
An Inherent Conflict in Using IDEs in Computer Language Courses

Ronald I. Frank, DPS (Computing)
Associate Professor, CS & IS Departments

Pace University
860 Bedford Rd.

Pleasantville, NY 10570
Phone: (914) 773-3444

Email: rfrank@Pace.edu

Abstract

The computer language or programming part of the curriculum requires hands-on problem solving program
development. In industry, the tool of choice for program development is an IDE (Integrated Development Environment).
We would like to use this tool in teaching. Learning to use an IDE is as large a task as learning programming in courses
which use it, so we have to limit its uses to appropriate levels for each course. However, there still is an inherent conflict
when using an IDE in teaching due to conflicting requirements placed upon an IDE by early program development courses
versus the requirements of advanced courses and industrial program development processes.

Early courses require students to learn the structure and function of the language and language system in solving
basic problems. An IDE is merely a way to: 1) ease the typing burden, 2) organize files, 3) aid syntax error detection, 4)
easily manage searching language documentation, and in later work, 5) control debugging. On the other hand, industrial IDE
use requires it to do as much as possible automatically for the developer. This involves automating the steps just listed and
even automatically generating code using code templates.

Automatic code generation using code templates destroys the student’s motivation to learn code structure and
function in early courses. It solves most of the problems for the student thus depriving students of having to learn language
and language system basics. The resolution of this conflict is to use the beneficial functions of an IDE but not automatic
code generation. In first courses, we should not use automatic code generation.

We show how to get around code generation in a sample Java IDE (JCreator). Other IDEs are circumvented in a
similar way. This process also has benefits for grading and assignment management in a programming course.

Keywords: Integrated Development Environment, IDE, Java Education, Code Generation.

Introduction

The computer language or programming part of
the curriculum requires hands on problem solving. The
industrial tool of choice for software development is an
IDE (Integrated Development Environment). Ideally, a
computer language course introduces an IDE, and
regularly uses it. This eases the student’s burden in the
class and better prepares the student for advanced work
and jobs in industry.

However, IDEs are designed for industrial use.
They are designed to ease the developer’s burden., in part
by automatic code generation using code templates. The
developer initially indicates the type of project to be
developed and the IDE uses templates to generate as
much skeleton code as possible, to get the developer
started, while saving programmer time and effort.

This creates an inherent conflict in classroom
use. We would like to use some of the features of the IDE
but code generation is not one of them. For the student,
the IDE should be merely a way to ease the typing
burden, organize files, aid syntax error detection, and later
to control debugging.. Code generation, at least in early
courses, would deprive the student of the opportunity to

understand the structure and syntax of a problem’s
solution. In fact, early lessons are aimed specifically at
teaching the structure and syntax of standard problem
solutions in the given language and system, and forcing
the student to figure out how to formulate them for
practice problems.

The instructor’s solution to this dilemma, we
suggest, is to recognize the conflict, understand a
particular IDE’s template usage, and then to learn how to
circumvent it. Students are then directed to use the IDE
in the modified manner. This gives them the effort
savings offered by an IDE without cheating them of the
language learning experience.

In later courses, after students have mastered the
basics, they can be taught to use the more efficient code
generation templates.

We present this argument in the context of a
typical low cost ($35) IDE for the Java Language
(JCreator Pro - academic version) and show how to avoid
the use of code templates for a typical first year course in
Java. We included a discussion of the advantage of this
circumvention for the instructor’s classroom management
of the program grading process.

 1

1. Problem Statement

(In the Context of JCreator Pro)

The suggested industrial method for starting
program development is to establish a “project”, even for
the simplest one file programs. The following screen is
the initial IDE response to choosing FILE NEW on the
menu bar. It defaults to a Java Application Project
format, which will automatically embed template code
into the initial code text file. This is also true of the
freeware version of JCreator, and other IDEs [1, 2, 4, 5,
6].

This template code is a great help - if the student

already understands windows, packages, java
programming, objects (especially output streams), and
system functions. All are in the generated code. The
code syntax coloration is very useful. (It does not show in
a black & white reproduction).

The next screen-shot is the structure of the
directories and files created by the IDE. Again, this is a
great help if you already know what they are all about,
which a beginning student usually does not know. (This
directory structure could have been assigned to the hard
drive).

Alternatively, the programmer could simply start by
opening a blank Java (text) file.

If all we are trying to do is a Hello World, it is

better to simplify this process and not use automatic code
generation. We show how to simplify this in the
examples that follow. This applies to JCreator Pro but
holds also for the free JCreator LE. A similar process can
be used for other IDEs [1, 2, 4, 5, 6].

The difference is profound. The following figure is the
result of declaring a project. The code details are not
important. What is important is that all of this code is
automatically generated from a template. Starting with
just a Jave File presents a blank page to the student!

2. Examples

We would like to keep classroom discussions of

the IDE to a minimum and concentrate instead on the
language and language system. Fully learning an IDE is
as large a task as multiple programming courses.

On the JCreator menu bar choose File & New:

 2

This creates a simple empty Java file in the
assigned directory. (The directory could instead have
been chosen to be on the hard drive). The student must
now type the problem code into that totally empty file.
Here is a sample student input. It requires only that the
student has started to learn some basic Java syntax and
semantics:

Before we proceed to the discussion of
compilation, we must divert our attention to the
underlying default settings which all IDEs use. In
JCreator there are five major default choices:

1. compilation of application code
2. compilation of applet code
3. running applications
4. running applets
5. running the debugger

These defaults simplify the advanced user’s use of the
IDE. The first four generate code that the beginner is not
ready to use. The fifth requires an existing project.

The defaults 1 and 3 must be set for this Hello
World application for either the template use case or the
simple case. The JCreator system comes with defaults set
for template use that use Java Windows, which are an
advanced topic in many texts. We make a few changes to
the defaults once at the beginning of the course and reap
simplifying benefits all course long.

Even though there is no “project”, a default
path is used. It could be on the hard drive. On the menu

bar choose Configure & Options (Choose Directories &
change only the top choice) [the ellipsis button allows you
to search your computer’s directory paths]

We have to set the compilation defaults, which
differ in the template or non template cases. The
instructor provides this help once at the start of the
course. On the menu bar choose Configure then Options
(Choose JDK Tools & Compiler)

Choose <Default> and Edit

 3

[The DefaultBackup and A:\ are copies I put in
to remind me of the <Default> factory settings
for hard drive or my settings for A:\ use.]

Change Name & Parameters. The Command tab does not
change because it invokes the compiler in all cases.

Then edit for running from A:\.

These are the settings for using the floppy as a

source and sink for the compilation. With these few
changes we can now create a simple Java source file and
compile it. We could use either the hard drive or the
floppy. The right arrow-head button gives you help in
choosing parameters.

We don’t touch the command choice which
invokes the same compiler in all cases.

Again, we don’t change the command which

invokes the runtime environment. We specifically don’t
want to capture output (in the IDE window) since we
want it to go to a “console window”.

On the menu bar choose Configure then Options

(Choose JDK Tools & Run Application).

The compilation results in the following

directory contents (we used A:\ instead of the hard drive).
The .java file is the simple source and the .class file is the
compiler output. This is as simple as it could be.

 4

The output on the console window looks like this
[in Windows 2000] (collapsed for printing):

3. Discussion of the Advantage of the Use of
this Method for the Student

Once the student learns the proper default

settings, compilations and executions are run from the
floppy or the hard drive. The student gets no template
code before its time (in the curriculum). Also, the task of
learning to use the IDE is cut down to a few settings.

There are some instructors and students that
prefer, in the Java context, to use the Sun DOS prompt
environment for development. There is one overt reason
given for this preference: the student is explicitly aware of
the use of the compiler, “Javac” and of the runtime
environment invocation , “Java”. There is, in my opinion
and experience, a stronger covert reason: fully learning
any given IDE is a job as big as learning Java itself! A
hidden sub text reason to this is that such a large effort is
a probable waste because any given employer will
probably choose some other IDE.

My answer to the overt reason is that paying
attention to the few default settings shown above brings
home the Javac and Java environments. My answer to the
covert reason and sub text is that learning any IDE is an
incremental process that should actually be spread over
many courses. If the student goes on to courses involving
Java Beans, Enterprise Beans, “fancy” HTML, XML, or
multi-person development projects, all of which benefit
from IDE features, the student learns just-in-time only
those features that are needed that course.

Even when using a project for debugging a
similar circumvention works.

4. Discussion of the Advantage of the Use of
this Method for the Instructor

With this circumvention method, students are

free to develop solutions on lab machines or their
personal machines as they wish. They will have to make
simple changes to the default settings for use of the floppy
versus the hard drive. However, the instructor is now free
to request that the students hand in assigned problems one
to a diskette (or email file) with no extraneous code.

The instructor can standardize on a grading
procedure that assumes a single standard set of defaults in
the IDE. The submitted code would then contain only
student code.

5. Conclusion: Problem and Solution

By defining a standard set of simplifying

defaults in the IDE, the instructor can ensure that the
students do the coding (modulo inter-student copying)
and thinking about all of the syntax. Learning the IDE is
minimized. Also the instructor simplifies grading
assignments by standardizing the student hand-ins and
standardizing running procedures for grading.

6. References (Java IDEs)

[1] Forte : Sun Co. Forte Environment.
 http://forte.sun.com/ffj/documentation/relnote40.html

[2] JBuilder: Borland & Enterprise Studio:
 http://www.borland.com/estudiojava/pdf/estj4_datasheet.pdf

[3] JCreator IDE: http://www.JCreator.com/ Click “Features”.

[4] Kawa (discontinued 10/31/2001)
 http://search.atomz.com/search/
 ?sp-a=sp1001395b&sp-p=any&sp-q=kawa

[5] Visual Café (discontinued 2/2003)
 New product:
 http://www.webgain.com/products/webgain_studio/
 feature_matrix.html

[6] Visual J#.Net : Microsoft Visual Studio.Net.
 http://msdn.microsoft.com/vjsharp/
=============
[7] Frank, R. I., “JCreator ‘Just-In-Time’ Tips”. Pace
Technical Report #181 Sept. 2002. This is an 83 page
screen-shot-based set of tips for V2.5 for projects, applets,
applications, etc. Also available from the author at
rfrank@pace.edu as a PDF file ~2.8M.

 5

	An Inherent Conflict in Using IDEs in Computer Language Courses
	Abstract
	Introduction
	1. Problem Statement
	2. Examples
	3. Discussion of the Advantage of the Use of this Method for the Student
	4. Discussion of the Advantage of the Use of this Method for the Instructor
	5. Conclusion: Problem and Solution
	6. References (Java IDEs)

