
Problem Analysis and Program Design:
Using Subsystems and Strategies

Robert F. Zant1
Department of Applied Computer Science

Illinois State University
Normal, IL, 61790, USA

Abstract

Although there has been a substantial amount of research on methods for developing computer programs, students new
to the art of programming continue to find it difficult to transform a problem statement into a functional program. This
paper reviews the difference between the novice's and the expert's approach to programming, and presents two
techniques--the IPO Diagram and Composition Strategies that novices can use to gain a better understanding of
problem analysis and its impact on program design.

Keywords: Analysis, design, programming, IPO diagrams, composition strategies

1rfzant@ilstu.edu

Although there has been a substantial amount of
research on methods for developing computer programs,
students new to the art of programming continue to find
it difficult to transform a problem statement into a
functional program. The time-honored techniques such
as HIPO Charts, Flowcharts and Hierarchy Charts do
not seem to provide sufficient guidelines to lead the
student from analysis to design. Several alternative
approaches have been used with reported success.
Hohmann, et al. (1992) used a methodology based on
"goals and plans" with a high school Pascal class. They
reported that students could complete more assignments
within a term using the technique and that the students'
programming abilities were transferable to large-scale
projects. Another approach that stresses the use of
patterns is becoming popular and is being used in some
texts (Epp 2001). Syntax-less approaches, such as Karel
the Robot (Pattis 1995) and Iconic programming
(Calloni 1997) have also been shown to be effective.

1. REVIEW OF RESEARCH

Past research has shown that expert programmers not
only master the syntax and semantics of a computer
language but also learn patterns for solutions to

commonly encountered problems. In addition to these
technical skills, experts also gain application domain
knowledge that they bring to bear on specific systems.
Dreyfus (Dreyfus 1982) found that experts view a
problem in the context of its domain and draw on their
experience in similar situations to formulate a solution.
Reitman (1965) noted that the situation-oriented point of
view led experts to spend more time analyzing a
problem than did a novice. The novice tends to approach
a problem not in the "gestalt," but rather from a context-
free perspective. Since the novice does not have a "tool-
kit" of patterns derived from experience, the novice
relies on a rule-based approach, e.g., use an IF statement
when there is a choice of two actions, that tends to focus
on individual details.

Bloom's (Bloom 1956) taxonomy of the cognitive
domain can provide insight into the difference in the
way a novice approaches problem solving and the
approach of an expert. Bloom defines six levels of
learning that must be accomplished in succession.
Novice programmers would begin at the
Knowledge/Comprehension levels in learning computer
concepts, syntax, and semantics. They then often
encounter difficulty in moving to the next level,
Application. At this level novices must use their factual

knowledge in the construction of programs in the
context of familiar situations, e.g., creating a program
very similar to an example in the text. The fourth level,
Analysis, is also problematic for students. At this level
the student attains a level of understanding required to
debug code, i.e., analyze a run-time error, and to begin
developing solutions in less familiar situations. The fifth
level, Synthesis, is well beyond the novice's abilities. At
this level the programmer can develop solutions to new
and complex problems. The sixth level, Evaluation, is
reserved for the expert. At this level the expert can
develop new algorithms and can select from alternative
platforms, algorithms, etc., based on their suitability to
the problem.

A conclusion that can be drawn from Bloom's taxonomy
is that it would be difficult, at best, for a novice to
become an expert without progressing through each of
the six levels. In fact, Shackelford and Badre (1993)
found that students in an introductory Pascal class were
more successful at applying patterns based on
constructive rules that focused on language constructs
(level 3) than in applying descriptive rules that focused
more on the context of the problem (level 4 and 5). Linn
(Linn 1992) also found that new programmers had
difficulty learning and using patterns. Roberts (Roberts
2001) has observed that students have difficulty learning
JAVA, in part, because of the extensive libraries, i.e.,
canned patterns, that must be learned. Novice
programmers thus do best in working with language
constructs in a rule-based environment and less well in
learning context-based patterns. This is as we would
expect based on Bloom's taxonomy.

This paper proposes that a sequence of techniques be
used in learning to analyze a problem and then to design
a program. The techniques to be used in the analysis
phase are: IPO Diagram, Composition Strategies, and
HIPO Charts. The techniques recommended for use in
design are: Hierarchy Chart and either Pseudopodia or
Flowcharts. Only the IPO Diagram and Composition
Strategies will be presented since the other techniques
are well known. These two techniques provide rule-
based models for students to use in the analysis of a
problem. Students gain experience in analyzing salient
characteristics of systems and see the importance of
understanding characteristics of the application system
that influence the ultimate design of the program.

2. IPO DIAGRAMS

IPO Diagrams are conceptually very simple. They
simply embody the input-process-output metamodel that
is well known and is the basis for the HIPO technique.
IPO Diagrams are used to decompose a system. It differs
from other techniques used in analysis in that it seeks to
decompose a system into subsystems rather than into
functions.

The process begins by thinking of the system in its
entirety. The model would be a single input-process-
output sequence:

 I P O

The decomposition rule is to then ask if the transform
"P" is a simple transform of input to output. Jackson's
(Jackson 1975) concept of data structure correspondence
is useful here. The first question to be asked is: "For the
defined set of data (keyboard input, file, or database)
does 'P' process each item of input sequentially to
produce the output stream?" If this is "no," such as when
only a subset of the input is to be processed, then the
system is divided into two subsystems. There are two
cases: when some preprocessing must be completely
accomplished before the primary process can be carried
out, e.g., sorting--

 I1 P1 O1\ I2 P2 O2

And when the output from the first subsystem can be
directly piped to the second, e.g., record selection--

 I1 P1 O1/ I2 P2 O2

The second question to be asked is: "Does the format of
the output stream depend only on the input data?" This
would be the case when, for example, input from the
keyboard is displayed directly on the screen or when
data is entered and only a total is displayed. The answer
would be "no" in cases such as formatted multi-screen
displays or when there are multiple output streams.
When the answer is "no," the system must be further
subdivided as done above.

The third question deals with the process "P" itself to
determine if it is a simple or compound process. "Could
'P' be subdivided into two or more processes that could
individually process the input to produce a partial
outcome for the program?" For example, a process to
read a stream of data and calculate the average value
could be decomposed into a process to count the number
of data points and another process to calculate the sum
and then a third to calculate the average value, as--

 Pcount O1

 I1 I3 Pavg O3

Psum O2

Once the problem has been decomposed into simple
subsystems, the network of subsystems must then be
partitioned into implementation units. The above system
could be partitioned into one, two, or three
implementation units. Considerations for this
partitioning are: geographical constraints, platform

constraints, timing constraints, and
personnel/complexity constraints.

3. COMPOSITION STRATEGIES

Next, the composition strategy for each of the partitions
must be determined. There are four basic composition
strategies for combining subsystems: Disjoint,
Aggregate, Embed, and Integrate. [Note: the use of the
term composition strategy is a little different than as
used by Spohrer and Soloway (Spohrer 1986)].

The Disjoint strategy is to separately develop
subsystems that are logically connected by the timing of
their execution. For example, on Windows systems the
Scandisk program should always be executed before the
Defrag program. The IPO Diagram would be:

I1 Pscan O1\I2 Pdefrag O2

These two subsystems are implemented in Windows as
two separate programs because Scandisk is useful
without Defrag, although Defrag should not be run
without first running Scandisk. Consequently, it is up to
the user to run Scandisk before defragmenting a disk.

The Aggregate strategy automates the execution of
dependent programs by the use of a control module or
script. For example, the following VB script will run
the Scandisk program and then the Defrag program.

Set WshShell = WScript.CreateObject
("WScript.Shell")
ReturnVal = WshShell.Run
("C:\WINDOWS\SCANDSKW.EXE", True)

Set WshShell = WScript.CreateObject
("WScript.Shell")
ReturnVal = WshShell.Run
("C:\WINDOWS\DEFRAG.EXE", True)

The Embed strategy is called "program inversion" in the
Jackson methodology. It is a strategy to encapsulate a
subsystem. The interface between the subsystem and the
main system is implemented by the passing of a status
value. Take the example of a program that is to read a
file, select certain records, and display the selected
records. The selection subsystem can be designed as an
embedded system that reads the file and returns only
selected records to the main system. Then, the main
system can be designed as if all records were to be
displayed since it will only receive selected records from
the embedded module. The IPO Diagram would be:

 I Pwrite O

 (I Pselect O)

A sample JAVA program for this strategy is:

import java.io.*;
public class select2 {

static String item;
static int price;
static DataInputStream df = null;

public static void main(String[] args) throws IOException {
char status = selection ('i');
PrintWriter pw = new PrintWriter (new FileWriter("report.txt"),

true);
while (item != null) {

pw.println (item + ", " + price);
status = selection (status);

} // End While
selection ('c');
pw.close();

} // End main

public static char selection(char status) throws IOException
switch (status) {
case 'i':

df = new DataInputStream(new FileInputStream("ss.data"));
status = 'o';
// no break here, read first item and price

case 'o':
while (((item = df.readLine()) != null) &&

((price = df.readInt()) < 100)) {
} // End while
break;

case 'c':
df.close();

} // End switch
return status;
} // End selection

} // End Class

The fourth strategy, Integrate, is the most commonly
used and also the most problematic strategy. Soloway
(Soloway 1986) found that novice programmers have
the most difficulty developing programs using this
strategy (what he called "merged plans"). This strategy
seeks to combine the logic constructs from multiple

subsystems into one system. An IPO Diagram for the
above program would be:

 I Pselect & Pwrite O

Example JAVA code is:

import java.io.*;
public class select1 {

public static void main(String[] args) throws IOException {
String item;
int price;
DataInputStream df = new DataInputStream(new FileInputStream

("ss.data"));
PrintWriter pw = new PrintWriter (new FileWriter("report.txt"),

true);
while ((item = df.readLine()) != null) {

price = df.readInt();
if (price >= 100) {
pw.println (item + ", " + price);
} //End If

} //End While
df.close();
pw.close();

}//End main

}//End Class

This strategy produces the most compact code. But,
when the code is not arranged and documented properly,
this compactness creates code that is difficult to debug
and maintain. The problem is caused by code from
different subsystems, i.e., different purposes, being
mixed together with redundant code being discarded.
To make changes in the code, the programmer must be
able to distinguish the impact of the proposed changes
on each of the integrated subsystems.

4. CONCLUSION

Two techniques, IPO Diagrams and Composition
Strategies, have been presented that are used to analyze
programming problems. The techniques correspond to
the levels of Bloom's taxonomy that are appropriate for
novice programmers. Furthermore they can be applied to
relatively simple problems that are typically assigned in
a first course on programming. The techniques
complement more traditional techniques such as HIPO
Charts and Hierarchy Charts. They are applied before
these other techniques so that they bridge the gap
between the problem statement and the analysis of detail
logic.

5. REFERENCES

Bloom, B. S., et al., Taxonomy of Educational

Objectives: Handbook I: Cognitive Domain,
Longmans, Green and Company, 1956.

Calloni, B. A., and Bagert, D. J., "Iconic Programming

Proves Effective for Teaching the First Year
Programming Sequence," Proceedings of SIGCSE
Technical Symposium on Computer Science
Education, 1997.

Dreyfus, S. E., "Formal Models versus Human

Situational Understanding: Inherent Limitations
on the Modeling of Business Expertise", Office:
Technology and People, August 1982.

Epp, Ed C., Prelude to Patterns in Computer Science

Using JAVA, Franklin, Beddle & Associates,
2001.

Hohmann, L., et al., "SODA: A Computer-Aided Design

Environment for the Doing and Learning of
Software Design," Computer Assisted Learning:
Proceedings of the Fourth International
Conference on Computers and Learning,

Springer-Verlag Lecture Notes in Computer
Science 602, 1992.

Jackson, M. A., Principles of Program Design,

Academic Press, 1975.

Linn, M. C., "How can Hypermedia Tools Help Teach

Programming?" Learning and Instruction, volume
2, 1992.

Pattis, R. E., Karel the Robot: A Gentle Introduction to

the Art of Programming, John Wiley & Sons,
1995.

Reitman, W. R., Cognition and Thought, John Wiley &

Sons, 1965.

Roberts, Eric, "An Overview of MiniJava", Proceedings
of SIGCSE Technical Symposium on Computer
Science Education, 2001.

Shackelford, R. L. and Badre, A. N., "Why Can't Smart

Students Solve Simple Programming Problems?"
International Journal of Man-Machine Studies,
June 1993.

Soloway, Elliot, "Learning to Program = Learning to

Construct Mechanisms and Explanations,"
Communications of the ACM, September 1986.

Spohrer, James C., and Soloway, Elliot, "Novice

Mistakes: Are the Folk Wisdoms Correct?"
Communications of the ACM, July 1986.

	Abstract
	1. REVIEW OF RESEARCH
	Past research has shown that expert programmers not only master the syntax and semantics of a computer language but also learn patterns for solutions to commonly encountered problems. In addition to these technical skills, experts also gain application d

	2. IPO DIAGRAMS
	3. COMPOSITION STRATEGIES
	5. REFERENCES

