

Supporting CC2001’s Endorsement of a Three-Course
Introductory Sequence

Edward G. Okie, K. Todd Stevens, and J. D. Chase

Department of Information Technology
Radford University

Radford, VA 24142

and

John Lewis
Department of Computing Sciences

Villanova University
Villanova, PA 19085

Abstract

As technological needs evolve, so must IT curricula. Often, such change is not simply a choice of substituting one topic
for another. In order to establish a solid foundation for our students, this paper argues the need for a third course in the
introductory computer science sequence. More specifically, it describes two specific departments that have already
implemented a new CS 1-2-3 sequences.

Keywords: CC2001, CS1, CS2, introductory sequence, object-oriented, curriculum development

1. INTRODUCTION

As is outlined in CC2001 (ACM 2001), the typical
CS1/CS2 introductory sequence has been a cornerstone
of many computing curricula. At most institutions, CS1
lays the groundwork of basic problem solving and
programming skills, and CS2 follows with an emphasis
on data structures. However, in recent years, this
approach has begun to fall short of its goal of giving
students a strong foundation for their computing
education and career.

Technological advancements – or, to be more specific,
academia’s embrace of certain technological
advancements – have simply given us more topics to
cover. Some topics driving this change are object-
orientation and graphical user interfaces, and most
technologists would agree that these are now
fundamental topics. However, he problem is that these
topics do not simply replace the things that we used to
teach in an introductory sequence; they augment them.
Bear in mind, it is just as difficult for students today to

understand if statements and while loops as it was for us
to learn 10, 20, or 30 years ago and we cannot decrease
the time allocated to them. Now, the foundational
material has expanded, and we simply need more
course-time to adequately cover all of the material.

For example, object-orientation adds many new topics
that we did not teach in a procedural setting, including
classes, objects, inheritance, and polymorphism. Yet still
prevalent are core topics such as data types, control
structures, parameter passing, arrays, dynamic and
linked structures, recursion, sorting, searching, and all
of the classic data structures. Functional decomposition
has not gone away; it is now just subordinated to object
decomposition. Our students must still know how
conditionals work, even though in some situations
conditionals can yield to the elegance of polymorphism.

Graphical user interfaces, and the entire world of event-
driven programming that underlies it, are now
fundamental. Graphical components, listeners, events,

and user interface design are all additional topics that
previously were ignored or did not even exist.

Other topics that some educators want to give more
attention to at a fundamental level include exception
handling, client-server processing, basic database
concepts, and basic graphics. Most of us also want more
time for establishing and building problem solving
skills.

As we embrace these topics, there is less time to cover
everything. Some topics are getting squeezed to the
point students do not come away with a true
understanding of the issues involved. At some schools
the first few weeks of CS2 are now used to cover
material that CS1 did not have time to get to. This leaves
less time for traditional CS2 topics.

As is endorsed by CC2001 (ACM 2001), we believe the
natural and proper solution to this problem is to add a
third course to the introductory sequence. Furthermore,
instead of tacking it onto the end and dumping all of the
new topics into a third course, the entire set of
introductory topics should be reorganized into a
comprehensive, three-course sequence.

The bulk of this paper describes the philosophies and
curriculum from two schools that independently
recognized the two-course problem and have already
embraced a three-course approach. We begin by
describing the schools and their computing curricula in
general.

2. RADFORD UNIVERSITY

Radford University is a medium size, comprehensive
university, located in the mountains of southwest
Virginia. In August 2001 the university brought
together two well-established computing programs,
computer science and information systems, to form the
new College of Information Science and Technology.
Computer Science, a CSAB accredited BS program that
has some 200 majors, was formerly housed in the
College of Arts and Sciences. Information Systems,
which has about 300 majors, was from the College of
Business and Economics. Added to these existing
programs are new concentrations in software
engineering, networks, database, and business systems
development. Overall, this combination of new and
existing concentrations and programs forms an IT
curriculum that is similar to one described by Denning
(Denning 2001).

As part of the design of this new IT curriculum, we
designed a new core of introductory courses that is to be
taken by all incoming students in the college. At the
heart of this core is an expanded three-course
introductory sequence that replaces the traditional CS1 /

CS2 sequence. The new sequence will be taken by all
students entering the program except students in
information systems, who will only take the first two
courses in the sequence. The topics in the courses have
been chosen and sequenced so that each group of
students receives the background that they need.

3. VILLANOVA UNIVERSITY

Located near Philadelphia, Pennsylvania, Villanova is a
comprehensive university with approximately 7000
undergraduates. The Department of Computing Sciences
is part of the College of Arts and Sciences, and offers a
B.S. in Computer Science, a B.S in Information Science,
and a M.S. in Computer Science.

Villanova was one of the first schools to use Java as
their introductory language in CS1 / CS2, adopting it in
1997. In Fall 2002, the Department of Computing
Sciences added a third course to the introductory
sequence, requiring it of all incoming students in both
the Computer Science and Information Science
programs.

4. CURRICULA

The faculty at both Radford and Villanova
independently arrived at the conclusion that a third
introductory course was needed. The design of these
new courses was the result of debate and discussion
among their individual departments, as well as
ultimately comparing notes between the two schools.

After providing an overview of the three course
sequence at both schools, we compare and contrast the
approaches.

Radford curriculum issues
While working to implement Radford’s new College of
Information Science and Technology, we found several
problems that had the common solution of revising the
introductory sequence by expanding CS1 and CS2 into a
three course sequence and developing a common core of
courses that would be taken by all students in the
college.

One such problem was the very similar upper division
courses found in the CS and IS programs in areas such
as networks and database. To eliminate this duplication
we replaced each set of duplicated courses with a single
sequence of courses for that particular area. While each
sequence was designed to serve students who were
pursuing that particular track in the college, there was
also a need to make the first course in each track
accessible to other students in the college. To make this
possible, a common introductory core of courses was
developed that would prepare students for any of the
existing or proposed programs or tracks.

In developing this core we were faced with a dilemma:
CS1 was not an adequate background for these courses,
however our traditional CS2 covered several topics in
more depth than was required for students in
information systems. To solve this problem we spread
the topics from CS1 and CS2 across a three-course
sequence and only require students in information
systems to take the first two courses in the new
sequence. Students in the traditional BS in CS program
and in tracks such as software engineering and
networking take all three courses in the new sequence.

Another problem that led to the development of a three
course introductory sequence was a desire to place
object technology earlier in the curricula. Specifically,
we adopted Java for the introductory courses. In the old
computer science program, students did not encounter
objects until a Software Engineering course in their
fourth semester, and information systems students do
not see them at all. In addition to pedagogical reasons,
making object orientation the initial paradigm provides
students with two immediate benefits. It enhances
internship opportunities for all students and, for
information systems majors, it gives them exposure to
an important paradigm that they had not seen
previously.

Radford CS1: The new CS1 course at Radford is
taught in a three hour lecture, two hour closed-lab
format. The material in the course is divided into 6
areas, which are shown below along with their
underlying topics:

• Programming Fundamentals: variables,
assignment, expressions, conditionals, loops,
keyboard I/O, file I/O (records), arrays of
primitive types, arrays of objects, class
libraries

• Objects and Classes: data and methods,
instance vs. class data & methods, inheritance,
encapsulation, visibility modifiers,
instantiation, reference types, primitive types,
overriding, overloading, simple polymorphism

• Language Topics: type conversion, string
manipulation, Java Virtual Machine, Java
Applets, simple graphics

• Software Engineering: problem solving,
software analysis and design, testing and
debugging, documentation and program
structure, abstraction, basic data structures

• Algorithms: searching, simple sort, recursion

• Recurring Themes: ethics, analysis of
algorithms

Radford CS2: As noted above, CS2 is the last core
course that is taken by all students in the college.
Therefore, it must adequately prepare IS students for
courses such as database I, software engineering I, and
networks I. To accommodate this change, topics were
carefully selected to give information systems students
the background they need. As another means of making
CS2 more accessible, it was converted from a four hour
lecture format to a three hour lecture, two hour lab
format. This, however, meant that the coverage of some
topics would have to be altered to make up for the
difference in lecture time. The areas and topics for CS2
include the following:

• Programming Fundamentals: multi-
dimensional arrays, recursion

• Java Topics: interfaces and abstract classes,
applets, applications, inner classes

• Graphical User Interface: events, listeners,
components

• Data Structures: stacks, queues, vectors, lists,
binary tree concepts, binary search tree
concepts

• Recursive Sorting and Searching Concepts:
quick sort, merge sort, binary search (arrays
and trees)

• OO Topics: more work with objects,
references, classes, methods, instance vs. class
data & methods, inheritance, and
polymorphism; new material on persistence,
serialization, marker interfaces

• Software Engineering: problem solving,
software analysis and design, testing and
debugging, documentation and program
structure, UML, encapsulation, abstraction,
data structures

• Language Topics: linked structures, recursion,
exceptions

• Recurring Theme: analysis of algorithms

Radford CS3: A CS3 course has been created to
accommodate the change in topics from CS2 and to
address another problem created by the addition of new
IT concentrations. The new concentrations only require
one semester of calculus. Therefore, the students in
these programs would not take a traditional junior-level
data structures and analysis of algorithms course
because they would not have adequate background in
calculus. To remedy this deficiency, it was important to
move the most pertinent of the topics from this course to
CS3. Unlike the first two courses in the sequence, CS3
will be taught as a three hour lecture course. The areas
and topics for CS3 include the following:

• OO Topics: emphasize design issues

• Data Structures: binary trees, binary search
trees, heaps, priority queues, hash tables

• Sorting and Searching: quick sort, heap sort,
merge sort, binary search (arrays and trees)

• Language Topics: recursion, threads and basic
synchronization

• Analysis and Design: patterns, UML,
processes, use cases

• Recurring Themes: analysis of algorithms,
GUI, software engineering

Radford’s Evolving Curriculum: In Table 1 below,
Radford’s old curriculum is shown on the left and the
new curriculum on the right. In both columns, old CS1
topics are in plain text, CS2 topics are shown in italics,
and the Object Oriented (OO) topics are shown in bold.
Underlined items in the old curriculum became obsolete
with the new curriculum, and underlined items in the
new curriculum are topics that are new to the curriculum
because of the OO approach in Java. The new
curriculum in Table 1 shows the “Objects-first”
approach from CC2001 (ACM 2001), with OO topics
spread throughout the 3-course sequence.

Table 1:
Comparison of Radford’s Old and New Curriculums

Topics in Old Curriculum Topics in New Curriculum

CS1:
Basics: sequence, selection & repetition
Basic I/O
Problem solving methodologies
Top-down design and pseudo-code
Structure Charts
Data Abstraction
Records
Arrays
Ethics
Intro to Sorting

CS1:
Basics: sequence, selection, repetition
Basic I/O
Primitive types & Objects
Classes & Objects
OO Data & methods
Libraries, overloading, visibility modifiers
String manipulation
Software engineering basics: problem solving,

documentation & program structure, testing &
debugging, encapsulation, abstraction & data
structures

Arrays
Ethics
Basic searching & sorting

CS2:
Data abstraction & information hiding
Encapsulation, abstraction & data structures
Pointer data types
Data structures: stacks, queues, lists, binary trees,

heaps, hashing
Recursion
Linked structures
Sorting & searching
Multi-dimensional arrays
Exceptions

CS2:
Interfaces & abstract classes
Applets, Inner classes, Events, Listeners,

Components, basic UML
Data Structures: stacks, queues, vectors, lists, binary

tree basics
Additional OO Topics, e.g. persistence
Additional software engineering basics
Recursion
Linked structures
Sorting & searching
Multi-dimensional arrays

Fourth semester OO software engineering:
Software engineering lifecycles & methods
OO analysis
OO design
OO programming languages
Classes, Objects
 Inheritance, Polymorphism
GUIs
Interfaces & abstract classes
Applets, Inner classes, Events, Listeners,
Design patterns
UML

CS3:
Binary trees
Heaps
Hashing
Complex Sorts
Recursion
Threads & synchronization
Design patterns
UML

Villanova curriculum issues
Villanova had been using an object-oriented approach
for CS1 and CS2 for several years. The shift to a three
course sequence primarily allowed each topic to be
covered in more depth and with more practice.

The ‘room’ to add the new CS3 course comes at the cost
of eliminating one (of three) free elective that the
students had in their overall schedule.

Villanova CS1: CS1 at Villanova is a 4-credit course.
Some instructors use all contact hours as lecture while
others incorporate a lab period. Students are given fairly
well defined project descriptions in CS1, with a growing
emphasis on requirements analysis and design.

Instructors have the option to use a third-party I/O class
to simplify keyboard input, but they must expose the
students to ‘real’ Java I/O declarations and use by the
end of the course. CS2 instructors do not use third-party
support classes for I/O at all.

The topics covered include:

• Programming Fundamentals: variables,
assignment, expressions, conditionals, loops,
keyboard I/O, file I/O, arrays of primitive
types, arrays of objects

• Object-Orientation: objects, classes,
instantiation, encapsulation, data and methods,
instance vs. class data & methods,
overloading, overriding, visibility modifiers,
references, class libraries

• Language Topics: type conversion, string
manipulation, Java Virtual Machine, Java
Applets, simple graphics

• Software Engineering: problem solving,
testing and debugging, documentation

• Recurring Themes: ethics, basic analysis of
algorithms

Villanova CS2: Like CS1, the CS2 course at Villanova
is four credits including an optional lab. The initial
emphasis in CS2 is on object-oriented design issues,
including conceptual tools that were only mentioned in
passing in CS1 such as inheritance. Data structure
concepts then fit nicely into this flow because they can
be shown to capitalize on these design characteristics.

One difficult issue in the redesign of the CS2 course was
the decision to wait until CS3 to focus on most non-
linear data structures such as trees and graphs. However,
the split has taken on a natural feel of its own (linear in
CS2 and non-linear in CS3) rather than the initial
awkward feeling it gave us to split the coverage of data

structures in general. We feel that this is a good example
of where we should not feel bound by historical trends.

The topics covered in Villanova ’s new CS2 course
include:

• Object-Orientation: inheritance, abstract
classes, overriding, interfaces, marker
interfaces polymorphism, persistence,
serialization, inner classes

• Programming Fundamentals: linked structures,
recursion, basic sorting and searching,
exceptions

• Graphical User Interfaces: events, listeners,
components

• Data Structures: tables (multi-dimensional
arrays), stacks, queues, vectors, lists

• Software Engineering: problem solving,
requirements analysis, software design, basic
UML, stronger emphasis on tool use

• Recurring Themes: analysis of algorithms

Villanova CS3: The fairly clean division between
linear and non-linear data structures between CS2 and
CS3 provides the opportunities to explore all of the
related topics in more detail. The new CS3 course also
provides a place to include topics that have otherwise
been ignored in traditional CS1 / CS2 sequences.

The topics covered in Villanova ’s new CS3 course
include:

• Object-Orientation: emphasize design issues

• Data Structures: binary trees, binary search
trees, general trees, directed and undirected
graphs, hash tables

• Algorithms: advanced sorting and searching

• Database: fundamental concepts, relational
model, tables, fields, keys, queries, use of
JDBC

• Software Engineering: advanced design
techniques, UML details, client-server
architecture

• Recurring Themes: analysis of algorithms

5. COMPARING CURRICULA

Given the manner in which the curriculums are currently
defined, there are many topics that are covered in the
same manner in corresponding courses between the two
schools.

One general difference is the location and emphasis
given to particular topics. For example, Radford
currently introduces both GUIs and recursion in CS1 at
a fundamental level, and then reinforces them both
throughout CS2 and CS3. Villanova segments these
topics somewhat, deferring both until CS2.

The only substantive difference in the two curricula is
the emphasis on databases at Villanova in CS3. Since
CS majors at Radford are required to take a database
course later in the curriculum, getting database
fundamentals into the introductory sequence is not a
priority. At Villanova, where the advanced database
class is an elective, they can now guarantee a minimal
exposure to database concepts by including the basics in
the required CS3 course.

Overall, the two curricula are very similar and both
follow the recommendations of the “Objects-first”
model in CC2001 (ACM 2001).

6. DISCUSSION

The main impetus for investigating switching to a three-
course introductory sequence from two courses is the
volume of additional material that currently needs to be
covered. With the development and advancement of the
IT field, the breadth and depth of material that needs to
be taught keeps increasing. We have simply reached a
point where the amount of time we spend on the
fundamental material has increased enough such that we
need to introduce students to the material over three
semesters.

To continue to provide students with a quality
education, giving them enough personal attention and
time is (arguably) easily addressed by using closed labs.
Working with students one-on-one allows students, as
well as instructors, to discover whether students are
truly learning material and which material each student
might need to study more. Unfortunately, closed labs
typically require more contact hours from
professors/instructors and/or graduate teaching
instructors or peer instructors. Also, this may “take up”
more credit hours in the curriculum, which may reduce
electives for students. We feel that overall this
reduction in electives is more than offset by the quality
of the foundational knowledge that the students acquire
from the three-course sequence.

The division of linear and non-linear data structures in
CS2 and CS3 at Villanova appears to work well. Even
though this has not yet been explicitly adopted by
Radford, the courses may be organized that way in the
future.

Finally, the objects-first approach that has been adopted
by both schools is significant. Such an approach is

increasingly important to our industrial counterparts (i.e.
employers of our students). We feel that it is both a
pedagogical advancement as well as a practical
advancement because employers see this as immediately
useful for part-time and summer employment for our
students. This cannot be over-emphasized: students
seem to learn easier and better and employers are
pleased.

A major challenge for both programs was how best to
introduce and integrate OO topics with traditional
introductory sequence topics. At Radford, the following
sequence for CS1 seems to be successful in addressing
this challenge by providing students with an OO
foundation along with the fundamentals of
programming,. The other introductory courses are
sequenced similarly.

To begin with, students are exposed to using objects as
tools and to the concepts of the traditional sequential
execution, assignment, and simple input and output.
Primitive types and Strings are then introduced. Objects
are introduced as providers of services, and classes are
presented as templates for objects and as libraries of
methods. No internal details are initially provided.
Next, students learn to use the various conditional and
loop statements. Up to this point, all code is written in
the public static void main method. With this as a
background, students then learn in detail how classes are
constructed by defining and using simple classes. This
progresses to using multiple classes that interact.
Finally, arrays and vectors are covered, and inheritance
is introduced and used in the last few simple laboratory
assignments.

During a semester, the students write approximately
twenty small programs in the laboratory setting with the
assistance of the instructor and Peer Instructors
(students who have recently and successfully completed
the course for which they PI). The students also write
four or five out-of-class assignments that are more
complex, and they must do this work individually with
only minimal assistance from their instructor and Peer
Instructor.

7. CONCLUSION

The general consensus at both schools is a feeling of
relief. With the creation of CS3 as an integral part of the
introductory sequence, the time now seems available to
cover topics that had been given too little attention, or
none at all, in the past.

An important practical issue that comes up is the use of
textbooks. Currently, both Radford and Villanova use
two textbooks to cover all three classes of their new
introductory sequences. The first book is used
throughout CS1 and the first portion of CS2. The second
book is used for the rest of CS2 and throughout CS3.

Villanova has found the need to provide some
supplemental material for the extra topics covered in
CS3.

Faculty support for the new CS3 course at both
universities has been largely strong. The occasional
devil’s advocate has wanted to ensure that some topic
shifts did not cause the topic to be de-emphasized. So
far, the opposite appears to be true. That is, the topic
shifts have allowed them to be given more attention than
previously.

Though still early in the process, the feedback on this
new approach has been positive at both schools. Some

issues will certainly need to be ironed out as the smoke
clears. But these modifications are motivated by our
belief that change is best managed by those who create
it.

8. REFERENCES

ACM, Computing Curricula 2001,
http://www.computer.org/education/cc2001/final/index.
htm (accessed July 10, 2002).

Denning, Peter J., The IT Schools Movement,
Communications of the ACM, August 2001, pp. 19-22.

http://www.computer.org/education/cc2001/final/index.htm
http://www.computer.org/education/cc2001/final/index.htm

	INTRODUCTION
	RADFORD UNIVERSITY
	VILLANOVA UNIVERSITY
	CURRICULA
	Radford curriculum issues
	Villanova curriculum issues

	COMPARING CURRICULA
	DISCUSSION
	CONCLUSION
	REFERENCES

