
ESTIMATION USING USE CASE POINTS

Mel Damodaran
Computer Science Program, University of Houston-Victoria

Victoria, Texas 77901, USA
 damodaranm@vic.uh.edu

and

Aqua Netta E. Washington

3131 Hayes Rd. #1001
Houston, TX 77082

AWashi4119@aol.com

Abstract

Use case models are increasingly being used to capture and describe the functional requirements of a software system.
There are different approaches and methods to successfully estimate effort using use cases. A few researchers have
tested the use case points method and analyzed their findings. The results, though not conclusive, indicate that the use
case points method has potential to be a reliable source of estimation, much like the function point method, and it can
have a strong impact on estimating the size of software development projects, especially when it is used along with
expert estimates. Also, since use case modeling is increasingly being utilized as the method of choice to describe the
software and system requirements and as a basis of design, development, testing, deployment, configuration
management and maintenance, it makes sense to have an estimation method that makes use of them. This paper looks
at the potential of successful application of the use case points method for estimating the size and effort of software
development projects, including the major limitations and offers some possible remedies.

Keywords: Use case points, software development effort estimation, software project estimation.

1. INTRODUCTION

To capture the functional requirements of a software
project, use case models are often employed. Use case
modeling is a technique that has been widely used
throughout the industry to describe and capture the
functional requirements of a software system. Use case
points is a new method for estimating software
development. Since use cases and scenarios are
developed as a normal part of requirements gathering
and analysis, and since they capture an accurate
representation of the users’ requirements, it makes sense
to base the more difficult task of estimation of size and
resources on them, as opposed to any other technique
such as function points, lines of code etc. Another
advantage of the use case based estimation is that use
cases are maintained with two-way traceable capability
using modern requirements management tools. Two-

way traceability may be maintained between use cases
and many other software engineering artifacts including
design, code, test documents, configuration
management, architecture and deployment models. Use
cases are at the heart of the “4+1” model of the Unified
Process. Use cases are usage-based and user centered,
rather than system- or design-oriented; it describes the
“what-”s rather than the “how-“s, hence they are more
robust and less changeable than function points or lines
of code. Use cases are artifacts, units that make sense to
the user in his/her domain.

Bente Anda (Anda 2001) compared the use case points
method with expert estimates made by experienced
software developers. The use case points method gave
an estimate that was close to the actual estimates
produced by experienced software developers. The
estimation method gave a satisfactory level of the
magnitude of relative error and the mean magnitudes of
relative error were within the estimated constraints. The

results of this study indicate that the use case points
method can be successfully used to estimate the
development of software effort.

Gustav Karner of Objectory AB (later acquired by
Rational Software) developed the use case points
method of software estimation (Karner 1993). Its
influences came from the classic function point method.
Arnold and Pedross (Arnold and Pedross 1998) have
also studied and reported their experiences using the use
case points method. Their particular method was similar,
but not identical to the one inspired by Karner. The
results that they found solidifies their initial hypothesis
that it is a reliable source for estimating software
development effort; on the other hand, they did notice
that the analyzed use case models differed in the aspect
of details and they concluded that the measured size
might have differed accordingly. They also found that
because use cases do not have a standard format it is
difficult to measure the software size based solely on
them.

There are also some alternative methods for estimation
based on use cases. One approach is to use the use case
model as a means for counting function points, which
can then be used to obtain an estimate of effort. As yet
another alternative, the use case model can also be a
means for estimating the number of lines of code and
this value can then be used to estimate effort (Anda
2001). These two methods are attempts to make use of
the industry’s extensive experience with estimation
using function points and lines of code.

Industry use of Use Case Points method of estimation is
very rare. One noteworthy example is the use of this
method by Rakesh Agarwal et al in Infosys, Bangalore
India for an Internet project they completed for a client.
(Agarwal 2001). The authors report that they used the
Use Case Points method “as a means of arriving at a
ballpark estimate of the effort involved in developing
the system.” One possible reason why there has not
been more widespread use of this method in industry is
that this method has not been incorporated in the popular
project estimation tools. Another reason may be the
relative newness of use case points, even use cases as a
standard method of describing requirements; without
good historical productivity figures, it is not possible to
use them to estimate effort and cost.

One would assume that based on the characteristics of
the use case model that it would be possible to form
estimates of size and effort. Since the use case model is
a widely used method to capture the functional
requirements, one would think that there should be a use
case based equivalent of the function point method.
However, there are several difficulties that tend to
prevent a use case based equivalent (Smith, 1999):

 There are many variations of use case
specification styles and formalities which
make it very difficult to define metrics.

 Use cases should represent an external actor’s

view of a system, and so a use case for a
500,000 SLOC system is at a quite different
level to a use case written for a 5,000 SLOC
subsystem

 Use cases can differ in complexity, both
explicitly as written, and implicitly in the
required realization;

 A use case should describe behavior from the

actor’s point of view, but this can be quite
complex, especially if the system has states, as
most do. So to describe this behavior may
require a model of the system that can lead to
too many levels of functional decomposition
and detail, in an attempt to capture the essence
of behavior.

The question remains, should we avoid use cases for
estimation and rely instead on the analysis and design
realizations that emerge? This presents another problem
in that it delays the ability to make estimates and will
not be satisfactory for a project manager who has chosen
this particular technology to estimate his project. Early
estimates will need to be employed; therefore other
methods would have to be used. It is more efficient for
the project manager to be able to obtain estimates early
for planning purposes, and then improve them iteration
by iteration, as oppose to delaying the estimation
process and proceeding in an unplanned fashion (Smith
1999.)

There is a large amount of published work on describing
and formalizing use cases, but there is very little on
obtaining estimation metrics from use cases. (Graham
1995) proposes the idea of using ‘task scripts’ as a way
to overcome the problems with use cases such as their
varying lengths and complexity. Graham’s ‘atomic task
script’ is the basis for collection of a ‘task point’ metric.
The problem with this task script is that it is very low-
level, not further decomposable, ideally a single
sentence. John Smith (Smith, 1999) tends to think that
the root tasks look very similar to low-level use cases
and the atomic task scripts like steps in use cases.
Therefore, the problem of “level” still remains.

In the rest of this paper, we first look at Karner’s method
of use case points. Then we compare it with the
function point method and analyze its implications as an
estimation method. We discuss its potential as an
estimation method, including some suggestions for its
wider acceptability.

2. KARNER’S METHOD

We will now briefly explain the steps in the use case
points method as used by Karner (Karner 93.) First,
categorize the actors in the use case model as simple,
average or complex and calculate the total unadjusted
actor weight (UAW) by counting the number of actors in
each category, multiplying each total by its specified
weighting factor, and then adding the points. Next,
categorize the use cases as simple, average or complex,
depending on the number of transactions, including the
transactions in alternative flows. Then the unadjusted
use case weights (UUCW) are calculated by counting the
number of use cases in each category, multiplying each
category of use case with its weight and adding the
products. The UAW is added to the UUCW to get the
unadjusted use case points (UUPC).

Next, the use case points are adjusted based on the
values assigned to a number of technical factors and
environmental factors. Each factor is assigned a value
between 0 and 5 depending on its assumed influence on
the overall project. This step will produce 3 different
formulas:

The Technical Complexity Factor:

TCF = 0.6 + (.01 * Tfactor)

The Environmental Factor:

EF = 1.4 + (-0.03 * Efactor)

Adjusted use case points:

UCP = UUCP * TCF * EF

Finally, the UCP is multiplied by a historically collected
figure representing productivity, such as a factor of 20-
staff hrs per use case point, to arrive at a project
estimate. The result is an estimate of the total number of
person hours required to complete the project.

 3. IMPLICATIONS OF THE USE CASE POINTS
METHOD OF ESTIMATION

Although the use case points method was influenced by
the function point method, they differ in several ways.
First, the function point method doesn’t require a
standardized notation. Conversely, use case points are
based on the use case model, which allows easier
development of estimation tools that automatically count
use case points. Secondly, there are international
standards counting function points. Use case points, on
the other hand, is still not a standard or standardized
practice. Therefore, there may be discrepancies from
organization to organization on how use cases are
developed and how use case points are calculated.

Use case models themselves have a direct impact on the
estimation process. For example, the number of actors
affects the estimates by combining actors with similar

descriptions into one actor, the superactor. This
increases the precision of the estimate and hence
counting the actors only once. Another problem is
whether included and extended use cases should be
counted when estimating software projects. In some
studies these particular types of use cases were omitted
and in others they decided to count the included and
extended use cases. It is clear that more research should
be done on this particular topic because the results are
too inconclusive. Another factor that affects estimation
is the level of detail that is involved in the use case
descriptions. The number of transactions within that use
case measures the size of each use case. It is very
difficult to determine the appropriate level of detail in
each transaction when constructing a use case. There
are no previous standards by which to determine the
correct level of detail for all projects. The level of detail
has been determined to affect the number of
transactions, which consequently has a direct impact on
the estimate obtained by the use case points method.

On the other hand, it does not seem very difficult for an
organization to develop its own standards for granularity
of analysis use cases and classify use cases as simple,
medium or complex. Each such use case thus becomes a
unit of functionality that must be incorporated into the
software, and in totality can give an indication of the
scope of the project, much like function points
determining the scope of a project. In both cases, non-
functional requirements and other constraints must be
included as adjustment factors to arrive at the final
estimate of the size of the project. If the organization
has standardization in its use of use cases across projects
and over time, it is possible to have a good database of
historical measurements from which reliable cost and
resource estimates may be determined.

4. CONCLUSION

In conclusion, use case points method of effort
estimation is a very valuable addition to the tools
available for the project manager. The method can be
very reliable or just as reliable as other effort estimation
tools such as COCOMO, function point and lines of
code. All of the estimation methods are susceptible to
error, and require accurate historical figures for
productivity in order to be useful within the context of
the organization. Use case points method is especially
valuable in those system development projects where
use cases are produced anyway. It is comparable to the
function point method that has become quite respected
throughout the industry. It provides estimates that are
sometimes better than what experts can provide to the
industry. Expert estimates should not be excluded from
the process of estimation; rather it should be used in
conjunction with use case estimates to ensure an
accurate estimate. Lastly, with standardization and kind
of national and international efforts that have helped the
function point method become widely accepted, this

method also has the potential to become a mature and
widely accepted estimation tool.

References

Agarwal, Rakesh, Santanu Banerjee and Bhaskar
Gosh, 2001, “Estimating Internet Based Projects: A
Case Study.” Quality Week 2001, Paper 6W2

Anda, Bente, D. Dreiem, Dag Sjøberg and Magne
Jørgensen, 2001, “Estimating Software Development
Effort Based on Use Cases - Experiences from
Industry”, In M. Gogolla, C. Kobryn (Eds.): UML 2001
- The Unified Modeling Language.Modeling Languages,
Concepts, and Tools, 4th International Conference,
Toronto, Canada, October 1-5, 2001, LNCS 2185
Springer

Arnold, P. and Pedross, P. 1998,” Software Size
Measurement and Productivity Rating in a Large-Scale
Software Development Department.” Forging New
Links. IEEE Comput.Soc, Los Alamitos, CA, USA,
pp.490-493.

Graham, Ian, 1995, Migrating to Object Technology.
Addison-Wesley, 1995.

Karner, G, 1993, “Metrics for Objectory”. Diploma
thesis, University of Linköping, Sweden. No. LiTH-
IDA-Ex-9344:21. December 1993.

Smith, John, 1999, “The Estimation of Effort Based on
Use Cases. Rational Software.Cupertino, CA.TP-171.
October,

http://www.simula.no/people_publication.php?people_id=12&internal_people=y
http://www.simula.no/people_publication.php?people_id=133&internal_people=n
http://www.simula.no/people_publication.php?people_id=51&internal_people=y
http://www.simula.no/people_publication.php?people_id=36&internal_people=y
http://www.simula.no/people_publication.php?people_id=36&internal_people=y
http://www.simula.no/publication_one.php?publication_id=286
http://www.simula.no/publication_one.php?publication_id=286
http://www.simula.no/publication_one.php?publication_id=286

	Mel Damodaran
	Computer Science Program, University of Houston-Victoria
	Victoria, Texas 77901, USA
	damodaranm@vic.uh.edu
	and
	Aqua Netta E. Washington
	3131 Hayes Rd. #1001
	Houston, TX 77082
	AWashi4119@aol.com

	The Environmental Factor:
	Adjusted use case points:
	UCP = UUCP * TCF * EF
	References

