
Cognitive Complexities Confronting Software Developers
Utilizing Object Technology

Allen Stix
Pauline Mosley

Computer Science
Pace University

Pleasantville, NY 10570
astix@pace.edu

pmosley@pace.edu

Abstract

Many managers are adopting object technology initiatives to develop high-quality products more efficiently.
Consequently, software practices are changing and there are repercussions across corporate and academic training. As
new practices promise to yield increasing benefits in the software development cycle, the complexity is becoming
proportionately greater.

This paper examines the notion that object technologists, like the workers in artificial intelligence, have underestimated
the complexities associated with the analysis, design, and coding of software from “virtual things” (i.e. objects). One
manifestation is that the information systems community making up the software infrastructure in many organizations
is resisting, misapplying, or only very slowly understanding objects. Another manifestation is that the academic
community is perplexed by the way that objects are changing the view of software and how, correspondingly, the
computer science curriculum must be adapted.

Going beyond merely documenting the cognitive complexities of object technology, this research identifies those
atomic-level constituents responsible for the shift from simple to complex with respect to analysis and design. This
paper concludes by proposing a pedagogical model that addresses these constituents and could thereby reduce the
learning curve for retraining practitioners and restore clarity to the computer science curriculum.

Keywords: Object-oriented programming, software engineering, software development, pedagogy

mailto:astix@pace.edu

1. STATEMENT OF THE PROBLEM

To survive, software organizations must have the ability
to adapt to a dynamically changing technological culture
(Holmberg and Mathiassen 2001). Literature suggests
that survival of the fittest is contingent upon how
quickly an organization can respond to technological
options and market needs, while at the same time
delivering high-quality products and services.

One way organizations’ have chosen to deal with these
changes is to implement object technology. This
methodology facilitates the use of reusable software
component libraries thereby producing better systems
structures that are adaptable and extensible. Although,
the benefits of object-oriented systems are recognized,
the cognitive complexities associated with these pure
object solutions present a documentably steep learning
curve, which can lead to longer development cycles and
more costly investments. Experts say that this long
learning curve prevents companies from using object-
oriented programming properly or taking advantage of
it, and that its benefits can’t really be taught, at least not
understood from a book (Sleeman 1986;Tilley 1996;
Reid 1993). In addition, studies have shown that object
technologists, similar to the workers in artificial
intelligence, have underestimated the complexities
associated with "virtual things" (i.e. objects).

There is little empirical proof that the complexities
associated with object technology are due to the inherent
nature of its paradigm or if it is due to improper learning
acquisition, which then leads to misapplication of the
technology. Mr. Fred Brooks (Brooks 1987), author of
No Silver Bullet, states that the essence of a software
system is the conceptual, almost inspirational, core of
logic and design that forms the underpinnings of the
system. He goes on to say that because the role of
accidental factors is limited and since technology can
help developers only with the accidental factors, no
development in technology can affect an order of
magnitude increase in the productivity of software
developers. Therefore, for organizations to capitalize on
the benefits of this technology and impact the quality of
software, there is a need to improve the usability of
objects and object technology to make the concepts
amenable to information technologists , but especially
programmers. If object-oriented programming is indeed
a new paradigm, then all of the old techniques
appropriate for other paradigms need to be re-examined
and possibly replaced by new techniques. This
replacement includes pedagogical techniques no less
than it includes programming techniques (Bergin 2000).

The goal of this paper is to identify atomic-level
properties that cause the knowledge acquisition in object
technology to shift from simple to complex with respect
to logic and design. In addition, this study seeks to
establish a foundation for a pedagogical model that will

reduce the learning curve for educating high quality
designers in industry and academia (the retraining of
commercial developers and the indoctrination of those
new to software development), thereby promoting this
technology to gain wider acceptance and proper
implementation usage.

2. OVERVIEW OF THE RESEARCH PROCESS

The focus of this research is to investigate the cognitive
factors that are likely to impact object-technology
adoption or implementation. Qualitative methodologies
will be used to obtain an understanding of the
complexities associated with object technology. The
objective is to further improve the human aspects of
computer utilization: ease of learning, ease of use,
software developer satisfaction with the system, and the
impact of software construction on quality systems.

 Research Methodology – Industrial Content
Analysis

A field study using qualitative research methods was
used to develop an understanding of how software
practitioners acquire their knowledge of object
technology. (Kaplan and Maxwell 1994) argued that
the goal of understanding a phenomenon from the
insider perspective is all but lost when textual data is
quantified. The qualitative method is aimed at
explanation and understanding, rather than prediction
and control. While the findings from such a study are
particularistic, (Eisenhardft 1989; Glaser and Strauss
1967; Yin 1989; and Orlikowski 1993) suggested that
“analytic generalization” from the results of such a study
to theoretical concepts and patterns, rather than
“statistical generalization” from samples to populations,
can be produced by combining insights generated
inductively through the field study with those obtained
from existing formal theory.

Qualitative research can be either positivist or
interpretive. Positivist studies attempt to test theory and
to increase the predictive understanding of phenomena
(Myers 1997). Orlikowski and Baroudi classified
information system research as positivist if there was
evidence of formal propositions, quantifiable measures
of variables, hypothesis testing, and the drawing of
inferences about a phenomenon from the sample to a
stated population. Interpretive studies attempt to
understand phenomena through the meanings that
people assign to them (Myers 1997), and are “aimed at
producing an understanding of the context of the
information system, and the process whereby the
information system influences and is influenced by the
context.” Interpretive research focuses on the full
complexity of human sense-making as the situation

emerges not on predefined dependent and independent
variables.

This study seeks to generate an understanding of how
object technology learning takes place and the
complexities associated with the learning process, rather
than to test a set of hypotheses. Thus, this study can be
classified as interpretive rather than positivist in nature.

This perspective is important because insights generated
from qualitative studies provide a useful complement to
quantitative computer science research by enabling
results to be understood and explained within the
business context. The qualitative methodology is
perfect for this type of study because it is appropriate as
a discovery methodology. This approach is conducive
to understanding the exact sources of the resistance and
the complexity of implementing an object technology.
(Recall, these are the barriers identified by (Kenneth
Kendall 1999)) associated with technological
advancement in general). Object technology is an
emerging technology, and unless we understand why
there are issues of resistance and complexity, this
technology will not advance to the technological
sublime phase.

This field study design enables the learning phenomena
and its application within an organization to be
understood in terms of the interactions of the conditions
and actions that exist within the organizational context.
Therefore, by incorporating multiple sources of largely
qualitative methods (interviews, surveys, direct
observation, etc.), the research strategy selected for this
study provides for triangulation of evidence and the
preservation of contextual factors, while minimizing the
likelihood of overlooking operative variables and
dynamic processes.

Participants

Participants for this study were recruited on the basis of
the researcher’s prior profession as a corporate
technology trainer for major Fortune 500 firms. The
goal was to obtain a representative cross-section of firms
and programmers with varying levels of experience and
expertise from which meaningful data for the study
could be derived. Programmers representing various
training backgrounds, genders, ethnicities, and various
corporate cultures were sought to provide a variety of
different perspectives regarding the use of object
technology.

Participants spanned all functional areas and were
diverse in organizational levels. The participants
included thirteen firms (two legal institutions, one
banking firm, four software development firms, one
utility company, one city organization, one life
insurance company, and three financial firms). Thus,
the data collected from these participants can be

considered to be a good representation of the domain of
possible responses.

Primary Data Collection Method - Interviews

Data for this study was collected using a variety of
methods, including personal interviews, surveys, and
on-site observation. Personal interviews were the
primary source of data. Interview questions were pre-
tested first with academic colleagues. Interviews for this
study were semi-structured, allowing for open-ended
responses and were guided by a set of questions
regarding participants’ programming experience and
knowledge of object technology. Information was
sought on object technology concepts and on
perceptions of the organizational environment, size,
structure, composition, location, training, and support.

Interviews were conducted at the participants’ place of
work in the participant’s office or work area. Additional
interviews were conducted via telephone for those
participants’ where a face-to-face interview was not
convenient. Interviews were scheduled with an intended
duration of two hours. Most interviews lasted 75
minutes and probably could have gone longer, but the
participants usually needed to return to work.

The purpose of the interviews was to gain an emic view
of learning object-technology with respect to logic and
design through the respondent’s perceptions, attitudes,
and opinions. Thus, while the planned set of questions
served as a guide for the interviews, each interview
proceeded in a slightly different fashion from the others.
That is, questions were not read verbatim, nor in exactly
the same order, to each participant. This approach
enabled a more natural flow of information and an
ability to probe more deeply into the striking responses
given by the participants. This approach also
encouraged the participant’s to say whatever came to
mind, and in any order, so as to capture their first
impressions and impulse reactions for consideration.

Secondary Data Collection Method - Questionnaires

Apart from the interviews, additional data was collected
via questionnaire. A cover letter explained the purpose
of the study, sought cooperation for participation, and
requested that the questionnaire be completed by a
programmer. Questionnaires were distributed and
returned by email. Firms were selected based on the
researcher’s prior corporate contacts.

Open format questions are those that ask for unprompted
opinions. The objective of the questionnaire is to learn
how software practitioners acquire their knowledge of
object technology as well as to gain insight into their
learning process of object technology. Thus, this type of
format is good for soliciting subjective data as well as
increasing the likelihood of receiving unexpected and
insightful suggestions. Questions were tested for

ambiguity, non-colloquial expressions, and succinctness.
In addition, all questions went through an “item-
rationale” process to instill a cohesive logical flow and
fulfill the objectives of the questionnaire.

A total of five firms were requested to submit their
responses via questionnaires. Table 1 shows the
industries represented in the combined sample of
interviews and questionnaires.

Industry Name Percentage Sample Size
Banking Citibank 7.7% n = 1
Diversified
Finance

J.P. Morgan
Jackson Lewis
Merrill Lynch

23.1% n = 3

Government Riverbay Corp. 7.7% n = 1
Health Services Metropolitan Life 7.7% n = 1
Legal Simpson, Thatcher &

Barlett, Amster,
Rothstein & Ebenstein

15.4% n = 2

Software Oracle
Voyetra Turtle Beach
MarketData Corp.
Kraft, Kennedy, Lesser

30.8% n = 4

Utilities NYNEX 7.7% n = 1

Total 100%
Table 1: Industry profile for respondents of questionnaires and interviews.

Table 2 highlights the respondent’s position profile. A
majority of respondents were programmers 66%; 17%
were analysts, 9% were managers, and 5% held top
information technology management positions. This
cross-section of position status will be significant in the
results.

Position N=51
Top Management (VPs, CIO, directors) 3
Middle management (mangers) 5
Analysts 8
Programmers 34
Table 2: Industry profile for respondents of questionnaires and interviews.

The approach used to analyze the data collected from the
interviews and the surveys is known among
methodologists in the social sciences as “iterative
content analysis” and “open coding.” These are
described in (Glaser and Strauss 1967; Yin 1989; and
Miles and Huberman 1994).

Iterative content analysis refers to examining the data as
it arrives (i.e. as it is collected) and modifying our
instruments in accordance with early finding.
Specifically, it enables new insights to be derived from
each round of interviewing before data collection from
the next round begins.

Open coding involves identifying themes within what
the respondents are saying. Its strength is that variables
and processes (i.e. operative factors and how they

interrelate) are discovered as opposed to being
preconceived. As a hypothesis-generating technique, it
is the most appropriate form of investigation when the
formulation of causal hypotheses would be premature.

Putting this as the social scientist does, iterative content
analysis and open coding techniques are able “to take
advantage of the uniqueness of a specific case and the
emergence of new themes to improve resultant theory.”
(Van Hillergersberg, Kumar, and Welke 1995). Data
from multiple individuals is continuously contextualized
to bridge the settings of the software practitioners with
the theoretical framework of the study. This type of data
analysis entails going back and forth between data and
concepts, and begins early in the data collection process
rather that at the end. For the sake of convenience, we
shall refer to this approach concisely as content analysis.

3. RESULTS - THE THEMES THAT EMERGED

The content analysis revealed a number of common
themes in the interview and questionnaire data. The
most prevalent emergent theme was the practitioner’s
response to the question: How did you learn object
technology? A full 89% responded that they were self-
taught. This pattern of responses strongly suggests that
corporate infrastructures do not perceive training as a
high priority. Or, the formal training that practitioners
do receive is not adequate; thus they resort to teaching
themselves. Additionally, only 22% perceived an
increase in the quality of object-oriented software
systems. This could be attributed to the fact that the
practitioners are self-taught and are misapplying or not
completely applying the technology; thus, they are
unable to achieve the paradigm’s rich benefits. Table 3
summarizes the relative frequency of the responses by
the participants.

Percentage of Times the Themes were Identified in the Responses Percentage of
Responses

Knowledge Acquisition
 Obtained by attending a learning institution 33%
 On-the-job-training and hands-on practice 22%
 Obtained by reading object-technology textbooks (self-taught) 89%
Object Technology Challenges
 Understanding objects 86%
 Understanding how to design 71%
Software Engineering Practices
 Increased efficiency 44%
 Increased effectiveness/quality 22%
Effective Programming
 One year needed to become an effective programmer
 Two years needed to become an effective programmer 11%
 Three years needed to become an effective programmer 44%
 More than three years needed to become an effective programmer 22%
 Learning institutions should teach design to better prepare students 67%
Table 3: Frequency of the predominant themes from respondents who report

 sharing this experience, inclination, or belief.

Knowledge Acquisition Theme

Most participants stated that they learn object-oriented
programming language predominantly by reading object

technology textbooks and learning on their own.
Reasons given by the participants for this included:

(1) Not educating and enlisting management
support before switching to object technology,

(2) Upper management unwilling to allocate the
necessary time and resources for design up
front and for testing following development

(3) Fear of letting management know that object
technology requires support and training

As stated by the participants:

In this industry, everything evolves around deadlines. If
upper management’s expectations aren’t met, it may
mean a loss of a job or demotion. So when I was told to
learn object technology, I did it by reading handouts,
textbooks, and asking questions as I went along. I
received no formal job training.

Initially, I learned it on my own. Following that, I took
advanced courses. Much of my growth in object-
oriented technology has occurred from studying the
practices of the experts combined with theory and a lot,
a lot, a lot of hands-on practice. Practice is the key.
But, good instructions and a solid foundation are
invaluable.

Others stated that they learned object technology on the
job. These respondents perceived their firms to be very
supportive in their learning process. Many of them
expressed that because they had been with their
respective firms for over 15 years, their experience
along with their corporate culture provided an
environment in which they could learn object
technology from other professional programmers
regardless of deadlines.

Object Technology Challenges Theme

Many of those interviewed perceived the biggest
challenge of learning object technology is understanding
objects. Participants cited a number of difficulties in
trying to learn, implement, and maintain object-oriented
systems. The following comments illustrate this point:

The most challenging part in learning object technology
is thinking in terms of objects rather than functions.

The most difficult part for me is design. Schools do not
teach design, therefore acquiring this skill is very, very
hard.

For the individual coming from a procedural
background, learning object technology can be difficult.
This is because we have the tendency to think and design

procedurally, while at the same time implementing via
the use of an object-oriented language.

The Java classes was difficult as well as switching from
procedural to object-oriented thinking is key.

This pattern of responses could be because an
overwhelming majority of the respondents learned a
procedural language as their first language and are
shifting to object technology. As one participant stated:

If someone has learned procedural first, they must
“unlearn” the old stuff first.

If this unlearning is needed, one wonders how a
practitioner can learn object technology while
continuing to be responsible for building or maintaining
procedural software. Also, this suggests that perhaps
further research is warranted for those programmers
whose first language is not an object-oriented one.
More of these individuals are coming down the pike.

Software Engineering Practices Theme

Participants perceived that use of object technology
makes systems more effective and efficient.
Programmers stated that once they survive the learning
curve, they possess a higher degree of control on
systems, and this software approach enables them to
increase the control over the execution of software-
related duties. As noted by one participant:

The power of object-oriented programming well
outweighs any grief experienced while learning object-
oriented programming concepts. Eventually one
realizes that object-oriented programming, with all its
power, is actually easier than procedural coding,
because of how it relates to everyday life… objects with
properties and methods, driven by events.

With the use of object technology, my firm is able to
implement new systems and reengineer legacy systems
better than before.

Most study respondents perceived that they were able to
make a stronger and more cohesive system through the
use of this technology, even if they fully didn’t
understand the technology. Thus they did not dispute
object technology benefits as they can see that it applies
practically to software engineering.

Effective Programming Theme

Almost half of the participants, 44%, responded that it
takes three years to become an effective object-oriented
programmer. Maintaining complex object-oriented
systems requires more than syntactical program
constructs; it entails being knowledgeable in a much
larger skill set that is essential for reusability and
extensibility. Participants perceived that the knowledge

acquisition of these skills requires three years before the
programmer becomes what they consider fully effective.

However, participants who were procedural
programmers for over 10 years perceive the time to be
shorter. They view the acquiring of the skills as merely
a language transfer as opposed to learning logic and
design. In other words, they are viewing the migration
to an object-oriented language as the same kind of
switch they experienced earlier in going from one
procedural language to another. They are insensitive to
the migration as a full paradigmatic shift. This may
provide a rationale for why 11% stated only one year is
needed.

Participants suggested that one way learning institutions
could better prepare them for their careers would be to
offer courses in design. Design was perceived as the
major challenge for programmers to be effective. As
stated:

The number of years it takes a programmer to be
effective is contingent upon his or her job title. A
programmer needs one to two years; a designer needs
three to four years. A designer needs more time to
become effective. One can only become an expert by
practice and experience. That is why I say three to four
years.

It took at least three years to get traction and about five
years to be effective.

Object orientation is not harder than procedural, it is
just a different mind set. However, I would say that it
takes three to five years to become effective. If someone
has learned procedural first, they must unlearn the old
stuff first.

That’s hard to say. I guess someone who is fairly
intelligent, with decent computer savvy, could become
relatively proficient in an object-oriented programming
language within three years, one to two for Visual Basic
and two to three for C++.

4. TYPOLOGY: ORTHOGONAL SOURCES OF
COMPLEXITY

 The data collected en masse strongly suggests that there
are specific orthogonal sources of complexity.
Specifically, six different areas make learning to
program in the object paradigm difficult.

 Understanding the Notion of an Object as a Virtual
Thing

An object may model something real or imagined,
something tangible or intangible, or something small or
large. When an object models something real,

sometimes contrived or fictitious properties may
supplement. One of our respondents states “… that it
may take a seasoned systems analyst six months to two
years to key-in to what an object is, but once the concept
hits, they see objects everywhere.”

Introductory programming textbooks all seem to open
by giving a nod to objects, but these discussions are too
superficial to be helpful and the theme is left to dangle.

 Understanding the Concepts that Arise in
Connection with Objects

Object-oriented concepts include such things as data
members to hold state and function members (methods)
that offer services, public and private members,
constructors, static members, and inheritance.

These concepts unfold to include everything associated
with identifying the objects comprising a system, their
responsibilities, and their collaborators. In addition,
there are issues of factoring and planning for extensible
derivation hierarchies so that a polymorphic executive
can interact with objects regardless of their type. The
principles of object design become so encumbered that
patterns are needed for guidance (e.g. the Facade
pattern, the Adapter pattern, the Decorator pattern, and
so on [37, 80].

 Learning the Mechanics for Managing Objects and
Associated Constructs

Learning the mechanics includes learning to use
keywords, structural mechanisms, and conventions for
declaring classes and extending classes; allocating and
using objects; and everything else that follows. For
example, this learning includes accessing the invoking
object (this) within a method, overriding an inherited
method, accessing an overridden method, and chaining
constructors.

As these constructs are studied, complications arise as
structural inevitabilities. For instance, from inheritance
comes the question of how to treat the private members
of a superclass within a subclass—this need gives rise to
the protected access status. From the object idea of
factoring, comes the construct of an abstract class and a
slew of rules. Other issues that are inextricably bound-
up with the nature of objects are the notions of object
identity versus object equality (e.g. == versus equals ()).

The complications above tend to transcend specific
languages, but different languages may exclude certain
conceptual possibilities (e.g. multiple inheritances),
introduce others (e.g. interfaces), and handle elements in
distinctive fashions (e.g. the shadowing of fields). In
Java all objects are dynamic and all methods are virtual.
In C++ primitives do not need wrapper classes, but the
language needs templates because C++ lacks a
subsuming object hierarchy.

 Obtaining Hand-On Experience and Practice

Hands-on experience and practice is less generous
because object-oriented programs require more
scaffolding: Many lines of code are needed to set things
up and see them work. Experimenting with abstract
classes and constructor chaining requires a much more
elaborate test bed than experimenting with for loops.

 Learning the Diagrammatic Tools for Conveying
Object Design

Today the superceding and universally used
diagrammatic tool is the Unified Modeling Language.
This language is extremely expressive but very
complicated. While a flow chart is intuitively obvious,
as are hierarchical input and output diagrams, the
Unified Modeling Language is anything but. Whole
professional books are devoted to the language. One
cannot be a well-equipped object analyst and designer
without knowing how to read and write elements
including use case, activity, and interaction diagrams, as
well as sequence, class, state, and deployment diagrams.

 Applying Advanced Programming Constructs

Apart from the objects themselves, applications require
more features, and languages offer more constructs than
ever before. One cannot go very far in Java without
implementing a graphical user interface, catching
exceptions, using threads, writing client-server
programs, and the like. There is more to learn than ever
before.

5. PROPOSED COGNITIVE MODEL

The objective of this model illustrated in Figure 1 is to
present a larger overview of the proposed approach to
combating cognitive overhead. The top two boxes show
the development of one skill set: that relating directly to
programming (or developing the problem solving and
coding ability to implement algorithms). The bottom
two boxes show the development of the independent
skill set relating to “object” think analysis and design.
The box on the far right represents the fusion of these
skill sets into a whole that is greater than the sum of its
parts.

Relative to the implications of the research, it is clear
that when new content comes into a course that had been
already full, something has to come out. So far, we
 (collectively) have not decided what has to be removed
and where it will be re-housed.

This model suggests that two independent skill sets be
learned concurrently. The object aficionados insist on
learning objects first. The bottom-up contingent asserts
learning programming problem solving is more

fundamental than learning about the packaging of logic

 Figure 1: Object-Technology Cognitive Model

into objects. This typology supports both these views in
that skill set one, programming logic, will implement a
procedural approach, and skill set two, advanced
programming, will implement a top-down approach. In
addition, the model identifies exactly what objects are
adding to the curriculum and, by so doing, provides the
basis for concrete, reasoned, productive discussion.

6. CONCLUSION

As the information systems community responds to the
market’s demand for object technologists, many
cognitive issues need to be addressed. Faculty members
will need to consider issues, such as the current
curriculum, book and software adoption, student’s skill
sets, and faculty development. The results of our
qualitative study, from our interviews and
questionnaires – indicate that two major challenges
software practitioners are confronted with are:
understanding objects and understanding how to design.
Furthermore, the evidence gathered suggests that
programming constructs and design are two independent
skill sets that must be learned concurrently to effectively
implement and achieve the benefits of object
technology. Also, presented were six orthogonal
sources of complexity that makes learning to program in
the object paradigm difficult. Lastly, a proposed model
was presented to combat cognitive overhead. Object
technology is an area that requires continual training.
Faculty members need the opportunity to explore new
pedagogical models to combat the cognitive
complexities associated with object technology to meet
the demands of teaching object technology courses.

7. AUTHOR BIOGRAPHIES

Allen Stix is an associate professor in the
Computer Science Department at Pace
University. Among the courses he has
taught since joining the computer science
faculty in 1982 are software engineering,
algorithms and data structures, artificial

intelligence, compiler design, and both fundamental and
advanced programming. He has written articles on C++,
Java, viruses, and graph theory; and, with Susan M.
Merritt, has written the textbook Migrating from Pascal
to C++ (Springer-Verlag). He holds a Ph.D. from the
University of Pittsburgh where he studied mathematical

modeling.

Pauline Mosley is a lecturer at Pace
University., she received her D.P.S. in
Computing from Pace University. She
is the recipient of the Award for
Teaching Excellence from Who’s Who

Among America’s Teachers. Her research interest
includes cognitive factors that are likely to impact object
technology adoption or implementation and evaluating
the effects of object technology on software engineering
decision outcomes and processes.

8. REFERENCES

Ackerman, P.L., Sternberg, R.J., and Glaser, R. (1989)

Learning and Individual Differences, (Freeman:
New York, New York).

Arnow, D. and Weiss, G. (2002) Introduction to

Programming Using Java: An Object-Oriented
Approach, (Addison-Wesley: Reading:
Massachusetts).

Baldwin, C.Y., and Clark, K.B. (1997) “Managing in an

Age of Modularity”, Harvard Business Review, vol.
75, no.2, 84-93.

Beaubouef, T., Lucas, R., and Howatt, J. “The
UNLOCK System: Enhancing Problem Solving
Skills in CS-1 Students”, ITICSE 2000 Working
Group Reports, vol. 33, no.2, June, 43 –46.

Beck, K. (2000) Extreme Programming Explained

Embrace Change, (Addison-Wesley: Reading,
Massachusetts), 177-179.

Bellin, D., and Simone, S.S. (1997) The CRC Card

Book (Addison-Wesley: Reading Massachusetts), 1-
10.

Berard, E. (1993) Essays on Object-Oriented Software

Engineering (Addison-Wesley).

Bergin, J. (2000) Student Design Spring. Online

Internet. http://csis.pace.edu/~bergin/PedPat1.3.html

Bergin, J. Online. Internet. “Fourteen Pedagogical

Patterns”, Pedagogical Patterns Project: http;//www-
lifia.info.unlp.edu.ar/ppp/

Bergin, J., McNally M., Goldweber M., Hartley S.,

Kelemn C., Naps T., and Power C. (2000) “Non-
Programming Resources for an Introduction to CS:
A Collection of resources for the first courses in
Computer Science”, “SIGCSE, Vol. 33, #2, June 89-
100.

Bergin, J., Stehlik, M., Roberts, J., and Pattis, R. (1997)
Karel++: A Gentle Introduction to the Art of
Object-Oriented Programming, (John Wiley and
Sons, Inc.: New York).

Booch, G. (1994) Object-Oriented Systems Analysis and

Design (Addison-Wesley: Reading
Maccachusetts).

Brooks, F.P.(1987) “No Silver Bullet: Essence and

Accidents of Software Engineering,” in IEEE
Computer 20, 4, 10-19.

Brooks, R. (1983) “Towards a theory of the

comprehension of Computer Programs”,
International Journal of Man-Machine Studies, no.
18, 543-554.

Cackowski, D., Najdawi, M., and Chung, Q.B. (2000)

“Object Analysis in Organizational Design: A
Solution for Matrix Organizations”, Project
Management Journal, vol. 31, no. 3, 44-51.

Caputo, K. (1998) CMM Implementation Guide:

Choreographing Software Process Improvement,
(Addison-Wesley: Reading, Massachusetts).

Carbone, A., Hurst, J., Mitchell, I., and Gunstone, D.

“Characteristics of Programming Exercises that
Lead to Poor Learning Tendencies: Part II”, The
Sixth Annual SIGCSE/SIGCUE Conference on
Innovation and Technology in Computer Science
Education, vol 33, no.3, 93-96.

Coad, P., and Yourdan E. (1991) Object-Oriented

Analysis (Prentice-Hall: New York, New York),
second edition.

Coad, P., and Yourdan E. (1991) Object-Oriented

Design (Prentice-Hall: New York, New York), first
edition.

Cockburn, A. (2000) “Selecting a Project’s

Methodology”, IEEE Software”, July/August, 64-
70.

Cornelius, B. (2001) Understanding Java, (Addison-

Wesley: England)

Daly J., Brooks A., Miller J., Roper M., and Wood M.

(1996) “Evaluating Inheritance Depth on the
Maintability of Object-Oriented Software”,
Empirical Software End., An International Journal,
vol. 1, no. 2, 109-132.

Decker, R. (1993) “Top-Down Teaching: Object-

Oriented Programming in CS 1”, Association of
Computing Machinery, SIGSCE, vol.1.

http://csis.pace.edu/~bergin/PedPat1.3.html

Deitel and Deitel. (1994) C++ How To Program
(Prentice Hall: New York, New York), 1-4.

D’Souza, D. (1997) “Objects: Education vs Training”,

ICON Computing, http://www.iconcomp.com/papers

Eisenhardt, K.M. (1989) “Building Theories From Case

Study Research”, Academy of Management Review,
vol. 14, no. 4, 432-450.

El-Najdawi, M.K., and Liberatore, M.J. (1997) “Matrix

Management Effectiveness: An Update for Research
and Engineering Organizations”, Project
Management Journal, vol. 28, no. 1, 25-31.

Entwistle, N.J., and Ramsden, P. (1983) Understanding

Student Learning, (Croom Helm: London).

Eyring, J.D., Johnson, D.S., and Francis, D.J. (1993) “A

Cross-Level Units-Of-Analysis Approach to
Individual Differences in Skill Acquisition”, Journal
of Applied Psychology, vol. 78, 805-814.

Fichman, R. and Kemerer C.K. (1997) “Object

Technology and Reuse: Lessons from the Early
Adopters”, Computer, vol. 30, no.10, 47-59.

Fisher, S.L., and Ford, J.K. (1998) “Differential Effects

of Learner Effort and Goal Orientation on Two
learning Outcomes”, Personnel Psychology, vol. 51,
397-420.

Gamma, E. (1995) Design Patterns (Addison-Wesley).

Glaser, B.G. and Strauss, A.L. (1967) The Discovery of

Grounded Theory: Strategies for Qualitative
Research, (Aldine: New York).

Gibbon, C.A., and Higgins, C.A. (1996) “Towards a

Learner-Centered Approach to Teaching Object-
Oriented Design”, The Proceedings of the third
Asia-Pacific Software Engineering Conference,
p.110- 117.

Gora, M. (1996) “Object-Oriented Analysis and Design:

The Good, the Bard, and the Ugly of OOAD
Methodologies, and Various Approached to Using
Them”, DBMS, May, 4-19.

Holmberg, L. and Mathiassen L. (2001) “Survival
Patterns in Fast-Moving Software Organizations”,
Focus,

Holt, R. (1994) “Introducing Undergraduates to Object

Orientation Using the Turing Language”, SIGCSE”,
vol. 26 no. 1, 324-328.

Isoda, S. (1995) “Experiences of a Software Reuse
Project”, J. System and Software, vol. 30, no. 3, 171-
186.

Kaplan, B., and Maxwell, J.A. (1994) “Qualitative

Research Methods for Evaluating Computer
Information Systems”, Thousand Oaks, CA Sage.

Kamin, S., Mickunas, M., and Reingold, E., (2002) An

Introduction to Computer Science Using Java,
(McGraw-Hill: New York, New York).

Kendall, K. (1999) Emerging Information Technologies

(Sage Publications: Thousand Oaks, California), 2-
3.

Koffman, E. and Wolz, U. (1999) Problem Solving with

Java, (Addison-Wesley: Reading, Massachusetts).

Kolling M., and Tosenberg, J. (2001) “Guidelines for

Teaching Object Orientation with Java”.
Proceedings of the Sixth Annual SIGCSE/SIGCUE
Conference on Innovation and Technology in
Computer Science Education, 33-36.

Lang, J., and Bogovich, B. (2001) “Object-Oriented

Programming and Design Patterns”, ITICSE 2001
Working Group Reports, vol. 33, no.4, 68-70.

Lewis, J. and Loftus, W. (1998) Java Software

Solutions: Foundations of Program Design,
(Addison-Wesley: Reading, Massachusetts).

Liang, Y. Daniel (2001) Introduction to Java

Programming- Third Edition, (Prentice Hall:
Englewood Cliffs, New Jersey).

Martin, J. and Odell, J. (1995) Object-Oriented

Methods: A Foundation, (Prentice Hall: Englewood
Cliffs, New Jersey).

McHardy, and Gordon, R. (1999) “Bottom-up or Top-

down: A Comparison of Two Methods for Teaching
a Method Skill”, Dissertation Abstracts Online,
MAI, 38, no.2, 322.

Meyer, B. “The Reusability Challenge”, Interactive

Software Engineering, vol. 29, no. 2, February, 76-
78.

Miles, M.B., and Huberman, A.M. (1994) Qualitative

Data Analysis: An Expanded Sourcebook, (Sage:
Thousand Oaks, CA).

Morisio M., Ezran M., and Tully C. “Success and

Failure Factors in Software Reuse”, IEEE
Transactions on Software Engineering, vol. 28, no.
4, 340-356.

Myers, M.D. (1997) “Qualitative Research in
Information Systems”, Management Information
Systems Quarterly, vol. 21, no. 2, 241-242.

Orlikowski, W.J. (1993) “CASE Tools as

Organizational Change: Investigating Incremental
and Radical Changes in Systems Development”,
Management Information Systems Quarterly, vol.
17, no.3 , 309-340.

Orlikowski, W.J. and Baroudi, J.J. (1991) “Studying

Information Technology in Organizations: Research
Approaches and Assumptions”, Information Systems
Research, vol. 2, no. 1, 1-28.

Pennington, N. (1987) “Stimulus Structures and Mental

Representations in Expert Comprehension of
Computer Programs”, Cognitive Psychology, no. 19,
295-341.

Pintrich, P.R., and Garcia, T. (1993) “Intra-individual

Differences in Students’ Motivation and Self-
regulated Learning, Zeitschrift fur Padagogische
Psychologie, vol.7, 99-107.

Poulin, J. (1999) “Reuse: Been There, Done That”,

Communications of the ACM, vol. 42, no.5, 98-100.

Pressman, R. (1997) Software Engineering A

Practitioner’s Approach, (McGraw-Hill: New
York, New York).

Reid, R. (1993) “The Object-Oriented Paradigm in

CS1”, SIGCSE, Vol. 25, #1, 265-269.

Rentsch, T. (1982) “Object-Oriented Programming”,

SIGPLAN Notices, vol. 17, 12.

Shalloway, A. and Trott J. (2002) Design Patterns

Explained A New Perspective on Object-Oriented
Design (Addison-Wesley: New York), 3-20.

Sheetz, S.D., Irwin, G., Tegarden, D.P., Nelson, H.J.,

and Monarchi, D.E. (1997) “Exploring the
Difficulties of Learning Object-Oriented
Techniques”, Journal of Management Information
Systems, no. 14, 2.

Sleeman, Derek. (1986) “The Challenges of teaching

computer programming”, Communications of the
ACM, vol. 29, issue 9, 840-841.

Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, J.

(1982) “What do novices know about
programming?”, Directions in Human Computer
Interaction, 27-54.

Staugaard, A. (1999) Java For Computer Information

Systems, (Prentice Hall: Upper Saddle River, New
Jersey).

Tilley, S.R., Paul S., and Smith, D.R. (1996) “Program

Comprehension”, Proceedings of the Fourth
Workshop on Program Comprehension, IEEE
Computer Society, Los Alamitos, CA, 19-28.

Tracz. W. (1995) “Confession of a Used-Program

Salesman: Lessons Learnt”, Proceedings Symposium
Software Reliability, 11-13.

Van Hillegersberg, J., Kumar K., and Welke R. (1995)

“An Empirical Analysis of Performance and
Strategies of Programmers New to Object-Oriented
Techniques”, Proceedings of the Seventh Workshop
Psychology of Programming Interest Group,
January.

Warr, P.B., and Allan, C. (1998) “Learning Strategies

and Occupational Training”, International Review of
industrial and Organizational Psychology, vol. 13,
83-121.

Warr, P.B., and Bunce, D.J. (1995) “Trainee

characteristics and the outcomes of open learning”,
Personnel Psychology, vol.48, 347-375.

Warr, P.B., and Downing, J. (2000) “Learning

Strategies, Learning Anxiety and Knowledge
Acquistion, British Journal of Psychology, vol. 91,
311-333.

Webster, B. (1995) Pitfalls of Object-Oriented

Development (M & T Books: New York, New
York), 52-55.

Weiss, D.M. and Lai, C.T.R. (1999) Software Product-

Line Engineering: A Family-Based Software
Development Approach, (Addison-Wesley).

Westfall, R. (2001) “Hello, World Considered

Harmful”, Communications of the ACM, vol.44,
no.10, 129-130.

Wieringa, R. and White. (1998) “A Survey and Object-

Oriented Software Specification Methods and
Techniques”, Communications of the ACM
Computing Surveys, vol. 30, no.4.

Yin, R.K. (1989) Case Study Research Design and

Methods, (Sage: Thousand Oaks, CA).

	Abstract
	1. STATEMENT OF THE PROBLEM
	2. OVERVIEW OF THE RESEARCH PROCESS
	Research Methodology – Industrial Content Analysis
	Participants
	Primary Data Collection Method - Interviews
	Secondary Data Collection Method - Questionnaires
	3. RESULTS - THE THEMES THAT EMERGED
	Knowledge Acquisition Theme
	Object Technology Challenges Theme
	Software Engineering Practices Theme
	Effective Programming Theme

	4. TYPOLOGY: ORTHOGONAL SOURCES OF COMPLEXITY
	Understanding the Notion of an Object as a Virtual Thing
	Understanding the Concepts that Arise in Connection with Objects
	Learning the Mechanics for Managing Objects and Associated Constructs
	Obtaining Hand-On Experience and Practice
	Learning the Diagrammatic Tools for Conveying Object Design
	Applying Advanced Programming Constructs

