
Introducing the Test Harness:
Automating the Test Suite

Ronald Finkbine, Ph.D., rfinkbin@ius.edu, Indiana University Southeast

Nicholas Kraft, nkraft@cs.clemson.edu, Clemson University

ABSTRACT
Software testing is an essential component in the
development of quality software. It is important for
students to have a solid introduction to this in their
academic career. Since students are not often excited to
write code, they certainly will not be interested in testing
their code. Students will often only submit test executions
for a small handful of test cases and rarely will they
regression test the entire test suite. The repetition necessary
for proper testing is an obvious contributing factor to this
problem. Enter the test harness. Automation of a test suite
is an effective way to allow for quick and repeatable testing
of a program. Though, it requires effort to build the test
harness, it can be used to test the program throughout the
development and maintenance process. Allowance for
quick regression testing in every test harness execution is
an added bonus.

1. INTRODUCTION
Software testing, much like verifying answers in the field
of mathematics, is a much reviled and often overlooked
task. However, testing is becoming increasingly important
for development of reliable software and currently accounts
for a substantial and growing portion of the cost of
software in industry. But, regardless of its importance in
industry, the subject of software testing gets very little
coverage in the typical undergraduate curriculum.

As the field of computer science matures, the size,
complexity, and legal risk associated with computer
programs increase. These factors contribute to the
increasing need for adequate software testing. Students
often encounter testing for the first time after their
academic careers have ended. Whether they are testing
their own or another programmer’s code, students must
have the knowledge and tools to show the correctness of
the code.

While testing alone cannot prove the correctness of a piece
of software, it can be used to compare the actual
performance of a program to the expected performance. A
summation of the goals of testing, as laid out by Myers [3],
follows:
1. Testing is a process of executing a program with the

intent of finding an error.
2. A good test case is one having a high probability of

finding an as yet undiscovered error.
3. A successful test is one that uncovers an as yet

undiscovered error.

Avoidance of learning the intricacies of software testing
concepts and procedures is expected of the typical
undergraduate student since testing is, by necessity, tedious
and repetitive. Yet, it can enhance software development
skills in that it requires integration of concepts and practice
[2]. So, how can testing be transformed into something
less mundane? Carrington [1] makes the case that students
who have been involved with the toil of testing recognize
the need to automate the process with creation of a test
harness.

2. TEST HARNESS DESCRIPTION
The test harness consists of a number of items which we
shall define, test cases, a test suite, a set of input files, a set
of expected output files and the test script to drive the
entire process. This section shall define each of these items.

2.1. Test Case
A single test case consists of an input file that contains
inputs to specifically test certain characteristics of the
subject program. The execution of the test case will
produce an output file, absent some form of run-time error
that interrupts execution. A test case should test one
certain behavior of the subject program. For example, five
test cases for a linked list program would be:
1. Can you insert into an empty list?
2. Can you insert into the front of a list?
3. Can you insert into the end of a list?
4. Can you insert into the middle of a list?
5. Can you insert a duplicate item into the list?

2.2. Test Suite
A test suite is the collection of test cases for a given
program and its creation requires more experience than
coding since the test suite must use a sequence of
increasingly difficult test cases to fully test a program. A
test suite alone cannot prove the correctness of a given
program, but a good test suite can be used to uncover
unknown defects.

2.3. Input Files
An input file consists of the input test data for a single test
case. Test cases, like functions in a program, should
concentrate on a single task. Therefore, an input file
should contain test data for testing one specific capability
of the subject program. Input files should be named using
a consistent convention (i.e. test001.input). Documentation

explaining the condition being tested must accompany each
test input file in the test suite.

2.4. Output Files
Each test case produces an output file and execution of the
entire test suite produces a collection of these files. Each
should be named as associated with the test case such as
test001.output. These output files need to be analyzed to
determine if their associated test cases were successful.

Figure 1 is an MS-DOS command line example of

executing one test case, showing the program name, input
file being redirected, and output file creation.

Redirection operators allow files specified in the test script
to serve as input and output to the subject program rather
than having the files specified from within the subject
program, itself.

Figure 2 shows the addition of a parameter to the test script
previously shown in Figure 1. This will allow the entire test
suite to be run against a number of versions of the same
program which is the main characteristic of mutation
testing [4].

2.5 Control Files
The result of executing the program given each test input
file must be captured and compared byte-for-byte to a
control file. Initially, there are no control files though the
systems analyst should have an idea what should be in the
file. The control files will each be created during the first
totally successful execution of the test case.

The development of the control files is most critical and
must be verified by the systems analyst and not by only the
junior programmer. A wrong answer in a control file
indicates either a bug in the software or a bug in the test
script, either of which is very bad. But a bug in the test
script also ensures that the bug will continue to be present,
never detected nor corrected. Once the desired and verified
output is achieved for a given test case, the output file
should be deemed a control file, and have its filename
changed accordingly (i.e. test001.control).

2.6. File Comparison Program
Analysis of the output files consists of comparing each
output file to its corresponding control file. The file
comparison utility program is used to compare the control
files to the output files from the most recent execution.

A file comparison program with a ‘quiet’ mode is preferred
over a built-in shell command. ‘Quiet’ mode keeps
unneeded information from being recorded in the error
logs. Also, with a ‘quiet’ mode being used, a lack of
feedback from test case execution indicates success (no
news is good news). The UNIX utility program diff and
MS-DOS utility program comp are two such file
comparison programs and diff will be used to construct the
sample test harness below.

Figure 3 shows the usage of the file comparison utility diff
(this UNIX utility has been ported to MS-DOS) verifying
that the control file and the just-produced output file are
equivalent. The utility runs by default in quiet mode and if
it generates any output at all, that is not good. But the
output error messages indicating that the test case was not
passed will be appended to the file errorlog. If all
executions of the diff command during one execution of the
test suite append to one file, then the condition of file
errorlog at the completion of the test script determines the
success of the test script. An empty errorlog indicates no
errors were detected in any of the test cases; a non-empty
errorlog indicates at least one test case failed.

2.7. Test Script
Either a batch file or a shell script file (dependent on
system) automates the test harness. The test script contains
all command line statements necessary to execute the test
suite. In addition, the test script will perform the
comparison of the control and output files.
Parameterization of the script is simple and will greatly
aide reusability. A positional parameter can be used in
either a batch file or a shell script, although the syntax
differs slightly.

The test script can be described as a driver script (program)
that directs a testing sequence; supplying inputs, capturing
outputs, comparing those outputs to the control (expected)
outputs and appending outputs to error logs.

C:\>program1 <test001.input >test001.output
C:\>program1 <test002.input >test002.output

Figure 1: Input and Output
C:\>diff test1.control test1.output >>errorlog

Figure 3: Append

%1 <test001.input >test001.output
…
C:\testharness program1

Figure 2: Parameterized

%1 <test001.input >test001.output
diff test1.control test1.output >>errorlog

Figure 4: Addition of file comparison

A detailed test script developed by the systems analyst can
assist junior programmers in development of the program.
If the tests cases are sequenced by complexity level, the
junior programmer can begin programming with the simple
test cases, which hopefully will be the easiest to understand
and require the least coding effort.

2.8 Test Harness
The test harness is the compendium of parts describe thus
far, a test suite of test cases, each with an input file, a just-
produced output file (from the last execution), a control file
to compare for test case success and a file comparison
utility for determining file equivalence.

Figure 4 shows a parameterized test script which contains a
single test case. The %1 will be replaced by the program
name by the command shell interpreter. Each test case will
read from the input file and write to the output file. After
creation the output file will be compared by the diff
command.

Construction of the test harness is relatively straightforward
with just a basic knowledge of command line redirection
and batch/script file authoring. The harness itself can also
be a template from which others can be constructed for
future test scripts. It is also noteworthy that regression
testing is performed each time the test harness is executed
thus insuring that code modifications made to correctly
execute the current test case do not as a side effort (effect?)
cause the program to incorrectly process a previously
passed test case.

3. CONCLUSION
Testing is an extremely important part of any software
project and should be part of any computer science
curriculum. Resistance to learning and carrying out testing
is to be expected, however automation can alleviate the
pains normally associated with the testing process. The
building and usage of a test harness is beneficial to both
software professionals and students alike.

4. REFERENCES
1. Carrington, D. "Teaching Software Testing." In

Proceedings of the second Australasian conference on
Computer science education (The Univ. of Melbourne,
Australia, 1996), pp. 59-64. ACM Press, New York,
1997.

2. Jones, E. "Software testing in the computer science
curriculum -- A holistic approach." In Proceedings of
the on Australasian computing education conference
(Melbourne, Australia, 2000), pp. 153-157. ACM
Press, New York, 2000.

3. Myers, G. "The Art of Software Testing." Business
Data Processing. Wiley-Interscience, 1979.

4. Wong, W. E., “Mutation Testing for the New
Century”, Kluwer Adacemic Publishers, ISBN 0-7923-
7323-5, 2001.

