

Lessons Learned in Teaching a Software Projects
Course

Dale Hanchey

dhanchey@bison.okbu.edu
Computer Science Department, Oklahoma Baptist University

Shawnee, Oklahoma 74804, USA

Abstract

Today, almost all computer job ads include an experience requirement. The phrase “2 to 5 years experience” is typical.
Why is this? Well, employers want more than employees who know how to do the work. Employers want people who
can be given a task and who can handle it with little or no supervision. In other words, they want employees who know
what to do. New college graduates may know the theory and possess the right skills, but will they know what to do
when assigned a typically unstructured problem. A software project course can help students “put it all together”. This
paper outlines how a software projects course has been done at one university and summarizes lessons learned from
sixteen years of experience in teaching that course.

Keywords: Projects course, software development, systems analysis and design, systems development life cycle

1. INTRODUCTION

In order to give students experience with a complete
software project, our university implemented a
software projects course in the 1986-1987 academic
year. The course is part of a two-course series with the
first course being a pre-requisite for the second. The
first course, systems analysis and design, is taught in
the fall semester. In that course, students learn how to
do a project. The second course, a projects course, is
taught the following spring semester. In it, students
actually complete a software development project. The
faculty member teaching the two courses has “real
world” experience as a project leader of both large and
small projects.

This paper describes both courses. It identifies things
to do and things not to do. The intention is to provide
“how to” instructions for anyone who wants to teach a
successful projects course.

2. ONE COURSE OR TWO?

Many schools attempt to do a software project as part
of a traditional systems and analysis and design
course. This does not work well because there is not
enough time. Too many compromises must be made.
Such compromises include team size, project size, and
last project phase completed. Unfortunately, a choice
usually is made between completing a very small

project and not completing a larger project. Neither
choice is really satisfactory. There is simply not
sufficient time in a single course to address both
systems analysis and design and a complete,
meaningful software project. For this reason, we chose
to require two courses. This means that some other
worthy theory or skills course cannot be required. It is
a question of priority.

3. THE ORIGINAL PLAN

The original plan was to teach a traditional systems
analysis and design course in the fall. In that course,
students would learn the traditional system
development life cycle (SDLC) and how to use it to
perform systems development. That course would be
primarily lecture with traditional SDLC assignments.
Included in the assignments would be such things as
data definitions, data flow diagrams, form designs,
report designs and screen designs.

The following spring, students would take a totally
self-contained projects course in which real (not
contrived academic) projects would be completed.
Project sponsors would be solicited from the
university community in the fall. Based on surveys,
students would be divided into teams of two to five
with one of those acting as project leader. Potential
projects would be presented at the beginning of the
spring semester. The course instructor would ensure

mailto:dhanchey@bison.okbu.edu

that approved projects were of the proper size (neither
too large nor too small). Teams would choose their
project from among those presented and approved by
the instructor. The project sponsor would also serve as
the primary user. Projects would be completed with
formal presentations made during the last week of the
spring semester.

4. ADJUSTING THE PLAN

When the original plan was implemented, most of it
worked well. However, it became clear that there was
not sufficient calendar time to complete projects of the
desired size. The problem was not so much the
number of student hours available or expended. The
problem was with user time. Meetings with users were
often delayed. Also, users required time to make
necessary decisions. This problem was addressed by
moving project selection back to the middle of the
previous fall semester. Student teams are required to
produce a requirements determination (RD) document
and present it during the last week of the fall semester.

A second problem was team size. Team sizes of two to
five students were tried. Experience has shown that
two is too few and five is too many. Two students per
team do not provide enough man-hours. Five students
per team create logistical problems in scheduling.
Three or four students per team provide the best
compromise between these man-hour and scheduling
constraints. If attrition were expected, a team size of
four would be preferable.

5. PROJECT COURSE FORMAT

Our project course is a standard three-hour course. It is
scheduled during a standard meeting time. All
members of a team are required to be in the same
section. The class is normally scheduled as a two-day-
a-week class. Except for presentations, the class
usually meets as a group for only about five minutes.
Teams are then released to work on their own or meet
with users.

A six-phase SDLC is used. The phases are as follows:

Phase 1: Requirements Determination (RD)
 Phase 2: External Design (ED)
 Phase 3: Internal Design (ID)
 Phase 4: Programming and Testing

(P & T)
 Phase 5: Training and Installation

(T & I)
 Phase 6: Maintenance

Phase 1 (RD) is completed in the fall semester. Phases
2 through 5 are completed in the spring semester.
Limited time is available for system maintenance.
However, it is not uncommon for students to be
involved in the maintenance of their systems long after
the projects course is over.

Students are required to address all major components
of an MIS. Students are tempted to address software
only. However, they must also address issues of data,
hardware, personnel and procedures. In particular,
dealing with users is emphasized.

Each student team is required to document each
project phase. Outlines for most of these documents
appear in the appendices. The project team and the
primary user determine the format of the user
document.

Teams do formal business presentations at the end of
phases 1, 2, 3 and 5. The purpose of these
presentations is to inform the instructor and the
primary user of the project status. Other faculty and
students are also invited to the final presentations.

6. PROJECT GRADING

Most assignments in the projects are graded on a team
basis. That is, all students on a team receive the same
grade. The instructor grades documents. Presentations
and software are graded by the instructor and by the
members of the other teams in the class.

There is some individual grading in the projects
course. There are peer evaluations within each team.
There is also a final exam taken by the individual. The
peer evaluations by fellow team members provide a
strong incentive for students to participate in their
projects.

7. PROJECT SOFTWARE TOOLS

Student teams determine the software tools for their
projects. Some choose tools that they already know.
Others choose tools that they want to learn. Either
way, it is a good learning experience. Most teams
choose wisely.

Many different software tools have been used on our
student projects. The most commonly used tools
include Visual C++, C++ Builder and Visual Basic.
Many different data base managers have been used.
Recently, students have been using Access and
Firebird.

In recent years, more projects have been done to
develop web sites. Common tools used on these
projects have been Dreamweaver, Flash, HTML, Java,
PHP and XML.

Some projects have used proprietary software for
specialized equipment such as ID card scanners. Both
magnetic stripe and bar code scanning have been used
on projects.

It is not required that all of the code for projects be
written by team members. In fact, students need to
learn to research to find legally available code. For
example, web chat software is available as a free

download. Teams do not and should not write such
code.

8. STUDENT BENEFITS

Students benefit from a projects course in several
ways. First, they gain experience working as part of a
team in doing a real, completed project. Students gain
experience in designing, developing, documenting and
presenting. Much is learned even if the project is not a
total success. Some of the students gain project leader
experience.

Second, students become intimately familiar with the
SDLC. Working on a complete project is a much
better way to learn the SDLC than by reading about it.
Students who have participated in the projects class
know what they must do in systems development.

Finally, the projects course experience makes
graduates much more confident in their ability to
contribute immediately. Some are willing to be project
leaders on their very first job. It is common for job
interviews to focus on the project course experience.

9. LESSONS LEARNED

Finding potential projects has not been difficult.
Projects are solicited via email and by personal
contacts. Typically, there are two to three times as
many projects as there are teams to do the projects.
This does present a small public relations problem.
Potential project sponsors should be informed in
advance that there is no guarantee that a project will
be selected by one of the teams. All project sponsors
should be thanked for their participation. Projects that
are not selected the first time that they are presented
may be needed and selected by a team in a future
class.

Project sponsors should be informed in advance that
they must commit approximately three hours per week
for the duration of the project. This time will be used
to meet with the project team and make needed
decisions.

Projects have revealed some common student traits.
Most computer students do not like to write. In
general, computer students need more practice in
presenting. Finally, some students perform well as an
individual but have trouble working in a group.

It is important that the projects course instructor
knows how to do a project. The instructor’s primary
job is to keep the projects focused and progressing.
Scope creep can be a major problem for some projects.
Some projects can stall when the team encounters a
problem. Prodding a project leader is sometimes
required. However, the instructor should not usurp the
power of the project leader.

It may be necessary to kill a project. This is also
common in the real world. Team members should then
be distributed to other teams.

A team size of either three or fours students works
best.

Class size should be limited to ensure that all teams in
a section present during a single week. For that reason,
it is recommended that no more than eight teams be in
a single section.

A software projects course serves as an excellent
“capstone” course for a computer degree program. It is
effective in ensuring that students integrate their
learned knowledge and skills. It provides a good “real
world” experience with real users. It also provides
experience working on a team.

Offering a successful projects course requires that the
instructor take some risks. There is an inherent lack of
control. Every project will not be a complete success.
Keep in mind that the primary objective is for students
to learn. Much can be learned from a failed project.
Another concern is the variety of software used.
Remember, it is not necessary that the instructor know
every tool that every team chooses to use.

Requiring a separate projects course does necessitate
giving up another required course. There is definitely
a trade-off. Based on our experience, it is worthwhile.

10. BIBLIOGRAPHY

DeMarco, T. 1979. Structured Analysis and System

Specification. Upper Saddle River, NJ: Prentice
Hall.

Hoffer, Jeffrey A., Joey F. George, and Joseph S.

Valacich. 2001. Modern Systems Analysis and
Design. Upper Saddle River, NJ: Prentice Hall.

IBM. 1982. Business Systems Planning. Pp. 237-314

in Advanced System Development/Feasibility
Techniques, ed. J. D. Couger, M. A. Colter, and
R. W. Knapp. New York: Wiley.

Kendall, Kenneth E. and Julie E. Kendall. 2001.

Systems Analysis and Design. Upper Saddle
River, NJ: Prentice Hall

McFadden, F. R., J. A. Hoffer, and M. B. Prescott.

1999. Modern Database Management, 5th ed.
Reading MA: Addison Wesley Longman.

Valacich, Joseph S., Joey F. George, and Jeffrey A.

Hoffer. 2001. Essentials of Systems Analysis and
Design. Upper Saddle River, NJ: Prentice Hall.

Yourdon, E. 1989. Managing the Structured

Techniques, 4th ed. Upper Saddle River, NJ:
Prentice Hall.

Yourdon, E., and L. L. Constantine. 1979. Structured

Design. Upper Saddle River, NJ: Prentice Hall.

APPENDIX A

SAMPLE SOFTWARE PROJECT SCHEDULE

 Week Topic
 1-3 External Design

4 External Design Presentations
 5-7 Internal Design
 8 SEMESTER BREAK
 9 Internal Design Presentations
 10-13 Coding & Testing
 14 Implementation
 15 Project Presentations
 16 Final Exam

APPENDIX B

SAMPLE SOFTWARE PROJECT GRADING

 Team Points
 2 Project phases (ED, ID) @ 100 points
 = 200
 presentation (40%)
 documentation (60%)

 Overall Project = 200

presentation (20%)
user document (20%)

 software (60%)

 Individual Points
 Comprehensive Final Exam = 200
 Peer (team member) evaluation = 100
 --
 Total Points = 700

 Grading Scale:
 A 90% 630-700
 B 80% 560-629
 C 70% 490-559
 D 60% 420-489

F <60% 0-419

APPENDIX C

REQUIREMENTS DETERMINATION
DOCUMENT OUTLINE

TITLE PAGE
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
I. PROJECT SCOPE
 A. CURRENT ENVIRONMENT
 i. DESCRIPTION
 ii. PROBLEMS
 B. SYSTEM REQUIREMENTS
 C. NEW SYSTEM

 i. DESCRIPTION
 ii. SOLUTIONS
II. FUNCTIONS
 A. FUNCTION LIST
 B. FUNCTION DIAGRAMS
III. INPUTS
IV. OUTPUTS
V. COST/BENEFIT STATEMENT
VI. IMPLEMENTATION PLAN
VII. SUPPORTING DOCUMENTS
VIII. REQUIREMENTS DETERMINATION

CONTROL SHEET

APPENDIX D

EXTERNAL DESIGN DOCUMENT OUTLINE

TITLE PAGE
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
I. INTRODUCTION
II. LAYOUTS
 A. LISTS
 B. REPORTS
 C. SCREENS
 D. FORMS
III. DATA ELEMENTS
 A. LISTS

B. DATA DEFINITION
WORKSHEETS

 C. EXISTING DATA BASES
IV. APPLICATION STRUCTURE
 A. LISTS
 B. HIERARCHY DIAGRAM
 C. IPO CHARTS
V. SUPPORT REQUIREMENTS
VI. EXISTING APPLICATIONS SYSTEMS

EVALUATION
VII. IMPLEMENTATION CONSIDERATIONS
VIII. EXTERNAL DESIGN CONTROL SHEET

APPENDIX E

INTERNAL DESIGN DOCUMENT

The document that is produced during the Internal
Design Phase of a project should include as a
minimum the following sections:

TITLE PAGE
TABLE OF CONTENTS
ACKNOWLEDGEMENTS
I. INTRODUCTION
II. DATA ORGANIZATION
 A. DATA BASES
 B. NON-DATA BASE FILES
III. PROGRAM SPECIFICATIONS
IV. SUPPORT REQUIREMENTS
V. IMPLEMENTATION SCHEDULE
VI. INTERNAL DESIGN CONTROL SHEET

The document may also include the following items if
the environment dictates a need for them:

PROGRAM TEST MATERIALS
DEMONSTRATION MATERIALS
SYSTEM RUN MATERIALS
EXTERNAL DESIGN MODIFICATIONS
(ADDITIONS, CHANGES, DELETIONS)

	Abstract
	1. INTRODUCTION
	2. ONE COURSE OR TWO?
	3. THE ORIGINAL PLAN
	4. ADJUSTING THE PLAN
	5. PROJECT COURSE FORMAT
	6. PROJECT GRADING
	7. PROJECT SOFTWARE TOOLS
	8. STUDENT BENEFITS
	9. LESSONS LEARNED
	10. BIBLIOGRAPHY
	APPENDIX A

	1-3	External Design
	
	
	APPENDIX B
	APPENDIX C

	APPENDIX D
	APPENDIX E

	INTERNAL DESIGN DOCUMENT

