running under
Solaris. Students use this warehouse, which deals with a
library circulation system, to perform a collection of
exercises designed to illustrate some techniques of data
manipulation and some elementary data mining.
Students also design a modest warehouse and implement
it in this Oracle instance. Finally students gain
experience by populating the practice warehouse with
data taken from three existing OLTP databases: another
oracle instance running under Windows NT, an Ingres
database running under VMS, and an Access database
running under Windows 98.

4. EXERCISES

Specialized Warehouse Operations (performed on the
practice data warehouse)

1. Roll up. Find total loans by branch. Find
total loans by branch and publisher.

2. Slicing. Find all facts for branch 1.
3. Calculation. Find the average penalty per

loan by branch
Populating the warehouse

1. Use the DBMS’ utilities to copy a small
table from one Oracle database to another.

2. Use the DBMS= utilities to copy a large
table from an Ingres database to an Oracle database.

3. Develop and implement a strategy for
copying and inserting data from a local Access database.
Data Cleansing

1. Handling different data types. Map Ingres=
and Access= character and numeric data types to Oracle=s

2. Dealing with Null or missing Values:
Develop and implement a strategy for loading an Oracle
table with data that contains system nulls, user defined
nulls and default null values.

3. Dealing with duplicate keys: Construct and
implement a strategy for insertion of rows into an Oracle
table that contain key values that duplicated existing key
values.
Data Mining

1.Write an SQL query to see if there is a
correlation between a patron=s age and the number of
times they have books overdue, i.e., calculate the
correlation coefficient.

2.Time Series: Find library patrons who
borrow additional books before they return formerly
borrowed books.

3.Ranking: Find the five most expensive
books. (Without using Oracle=s rank by clause

5. REFERENCES

Bieber, M. “ Data Warehousing Workshop”, CA-World,

New Orleans LA, 1999
Bontempo, C., Zagelow, G. “The IBM Data Warehouse

Architecture”, Communications of the ACM,
vol 41 no 9 Sept 1998: p38.

Chaudhuri, S., Dayal U. “An overview of Data
Warehousing and OLAP Technology”,
SIGMOD Record, March 1997: p65

Chaudhuri, S., Dayal U. Decision Support
Technologies: OLAP, Data Warehousing &
Data Mining. International Conference on
Data Engineering, Orlando, FL, 1998.

Corey, M., Abbey, M. , Abramson, I. and Taub, B.
Oracle 8 Data Warehousing. Berkeley CA,
1998 Osborne,/McGraw Hill.

Debevoise, N. The Data Warehouse Method Upper
Saddle River NJ 1999, Prentice Hall

Elmasri R. Navathe S. Fundamentals of Database
Systems 3rd Ed. Redwood City CA 2000,
Benjamin/Cummings

Gardner, S. “Building the Data Warehouse”.
Communications of the ACM, vol 41 no 9
Sept 1998: p52

Han, J. Kimball M. Data Mining, Concepts and
Techniques. San Francisco 2001, Morgan
Kaufman.

Inmon, W. H. Building the Data Warehouse (2nd
Ed.)New York, 1996, John Wiley.

Kimball, R. Preparing for Data Mining. DBMS
November, 1997, p14

Moss, L. Data Cleansing: A Dichotomy of Data

Warehousing? DM Review, February 1998
Pyle, D. Data preparation For Data Mining. San

Francisco, 1999, Morgan Kaufmann,.
Ramakrisnan, R. Gehrke, J Database Management

Systems 2nd ed. Boston, 2000, McGraw-Hill,
Redbrick Warehouse SQL Reference Guide, Redbrick

Systems, Los Gatos CA, 1998

	A Syllabus in Data Warehousing
	IV	Building the Data Warehouse (12 hours)
	THE SYLLABUS
	II The Multi-dimensional Data Model:
	III. Specialized OLAP tools and Data Manipulation:
	IV Building the Data Warehouse:
	There are as many techniques for designing a data warehouse as there are authors on the subject. (Bieber 1999; Chaudhury 1997 ; Debevoise 1999 and Gardner 1998). The outline presented here is a synthesis of these.
	
	
	
	
	IV.2 Metadata Through all phases of the data warehouse design process, the maintenance of metadata, data about the data, is essential. It is usually maintained and managed in a separate “repository.” The repository should provide searchable, understand
	VI.2. DB2 DB2 provides the following additional functionality for OLAP: Intelligent partitioning; parallel database operations including: table and index scans, joins, backup and recovery, specialized indices and index processing, roll up and cube, star
	VI.3 Oracle Oracle allows bit-mapped indices, hash joins and partitions and partition-wise joins. It also supports star schema optimization and provides additional tools for building the warehouse (Oracle Warehouse Builder) and data mining (Oracle Expres

