

Using Simulation In IS Curriculum 2001

Robert F. Zant
Department of Applied Computer Science

Illinois State University
Normal, IL 61790

Abstract

The simulation of a computer is not commonly used in information systems curricula. However, the use of simulation
is popular among computer science faculty. Simulation allows the visualization of the internal workings of a computer
and a “hands-on” interface at the machine level. This paper describes the simulation of a simple computer architecture
that is appropriate for use in IS’01.1 – Fundamentals of Information Systems, IS'01.4 – Information Technology
Hardware and System Software, and IS’01.5 - Programming, Data, File, and Object Structures.

Keywords: Computer Architecture, Interpreters, Simulation, IS 2001

1. INTRODUCTION

Computer simulation is commonly used in Computer
Science curricula to teach fundamentals of computer
architecture. The simulation of a computer is much less
commonly used in Information Systems curricula. This
paper describes the simulation of a simple computer
architecture that is appropriate for use in IS’01.1 –
Fundamentals of Information Systems, IS'01.4 –
Information Technology Hardware and System Software,
or IS’01.5 - Programming, Data, File, and Object
Structures (Longenecker 2001).

Parker and Drexel (Parker 1996) reported having
students use “breadboard” techniques to build a real,
though very basic, computer that was then used to learn
computer architecture. Others have used simulation
packages, such as EasyCPU (HAIT 2002), LMC (Vila
2000), CPU Simulator for Windows (SPA 1997), and
SPIM (Larus 2002), instead of real computers in courses
on computer architecture, assembly language, and
compiler design (Bergmann 1993; Coe 1996; Coey 1993;
Yehezkel 2001). Like the direct use of hardware,
computer simulations allow “hands-on” interactive
learning (Bergmann 1993) and act to motivate students
(Yehezkel 2001). However, the use of simulation
software has many advantages over using actual
computers. Simulation software is less expensive, easily
modified, and can be accessed broadly, especially if it is

available via the World Wide Web. A simulated
computer can also be designed to be as simple or as
complex as needed to meet the objectives of the course
in which it is used. Simulation provides a mechanism
for the effective visualization of computer concepts by
allowing the student to “see” and directly interact with
CPU registers and memory contents (Barnett 1995).

Unfortunately, the computer simulations used in
computer science courses tend to contain features that
are not appropriate for use in information systems
courses. For example, HASE simulates not one, but
several different architectures which include features
such as parallel arithmetic units and multiple coherent
caches (Coe 1996). Both Searles (Searles 1993) and
Bergmann (Bergmann 1993) describe simulators that
utilize a micro-code architecture. Barnett (Barnett 1995)
describes a relatively simple simulator that has eight
instructions and does not include an ALU.

2. THE TRIPLE S COMPUTER

The Triple S Computer (Super Simple Simulated
Computer) implements the classic von Neumann
computer architecture. The simulator has limited
features designed to demonstrate basic architecture
concepts (see Figure 1).

Figure 1. The Triple S Computer

The CPU (see Figure 2) contains an Arithmetic and
Logic Unit with a single eight bit register, the
accumulator, used in arithmetic operations. The CPU
also includes a Control Unit with a Program Counter
Register (4 bits), an Instruction Register (4 bits), a Data
Address Register (4 bits), and a Data Register (8 bits).

Figure 2. CPU

The main memory (see Figure 3) is composed of 16
locations (8 bits each). There is no input component.
Instructions and data are entered directly into RAM.

Figure 3. Main Memory

Output is displayed in a twenty-four-byte window (see
Figure 4). The contents of any RAM location can be
displayed as an ASCII character, a binary string, or as a
decimal value. Output streams longer than 24 bytes are
scrolled.

Figure 4. Output Window

This architecture demonstrates a number of basic
characteristics of computer organization. The memory
helps students visualize the sequential organization of
bytes in RAM and the difference between the address of
a memory location and its contents. The ALU
demonstrates that data must be moved into the CPU in
order to operate on it. The Control Unit registers provide
a visual trace of the fetch-execute cycle and the
relationship between RAM and the CPU. The output
window demonstrates the concept of stream output.

Instruction Set

An important function of the Triple S Computer is to
demonstrate the concept of an instruction and of an
instruction set. The instruction set is composed of
twelve instructions. The architecture uses a single
operand instruction. The operand is either an immediate
fixed binary value or an address in RAM.

The instruction set includes four arithmetic operations.
One add and one subtract instruction each operate on the
contents of a RAM location and the contents of the
accumulator. Another version of the add and the subtract
instructions operate on an immediate operand and the
contents of the accumulator. There are three output
operations--one each to display the decimal, the
character, and the binary representation of the contents
of a RAM location. There are two operations to move
data to (Load) and from (Store) the accumulator. There
are two jump instructions. One transfers control to the
location specified by the operand if the value in the
accumulator is zero. The other transfers control if the
value is not zero. The final instruction is used to halt
execution.

All of the instructions are represented by binary codes.
Mnemonic representations of instructions are not used.
This stresses that all CPU operations are carried out in
binary and provides a background for students to better
appreciate the role of compilers and interpreters.

Data Representation

Two types of data are defined--integers and characters.
All integers are stored as unsigned, fixed binary values.
Immediate operands are four bit numeric values.
Numeric values stored in RAM locations are eight bits in
length. A numeric value can be displayed in the output
stream as either a binary value or as its decimal
equivalent.

Characters are stored as ASCII characters. The Triple S
Computer includes an instruction to display a character
stored in any RAM location. There are no other
instructions to operate directly on ASCII data; e.g., string
operations. Thus character manipulation is very limited.
An equal compare of two characters can be
accomplished by subtracting one from the other and then
either using the jump on zero or the jump on non-zero.

Operation

The Triple S Computer is implemented in JavaScript and
is available on the World Wide Web
(http://www.acs.ilstu.edu/classnotes/acs160/sssc/).
Students type both instructions and data directly into the
RAM locations. Then the address of the first instruction
to be executed is entered directly into the Program
Counter register. All values are entered in binary format.

Alternatively, one of six example programs may be
selected by clicking on the corresponding button (see
Figure 5). Since programs are short (there are only 16
RAM locations), there is no provision for storing or
retrieving programs on disk.

Figure 5. Operating Buttons

To execute a program contained in RAM, the student
uses the “RUN,” “CYCLE,” or “STEP” button (see
Figure 5). The “RUN” button causes execution to begin
and continue until a HALT instruction is encountered or
an error occurs. The “CYCLE” button causes one
instruction to be executed and then the Program Counter
to be incremented. The “STEP” button is clicked three
times to execute one instruction. On the first click, the
instruction pointed to by the Program Counter is fetched
and the Instruction and Address registers are updated.
On the second click, the operand is interpreted, the Data
Register is updated, and the operation specified by the
instruction is carried out. The third click causes the
Program Counter to be incremented in preparation for
the next instruction.

Example Programs

Students can begin using the simulation right away
without writing a computer program. Six example
programs are included that demonstrate the use of eleven
of the twelve instructions. If desired, an instructor can
easily change these programs since the system is written
in JavaScript.

The first example demonstrates the use of the three types
of display and the arithmetic instructions that reference a
RAM location. Example number two demonstrates the
operation of the add and subtract immediate instructions.
The third example shows multiplication by repeated
addition. This example demonstrates the programming of
a loop using a counter and a jump instruction. The forth
example modifies an ASCII character by adding one to
its value. This demonstrates the ubiquities of binary
representations. (Subtracting 32 from a lower case letter
would show how to capitalize a letter). Examples five
and six demonstrate error conditions. Numeric overflow
is demonstrated in example five and an invalid
instruction error is demonstrated in example 6.

3. PEDAGOGICAL USE

The Triple S Computer has been used in an introductory
course taken by students who are majors or minors in
information systems. As described by Barnett (Barnett
1995) simulators can be used in several different ways.
The Triple S Computer is used in the classroom to give
live demonstrations of the operation of a computer.
Outside of class, students use the simulator to complete
assignments given in a lab or as homework. Also,
students are encouraged to use the simulator in an
exploratory mode. Students can modify examples given
in class or make up their own problems.

http://www.acs.ilstu.edu/classnotes/acs160/sssc/

The Triple S Computer is also used as an example of an
interpreter in the section of the course dealing with
compliers and interpreters. Advanced students are
encouraged to study the JavaScript source for the
interpreter and even make their own enhancements.

Among the concepts that can be covered using the Triple
S Computer are:

Basic Computer Architecture

The Triple S Computer contains RAM with sixteen bytes
and a CPU with five registers. The memory helps
students visualize the sequential organization of bytes in
RAM and the difference between the address of a
memory location and its contents. The accumulator
demonstrates that instructions usually operate on data
contained in CPU registers. The Program Counter, and
the Instruction, Data, and Data Address registers provide
a visual trace of the fetch-execute cycle and demonstrate
the relationship between RAM and the CPU.

Machine Level Instructions

The Triple S Computer demonstrates that a computer
instruction specifies a basic operation that the CPU is
designed to perform and, typically, an operand. All
instructions except HALT include either an immediate
operand or a single address operand. Triple S Computer
instructions are all of fixed length. Depending on the
depth to be covered in a course, this architecture can be
used as a springboard to discussing multiple-operand
instructions and variable length instructions.

Instruction Set

A CPU is designed to execute certain predefined
instructions. The Triple S Computer’s instruction set
contains twelve different instructions. Even with the
limited set, the concept of constructing complex
operations from the available instructions can be
demonstrated. For example, multiplication through
multiple additions is easily demonstrated.

Stored Program

Students enter instructions and data directly into RAM
locations. The concepts of stored programs and memory
allocation are explicitly demonstrated by the student
selecting where to enter instructions and data values in
RAM.

Sequential Execution (Program Counter)

The “CYCLE” button is used to execute a single
instruction. The Program Counter and the Instruction
register allow students to trace the normal sequence of
execution of a program and to “see” how a jump
instruction modifies the Program Counter.

Fetch/Execute Cycle

A unique feature of the Triple S Computer is its ability to
demonstrate the detail of the instruction execution cycle.
Students use the “STEP” button to break the instruction
execution cycle into three steps—instruction fetch,
instruction execution, and the incrementing of the
Program Counter. The process is visually followed as
the CPU registers are updated at each step.

Binary Numbers and Arithmetic

Students enter binary numbers as immediate operands
and as fixed binary values in RAM. Binary addition and
subtraction can be programmed with the results observed
directly in the accumulator and displayed in the output
window as either a binary string or as the decimal
equivalent.

Binary Codes

Students are introduced to binary codes both as
instruction codes and as ASCII coded characters. The
fact that a byte may be interpreted in various ways can
be demonstrated, for example, by capitalizing an ASCII
alphabetic character by subtracting 32 from its code.

Output

Three instructions provide the capability to display the
content of a RAM location. One displays the content as
an ASCII character, another as a decimal value, and the
third as a binary value. Output is displayed as a stream.
The display instructions can be used to demonstrate that
a binary string may be interpreted as either a numeric
value or as a character.

Compilers and Interpreters

As mention earlier, the Triple S Computer is an excellent
platform to use in discussing the differences between a
compiler and an interpreter. Once students have used the
simulator and entered instructions and data in binary,
they have a concrete frame of reference to understand the
functioning of a compiler in translating source code into
machine code. In fact, small paper-and-pencil problems
can be used where the student complies assignment
statements into Triple S machine code.

The Triple S Computer provides a relatively simple,
working example of an interpreter. Students can study
the JavaScript source code and even add new
instructions, such as, multiply and divide. Thus the
simulator allows students to not just read about the
concept of an interpreter but to get hands-on experience
programming an interpreter.

4. SUMMARY

Simulation has proven to be a very valuable tool in
assisting students in understanding basic computer
concepts. A simulation provides a hands-on experience
that is superior to the operation of an actual computer
since students can see the state changes in the registers of
the CPU and in memory contents. A simulation of
simple computer architecture, the Triple S Computer,
was presented. It was designed to be appropriate for use
in any of three courses in IS Curriculum 2001; IS’01.1 –
Fundamentals of Information Systems, IS'01.4 –
Information Technology Hardware and System Software,
and IS’01.5 - Programming, Data, File, and Object
Structures. The simulator is unique in that it subdivides
the fetch/execute cycle into three steps that the student
can execute in sequence and it is widely available on the
web.

5. REFERENCES

Barnett, B. Lewis III, 1995, "A Visual Simulator for a

Simple Machine and Assembly Language," ACM
SIGCSE Bulletin, 27, pp. 233-237.

Bergmann, Seth D., 1993, "Simulating and Compiling a

Hypothetical Microprogrammed Architecture with
Projects for Computer Architecture and Compiler
Design," ACM SIGCSE Bulletin, 25 No. 2 (June),
pp. 38-42.

Coe, P.S., L. M. Williams and R. N. Ibbett, 1996, "An

Interactive Environment for the Teaching of
Computer Architecture," ACM ITiCSE, Barcelona,
June.

Coey, W.A., 1993, "An Interactive Tutorial System for

MC68000 Assembly Language Using Hypercard,"
ACM SIGCSE Bulletin, 25 No. 2 (June), pp. 19-23.

HAIT, EasyCPU, 2002,

http://www.hait.ac.il/departments/education/CPU.
htm

Larus, James, 2002, SPIM,

http://www.cs.wisc.edu/~larus/spim.html

Longenecker, Jr., Herbert E., Gordon B. Davis, David L.

Feinstein, John T. Gorgone, and Joseph S. Valacich,
2001, "Undergraduate IS Curriculum 2001," AIS,
August, http://www.is2000.org/

Maj, S. P., D. Veal and P. Charlesworth, 2000, "Is

Computer Technology Taught Upside Down?"
ACM ITiCSE 2000, Helsinki, Finland, pp. 140-143.

Maj, S. P., D. Veal and R. Duley, 2001, "A Proposed

New High Level Abstraction for Computer
Technology," ACM SIGCSE 2001, pp. 199-203.

Parker, Brenda C., and Peter G. Drexel, 1996, "A
System-Based Sequence of Closed Labs for
Computer Systems Organization," ACM SIGCSE
Bulletin, 28, pp. 53-57.

Reid, R. J., 1992, "A Laboratory for Building

Computers," ACM SIGCSE Bulletin, 24, pp. 192-
196.

Searles, Delmar E., 1993, "An Integrated Hardware

Simulator," ACM SIGCSE Bulletin, 25 No. 2
(June), pp. 24-28.

SPA, 1997, CPU Simulator for Windows,

http://www.spasoft.co.uk/

Vila, Joaquin, 2000, LMC,

http://www.acs.ilstu.edu/faculty/javila/lmc/

Yehezkel, Cecile, W. Yurcik, and M. Pearson, 2001,

"Teaching Computer Architecture with a Computer-
Aided Learning Environment: State-of-the-Art
Simulators," International Conference on
Simulation and Multimedia in Engineering
Education (ICSEE), Phoenix, January.

http://www.hait.ac.il/departments/education/CPU.htm
http://www.hait.ac.il/departments/education/CPU.htm
http://www.cs.wisc.edu/~larus/spim.html
http://www.is2000.org/
http://www.spasoft.co.uk/
http://www.acs.ilstu.edu/faculty/javila/lmc/

	Using Simulation In IS Curriculum 2001
	Abstract
	1. INTRODUCTION
	
	2. THE TRIPLE S COMPUTER
	
	
	Figure 1. The Triple S Computer

	Figure 2. CPU
	
	
	
	Figure 3. Main Memory

	Figure 4. Output Window
	Instruction Set
	Data Representation
	Operation
	3. PEDAGOGICAL USE
	
	
	Compilers and Interpreters

	4. SUMMARY

	5. REFERENCES

