
Merging e-Business Solution Framework with Java
Components

Mayur R. Mehta

George W. Morgan
Department of Computer Information Systems, Southwest Texas State University

San Marcos, Tx 78666

Abstract

Since corporations first started conducting business on the Internet in 1993, it's moved quickly from being a curious
spectacle to a matter of survival for most businesses. The number of organizations conducting business over the
Internet over the past several years has far exceeded most market projections and expectations [21, p.1]. To achieve
successful results on a consistent basis, companies need to rely on two critical success factors. A robust framework and
development environment are more critical than ever for corporations to deploy successful e-Business applications.
This is a especially true for companies that are interested in web-based applications that are robust, flexible, scalable,
maintainable and platform-independent. These characteristics will gain importance as corporations start to migrate their
e-Business applications from the traditional Web-based environment to wireless, mobile, hand-held and pervasive
computing paradigm.
This paper will first describe an e-Business solution framework as presented by one of the leading providers of
enterprise-level e-Business application development tools. Following the presentation of this framework, the paper will
discuss how e-Business solutions based on this framework may be deployed using Java-based technology components.

Keywords: e-Business, e-Commerce, design framework, Java, J2EE

1. INTRODUCTION

The Web is changing every aspect of our lives, but no
area is undergoing as rapid and significant a change as
the way businesses operate. As businesses incorporate
Internet technology into their core business processes
they start to achieve real business value. Today,
companies large and small are using the Web to
communicate with their partners, to connect with their
back-end data-systems, and to transact commerce. The
next generation of business has arrived—it's called e-
Business.

What is e-Business?
e-Business is defined as the transformation of key
business processes through the use of Internet
technologies [6]. In e-Business, companies use the Web
technologies (such as HTTP/HTTPS, IIOP, Web clients
and servers, and business objects) to communicate with
their partners, to connect with their back-end data-
systems, and to transact commerce in such a way that it
leverages the strength and reliability of traditional
information technology in the Internet environment [15,
16]. This new Web + IT paradigm merges the standards,
simplicity and connectivity of the Internet with the core
processes that are the foundation of business [6].

Successful e-Business systems have the following
desirable properties [6, p. 2; 8, p. 12; 15]:

• Application simplicity and reusability,
• Leveraging current developer skills, data and

information,
• Robust security with good performance,
• Applications and Systems Manageability,
• Deployment flexibility and scalability to migrate

to a variety of computing paradigms including
wireless, mobile, hand-held, and pervasive.

Therefore, successful e-Business applications are based
on standards that span multiple platforms. They are
server-centric. They extend existing applications. They
are scalable, easy to develop and use, and they are built
to be managed. To get applications with these
characteristics, it is imperative that developers have a
clear understanding of a robust solution framework.
Furthermore, developers need to acquire an appreciation
for the available development tooling that leads to
robust, secured, reliable, and scalable e-Business
applications within the guidelines of this framework.

The primary objective of this paper is to provide this
introduction. This paper will first describe an e-Business
solution framework as presented by one of the leading
providers of enterprise-level e-Business application
development tools [8, 15, 16]. Following the
presentation of this framework, the paper will discuss
how e-Business solutions based on this framework may
be deployed using Java-based technology components.

2. e-Business Solution Framework

e-Business applications leverage Web clients (such as
Web browsers running on PCs, PDA, and pervasive
internet appliances), Web application servers, and
standard Internet protocols. They also typically leverage
existing applications and data from external non-Web
services [8, p.1; 15, p. 3]. To fully appreciate the
dynamics of e-Business application, one must first
understand the underlying process of a simple Web-
interaction that involves a business transaction. Figure 1
presents a simplistic scenario of such a Web-interaction.

In this simplistic scenario, a user navigates to a secured
web site to make a credit card payment. This process of
navigating to the web site, by typing in the URL, is
essentially making a request to the server to retrieve the
web page file and deliver it as an HTML document to
the browser, Upon receipt, the web client renders this
HTML document as a web page to the user. The user
next enters the required data and submits the request to
the server for processing. The web client first validates
user input and then forwards the request to the server.
Upon receipt, the server processes the business
transaction by accessing the user record in the database,
updating the record for payment, and then generating a
response to confirm the transaction. The confirmation
response, in the form an HTML document, is delivered
to the web client, which then renders it as a web page
and presents it to the user. The server may call upon a
variety of services to successfully complete this
business transaction. Such services may include locating
an appropriate database; validation logic to authenticate
user; business logic to compute principle, interest,
balance and late charges; and external services such as
bill pay. Furthermore, data and business logic may have
to be accessed from legacy, non-Web based systems.

While simplistic in nature, this scenario captures the
elements that play a critical role in a robust e-Business
solution framework. It also identifies that key processing
requirements include interaction with user, executing
and managing business logic, and application logic to
control the interaction between user view and business
logic. These key processing requirements can be easily
mapped to the classical Model-View-Controller (MVC)
paradigm, leading to a layered application architecture
[8, p. 5; 12, p. 27-29]. Figure 2 illustrates the MVC
paradigm, which provides a framework for separating
functional processing involved in typical computing-
oriented transactions into three major components -
Model, View, and Controller [8, p. 4-6; 12, p. 26; 14,
15, 16].

Figure 2. MVC Paradigm

View (Presentation Layer in layered architecture) is the
user interface logic part of the system. It is responsible
for generating HTML pages that will be returned to the
client. It includes objects defined to accept user inputs
and to display formatted application output. The data is
received by the UI logic in two ways. In some cases, the
UI logic will invoke the necessary business logic to get
the data directly from the database services. In other
case, the data-retrieval may be delegated to the
Interaction Controller.

Model (Domain and Data Access layer in layered
architecture) is the business logic portion of the system.
It comprises of code that is ultimately responsible for
satisfying client requests. As a result, business logic
must address a wide range of potential requirements,
which include quick access to application data in a
secured manner, coordination of business workflow
processes, and integration of new application
components with existing applications. The Command
Objects service layer encapsulates interactions between
View/Interaction Controller and these core services.

Interaction Controller (Controller/Mediator layer in
layered architecture) is responsible for mapping HTTP
protocol specific input into the input required by the

Figure 1. Process Underlying Web-Interaction

protocol independent business logic (that might be used
by several different types of applications), invoking
appropriate business logic models, and then invoking
appropriate view logic model to create the response
page to be returned to the client. It, thus, handles client-
side input and validation, mapping of the request and
session parameters to the business logic components,
and logic flow to correctly chain the business logic.

As can be seen, the MVC paradigm and layered
architecture provides a mechanism to decouple business
logic implementation from presentation logic. Such a
separation offers several advantages including ability to
develop, modify, and manage business logic
independent of form and style of resulting presentation.
More importantly, this layered architecture suggests a
possible framework that would lead to e-Business
solutions that are server-centric, scalable, and platform
independent [12, p. 25]. Consequently, this framework
would support any client device, including the
traditional desktop, handheld, set-top and other
pervasive devices. Additionally, the framework fosters
component-based application development as well as
reuse of enterprise business objects [12, p. 1]. This e-
Business solution framework is illustrated in Figure 3,
superimposed over the layered architecture discussed
earlier. As indicated, the web application server
provides a majority of the services required in this
framework.

Figure 3. e-Business Solution Framework

The key development and deployment issue is obviously
how to implement this framework. What technology is
available to build applications to these specifications so
that resulting solutions are platform independent,
scalable, easily developed, and can be deployed to a
variety of clients without much reprogramming?

3. Java 2 Enterprise Edition (J2EE)

J2EE architecture has been strongly promoted by the
proponents of this framework and e-business developer
community as the leading and, perhaps, the only
technology currently available that accomplishes the
above [7, 12, 13, 15, 16]. The primary force behind this
widespread adoption of J2EE is the fact that Java-based
applications can be delivered over any network,
operating system and hardware. J2EE technology
simplifies enterprise applications by basing them on

standardized, modular and reusable Enterprise
JavaBeans (EJB) components, providing a complete set
of services to those components, and handling many
details of application behavior automatically [9]. A
discussion of how the J2EE architecture maps to the e-
solution framework follows.

The J2EE Architecture Applied to e-business
Solution Framework
One way to address the merging of Java technologies
with the e-Business framework presented earlier is to
look at the Web based components. J2EE is a container-
based architecture and is, therefore, a suitable
technology to implement the MVC paradigm. Figure 4
illustrates this concept. Containers such as EJB, Web,
JavaServer Pages (JSP), servlet, applet, and application
client provide the component-specific services and will
be the basis of our discussions. The core of a design
pattern [12, p. 25] expressed as MVC that includes the
three major technologies of servlets, JSPs, JavaBeans
and EJBs will be included [9, 10].

Figure 4. Container Concept of J2EE Architecture

HTML Pages and Applets
Sharing Web pages between nodes on a network is most
often accomplished using HyperText Transfer Protocol
(HTTP) and its secured “cousin”, HTTPS. It allows
hypertext objects from remote hosts to be sent to other
nodes for display. Many of these documents are written
using the HyperText Markup Language (HTML) which
is one of a file formats available for document handling
on the World Wide Web (WWW). HTML tags are used
by the developer so that references to other objects,
images, sounds, video, fields, and other simple text
formatting can be managed by the documents. As a
result, Web documents make excellent input and output
forms when developing Web applications.

One way to utilize this feature in Java is to insert code
statements directly into the hypertext markup language
of a Web document. Such code statements may be
included either as embedded Java program classes or
embedded JavaScript. JavaScript is a Web scripting
language that is used to execute business logic in both
browsers and Web servers. Like all scripting languages,
it is used primarily to tie other components together or
to accept user input. HTML/JavaScript and HTML/Java
may be the preferred technology for many e-business
applications when used in combination with server side
JSPs and servlets.

An alternate approach is to construct Java mini-
programs that can be downloaded and executed as part
of a displayed Web page. This is an example of applet
development and deployment. The resulting component
that typically executes in a Web browser, can also
execute in a variety of other applications or devices that
support the applet-programming model. Several
problems do exist for this approach however. One is that
the required version of Java may not be supported by
the active Web browser and two, some business logic
may need to be downloaded from the Web server tying
up internet resources when the applet is initialized.
Many Web application developers stay away from
applets for these reasons alone.

Application Clients
If the developer wants to use a GUI as the principle
input or output form, then constructing form based
applications as a first-tier client program may be the
preferred approach. The application resides completely
on the client and executes in its own Java Virtual
Machine (JVM) providing full program control.
Strategically placed references to Web based objects
and direct access to databases make for a more powerful
front-end connection. This approach will also allow
database connectivity through JDBC for complete SQL
processing without passing through the Web application
server. Often times, developers prefer this approach for
e-business applications that are deployed to company
intranets, since this approach does offer considerable
performance enhancement.

Web Container
The Web component of the J2EE architecture must be
implemented using resources assigned to the Web
container and therefore serviced by the Web server
software. A Web server will host the affected Web site,
provide HTTP support, and execute and manage server-
side programs running under their own service engine
performing their own particular functions (servlets and
JSPs). The container provides an environment by which
business logic (Model or Domain layer) can be
separated form the view of an application’s state (View
or Presentation Layer) with user interaction providing
the control. Whenever a request is received through a
URL, the Web server will load the control (servlet) into
the appropriate JVM, if necessary, and then execute it.
Processing each user request through the various model
and view components to a completed task will most
likely end by generating a response back to the invoking
Web browser in the form of another Web page. The
Web container therefore houses components to
implement an application’s model, view, and controller
logic.

Servlet
In the MVC paradigm, the controller must provide the
logic necessary to process an HTTP request, reference
the affected business logic program, and select the
appropriate view response generator. In the Web server,

the servlet becomes the controller. It is simply another
Java program that extends the functionality of a Web
server. The servlet container provides the network
services over which a request may be validated,
privileges verified, input mappings made to the business
logic components (JavaBeans and EJBs), and response
logic invoked to insure a completed client request-
response cycle. In effect, servlets respond to user
interface messages and build logic that is necessary to
send dynamic contents back to web client.

JavaBean
The simple definition of a JavaBean expresses it as a
reusable software component that can be combined in
ways with other components to create applications.
JavaBeans are portable, platform-independent
components written in Java that enables developers to
write reusable logic once and run it anywhere [11, p. 2;
22, p. 19]. They enable developers to encapsulate
business logic into reusable software components, which
may be used with any application that requires the
encapsulated business logic. JavaBeans, along with
EJBs, are therefore used to implement an application’s
business rules or the model layer of the MVC pattern [7,
p. 11].

Java Server Pages (JSP)
Java Server Page (JSP) offers a template-based approach
with custom elements, scripting languages, and server-
side Java objects for integrating dynamic content into
Web pages [11, p. 1; 12, p. 181]. Typically the template
data is HTML or XML elements, and in many cases the
client is a Web browser. Once invoked, tags are used in
order to insert the properties of a JavaBean object and
related script elements into a JSP file for transfer. The
primary use of JSPs is to implement an application’s
view logic.

Enterprise JavaBean (EJB)
Enterprise JavaBean (EJB) is component architecture for
the development, deployment and implementation of
object-oriented, distributed, enterprise-level
applications. Multiple EJB classes may reside in the EJB
container, which is solely responsible for making each
EJB class available to the requesting client. EJBs
provide multiple client types (Web browsers, cell
phones, PDAs, Java client applications, etc.) access to
enterprise data and shared business logic [10, p. 10; 12,
p. 264]. Applications written using the EJB architecture
will implement a business task or business entity either
as an entity bean or as a session bean.

Entity Bean
An Entity Bean is a persistent data object. The object
will represent a view of information to be stored as well
as the actual data that can be saved in a variety of
persistent data stores; typically, a relational database
[12, pp. 262-263]. In brief, entity beans represent
permanent business data. They carry their own primary
key for object identification. If the container in which an

entity bean is hosted crashes, the entity bean, its primary
key, and any remote references survive the crash. Entity
beans that manage their own persistence are called
Bean-Managed Persistence (BMP) Entity Beans and
those that delegate this function to their container are
called Container-Managed Persistence (CMP) Entity
Beans.

Session Bean
A session is an object used by a servlet to track a user’s
interaction with a Web application across multiple
HTTP requests. A session bean is a form of EJB that is
created by a client and usually exists only for the
duration of a single client/server session. A session bean
performs operations such as calculations or accessing a
database for the client [20, p. 30]. It therefore represents
some type of business process [12, pp. 262-263]. While
a session bean may be transactional, it is not recoverable
should a system crash occur. Session bean objects can
be either stateless or they can maintain conversational
state across methods and transactions. If they do
maintain state, then the EJB container manages this state
if the object must be removed from memory. However,
the session beam object itself must manage its own
persistent data.

4. E-Business Solution Framework using Java
Technology (J2EE) Components

Having discussed an e-Business solution framework
based on the MVC paradigm and the technology that is
available to implement it, we are ready to see how his
technology may be is applied to build an application that
will comply with desirable characteristics of a
successful e-Business solution. As before, we will walk
through our simplistic scenario of a user accessing a
secured web site to make a credit card payment to
understand the implementation. Figure 5 illustrates the
process involved.

Figure 5. e-Business Solution Framework using Java

Technology (J2EE) Components

A user navigates to a secured web site to make a credit
card payment by typing in the site’s URL on the web
client. The Web client may be any Internet device such
as a PC, PDA, or even a pervasive appliance. This is
essentially a request to the HTTP server to retrieve the

web page file and deliver it as an HTML document to
the browser.

The server invokes the appropriate Java servlet to
determine the action to take based upon the request. For
example, if the request was for a payment form and was
made via a PDA, the servlet would invoke an
appropriate JavaServer Page (JSP), which would then
generate an HTML form document (perhaps with
embedded java code for local validation) suitable for
rendering on the PDA. The response could also
materialize the payment form as a Java applet or as Java
client application. Upon receipt, the web client renders
the payment form to the user. Hence, the servlet acts as
the interaction controller while the JSP handles the view
logic.

The user next enters the required data into the displayed
payment form and submits the request to the server for
further processing. The web client first validates user
input and then forwards the request to the server. This
local validation is easily handled by the embedded logic
written in JavaScript or by Java classes. Upon receipt,
the web server again invokes the servlet engine to
handle the request.

The Java servlet identifies the request as a credit card
payment. It then builds the logic necessary to process
this transaction by calling upon various JavaBeans and
EJB objects, including:

• A command bean to compute principle,
interest, and new account balance as well as
returning information for generating a
confirmation of the transaction;

• A command bean to invoke an EJB to
connect to database and retrieve data; and

• A command bean to return information for a
confirmation response.

Some of these are responsible for tracking session
parameters while others are responsible for executing
the business logic. In addition, Java servlet may call
upon a variety of services to successfully complete this
business transaction. Such services may include locating
appropriate JavaBeans and EJBs via directory services
offered by Java Naming and Directory Interface (JNDI);
EJB SQL processing via Java Database Connectivity
(JDBC); and external services such as bill pay via Java
Messaging Services (JMS). Again, as is evident, Java
servlet acts as a controller by controlling logic flow to
correctly chain the business logic needed to process the
transaction. On the other hand, JavaBeans and EJBs are
used to encapsulate the business logic.

The Information for a confirmation response is passed to
the appropriate JSP selected by the servlet via a
command JavaBean. The JSP is then responsible for
generating an HTML document, with embedded
JavaScript or Java program class if further processing is

required on the client, and delivering it to the web
client. The web client renders it as a web page and
presents it to the user for further action.

While simplistic in nature, this scenario does illustrate
the role of key J2EE technologies in implementing an e-
Business solution framework that is based on the MVC
paradigm. It further illustrates how the J2EE
architecture provides a mechanism to distribute
functional processing across the model, view, and
controller layers of this paradigm.

5. Summary

Implementing a successful e-Business solution requires
careful planning, both from strategic and technological
perspectives. It requires that information technology
professionals have clear understanding of the key design
issues as well as a solution framework that guides the
design and implementation of e-Business solution. This
paper examined an e-Business solution framework,
based on the Model-View-Controller (MVC) paradigm,
as presented by one of the leading providers of
enterprise-level e-Business application development
tools. The role of J2EE architecture as applied to this e-
Business solution framework was examined following
an introduction to the framework. Finally, the paper
discussed an approach to implementing the suggested
framework using Java-based technology. It is suggested
[8, p. 12] that e-Business applications designed and
deployed using this J2EE implementation of the
framework will, in all likelihood, result in applications
that:

• are server-centric, use thin clients, and therefore,
easy to manage;

• offer scalable architecture;
• offer robust security with good performance;
• foster reuse of enterprise business objects,

knowledge and experience;
• leverage current developer skills, data and

information; and above all,
• offer flexibility to deploy to a variety of

computing paradigms including wireless,
mobile, hand-held, and pervasive.

References

1. ___ "Check out these numbers," e.biz section,
Business Week, March 22, 1999.

2. ___ "e-Commerce: Not your grandfather's five-and-
ten.", Forrester Research Report, No. 617/520-
5791, 1998

3. ___ ”e-Commerce: transforms your web site into a
profit center," IBM White Paper,
http://www.software.ibm.com/ebusiness/e-
commerce, May 1999, pp 1-2.

4. ___ "e-Life: How the Internet is Changing America,"
Special Report, Newsweek, September 20, 1999,
pp. 26 - 64.

5. ___ "Gartner Group Reports That an e-Commerce Web
Site Costs $1 Million to Build, " GartnerGroup
Report, May 1999.

6. ___ "Ready for e-business: A CIO's Guide to e-business
applications", IBM White Paper,
http://www.software.ibm.com/ebusiness/cioguide,
May 1999, pp. 1-9.

7. ___ “IBM Application Framework for e-business-
Understanding Technology Choices,” IBM White
Paper,
http://www3.ibm.com//software/ebusiness/buildapps/
understand.html, May 2002, pp. 1-35.

8. ___”“IBM Application Framework for e-business: Web
Application Programming Model,” IBM White Paper,
http://www-
106.ibm.com/developerworks/features/framework/fra
mework.html, May 1999, pp. 1-13.

9. ___ “What is Java™ Technology? “ Sun Microsystems,
Inc. White Paper, http://java.sun.com/products/jsp/,
2000, pp. 1 – 5.

10. ___ “ Glossary of Java™ Technology-Related Terms,”
Sun Microsystems, Inc. White Paper,
Http://java.sun.com/docs/glossary.print.html, May
2002, pp.

11. ___ “ JavaServer Pages™,” Sun Microsystems, Inc.
White Paper, Http://javasoft.com/products/jsp/, May
2002, pp. 1-2.

12. Brown, Kyle, et. al., Enterprise Java Programming with
IBM WebSphere, Addison-Wesley, 2001.

13. Grehan, Rick., “A Scalar Force,” JavaPro, Fall 2002,
pp. 1 – 5.

14. Habibulah, Asif , and Jimmy Xu, “Take the Pain OUT
of Distributed Java,” JavaPro, July 2001, pp. 1-9.

15. Harkey, Dan, Ken Burgett, and Tim Stone, "From e-
Technology to e-Commerce," IBM News on Web
Application Servers, http://www-
4.ibm.com/software/webserver/harkey/hmay99.html,
May 1999, pp. 1-7.

16. Harkey, Dan, Ken Burgett, and Tim Stone, "From e-
Technology to e-Commerce," IBM News on Web
Application Servers, http://www-
4.ibm.com/software/webserver/harkey/hjune992.html,
June 1999, pp. 1-4.

17. Kalakota, R., Andrew B. Whinston (Contributor), and
Tom Stone (Editor). Frontiers of Electronic
Commerce, 1996.

18. Kalakota, R., Marcia Robinson, and Don Tapscott. e-
Business: Roadmap for Success, Addison-Wesley
Pub Co.,1999.

19. Korper, Steffano and Juanita Ellis. The e-Commerce
Book: Building the e-Empire, Academic Pr; 1999.

20. McLaren, Bruce J. and Constance H. McLaren. e-
Commerce: Business on the Internet, South-Western
Pub; 1999.

21. Murphy, Kevin and Maureen Flemming
(contributors), "A CEO's Internet Business

http://www.software.ibm.com/ebusiness/cioguide
http://www3.ibm.com//software/ebusiness/buildapps/�understand.html
http://www3.ibm.com//software/ebusiness/buildapps/�understand.html
http://www-106.ibm.com/developerworks/features/framework/framework.html
http://www-106.ibm.com/developerworks/features/framework/framework.html
http://www-106.ibm.com/developerworks/features/framework/framework.html
http://java.sun.com/products/jsp/
http://java.sun.com/docs/glossary.print.html
http://javasoft.com/products/jsp/
http://www-4.ibm.com/software/webserver/harkey/hmay99.html
http://www-4.ibm.com/software/webserver/harkey/hmay99.html
http://www-4.ibm.com/software/webserver/harkey/hjune992.html
http://www-4.ibm.com/software/webserver/harkey/hjune992.html

Strategy Checklist: The Leading Questions,"
GartnerGroup Report,
Http://gartner5.gartnerweb.com/public/static/hotc
/041999rr02.html, April 19, 1999.

22. Rosenberg, Jothi., “JavaX – An Approachable
Examination of Java, JavaBeans, JavaScript,
and All The Related Java Technologies, “
Http://developer.netscape.com/docs/wpapers
/javax/javax.html, 1997, pp. 1 – 36.

http://gartner5.gartnerweb.com/public/static/hotc/041999rr02.html
http://gartner5.gartnerweb.com/public/static/hotc/041999rr02.html
http://developer.netscape.com/docs/wpapers/javax/javax.html
http://developer.netscape.com/docs/wpapers/javax/javax.html

	Abstract
	
	HTML Pages and Applets

	Application Clients
	Web Container
	Servlet
	JavaBean

	Session Bean

