
Markup Language Diagramming:
A Method to Enhance Web Page Design

William J. Tastle
Erica F. Hackley

Stephen W.J. Tastle

School of Business
Ithaca College

Ithaca, New York 14850-7170

Abstract

Web site design and creation, let alone the writing of the actual script that generated the web site, is difficult for the
student who has minimal computer skills and has not benefited from a course in structured programming. Using the
structure diagram method of Nassi and Shneiderman we develop a method by which web pages can be designed in such
a way that the resulting hand-drawn image is used as a road map for the writing of the script. The method presented is
called markup language diagrams and is represented by thirteen simplified symbols used to represent common web
page structures.

Additionally, students have a difficult time finding and correcting their own HTML script when they do not have the
benefit of application software such as DreamWeaver or Homesite where a formal indentation method is presented.
Though simple to use, students should be exposed to a scripting standard as early as possible in their web site scripting
experience to insure the development of proper scripting habits. A simplified scripting standard is proposed.

Keywords: Structure chart, Nassi-Shneiderman, HTML script, markup language diagram, MLD

1. INTRODUCTION

It has been observed over the past four semesters that
there exist some general pedagogical problems associated
with the instruction of HTML and JavaScript. Students
possessing a background in coding, regardless of the
language, are able to approach the generation of HTML
script in a much more logical and constructive manner.
Even students who reported taking a modest Web-
weaving course in High School had a better grasp of the
art of design and, consequently, more acceptable HTML
script. About half of the students who possessed little or
no previous background in Web design had much of their
time and effort taken up by the design process of
scripting, and then were challenged to produce acceptable
and workable HTML script.

The problems appear to be centered in two distinct areas:
first, while students generally have some idea of the kind
of Web page they eventually want to produce, they have
difficulty in describing it a manner such that the script
can be properly written (Holzschlag 2001); and second,
the writing of proper script done in a fashion such that it
can be easily revised by the script author, as well as read
by others, is a continuing source of a vast majority of
scripting problems. Software tools exist to concurrently
solve both problems, and they succeed and fail. Success
comes from the eventual generation of a Web site that

looks good, but the underlying script that generates the
image is all but unknown to the student (Coffee 2002).
Thus, the student is unable to make even the simplest of
changes to the underlying script. Also, some software
packages produce script that has little or no structure, or
at best an inconsistent structure, that belies its revision.
One of the more popular and effective Web tools is
Dream Weaver, and we have found it to be very
effective, but only after students have learned to write
script the old-fashioned way – by hand.

The purpose of this paper is to identify some common
student problems and offer a novel solution to facilitate
the design and scripting of Web sites. The data is derived
from twelve sections of the introductory MIS course
spread over three years. The course is split into three
major components: the basic theoretical systems material
characteristic of all MIS courses, a component in
business process modeling, and a component in Web site
analysis, design and creation. It is expected that no
business student should graduate without having a basic
understanding of the design and creation of Web sites
sufficient to allow for the proper managing of others. We
focus on this third component.

2. STUDENT SCRIPTING AND DESIGN
PROBLEMS

We first address the easier of the two problems: the
instruction of students to write script that can be easily
revised. The motivation for this problem lies in the
recollection of "spaghetti-like code" characteristic of first
generation basic programmers. Recall that the first
arguably popular programming language was BASIC, for
which lines of code were distinguished by the placement
of a unique integer beside each line of code. Control was
passed from one section of the program to another by
means of the notorious GOTO statement. This resulted
in code that was all but impossible to understand, let
along manage. This precipitated the paradigm shift to
structured programming languages and the introduction
of procedures and functions to accompany a set of
programming rules. Every programming language has
adopted those rules of programming and students are
taught, from the beginning of their programming career,
to code following the rules. An example of a comparison
of spaghetti code with structured code follows. A snippet
of code to calculate the sum of a number of int egers,
written in some unstructured programming language,
could be:

 10 print "enter the number:”
 20 input number
 30 total = 0
 40 counter = 1
 50 total = total + counter
 60 counter = counter + 1
 70 if counter > number GOTO 90
 80 GOTO 50
 90 print "the sum is: "
 91 print total

Notice that the underlying structure, that of a loop, is not
immediately apparent. It takes a moment to study the
code to determine its meaning. If this were a program of
some 1,000+ lines of code, such a task would be
formidable. The same problem written in a structured
language could appear as:

 "enter a number: " number
 total = 0
 counter = 0
 while (counter = number)
 { total = total + counter
 counter = counter + 1
 }
 "the sum is: " total

It is conspicuously evident that a loop structure guides
this code, and the structure is immediately visible. It is
this same kind of obvious structured coding that needs to
be used to instruct beginning students in the art of writing
script. Over time, this kind of indentation has come into
widespread practice in the programming discipline. In

today's introductory MIS class it is unfortunate that the
majority of students have never been exposed to the
concept of structured thinking.

To compensate for this increasingly important deficiency
in business student thinking, we propose a
standardization in HTML instruction in the intro MIS
course, that of requiring students to use a plain editor,
like Microsoft's Notepad, and displaying the resulting
code in a browser. Both the editor and browser windows
should be opened as side by side on the monitor. In this
fashion, the student can quickly verify that the script
written performs in the desired manner. However, and
more to the point, the use of an editor forces the student
to be attentive to the visualization of the script.

The following is an example of some script written in
Notepad and using some simple HTML tags.

 <body>
 <h1>
 Indenting The Code
 </h1>
 <hr width="50%">

 It makes the code easier
 to read

 It helps to have it
 organized when one must
 troubleshoot problems.

 One can see if the
 proper tags have
 been closed

 It is easy to see if
 one instruction has
 been nested in
 another

 </body>

Notice that the indentation makes the intent of the script
obvious and easily modifiable. This brings into focus the
rules of writing HTML script:

1. Tags that do not have a closing tag, like

 or <hr>, should be placed on its own
line.

2. All tags that have closing tags, whether
optional or required, must be required.
Thus, tags such as <p> are required to end
with the </p> tag, and the tag must
also have the tag. These tags are

called encasing tags for they may contain
one or more sets of other tags.

3. Unless the content of a line is very short,
the opening tag and closing tag must be
aligned directly over each other.
Whatever tags or content that is included
within those tags is indented three spaces
from the encasing tag.

4. Tags that are identical to the encasing tags
are called nested tags.

Without the required indentation of the script, the above
example could appear as:

<body>
<h1>Indenting The Code</h1><hr
width="50%">
It makes the code
easier to read
It helps to have it
organized when one must
troubleshoot
prolems.
One can see if the proper tags
have been closedIt is
easy to see if one instruction
has been nested in
another
</body>

This kind of script is reminiscent of the spaghetti code of
the past, but it should instead be called Monet script , a
bunch of tags and text mixed up but delivering a visually
appealing product. The indentation and alignment of
script should be a requirement for successful completion
of any student project.

3. DESIGNING SCRIPT BY DESIGN

The ability to design a site and have that design also
suggest the coding solution is another important element
of HTML development. Among the more common
problems we have noticed, one involves the generation of
nested tables. Students appear to have difficulty because
they are often confused in identifying which tag should
be closed. For some individuals, it is difficult to
visualize how the code being typed will translate to an
actual web document. This causes them to prematurely
close the first table before beginning the second because
it is difficult to apply the concept of nesting, that is, the
placing of a new table within a table detail <td> of a
larger table. Students become frustrated and either
produce poorly designed websites or they completely
avoid the use of nested tables. Consequently, design fails
and a lesser website is produced. If students had a tool
by which they could visualize the format of nested tables,
for example, we are convinced that more students would
be able to grasp the nuances of the concepts and use them
to produce websites would more dramatic and effective.
What is required is a visualization tool that helps students
to both create a website as well as assist in the
formulation of the script. Fortunately, a method does
exist which provides a basis for the creation of such a
tool, and the method was created to assist in the skill of
structured programming in computer science.

Figure 1 shows the code for the previous example as a
Nassi-Shneiderman (1973) structure diagram. We note
that this diagram is also referred to as an N-S diagram,
structure chart, structure diagram, and structograph, the
last being the term commonly used in European
publications. It is easy to see the presence of the loop
structure.

Figure 1 Previous example code as N-S diagram.

Figure 2 Example of a structure diagram showing decision structures and loop.

The structure chart is one of the first mechanisms
developed for instructing students to design code in a
structured manner was presented in a paper by Ike
Nassi and Ben Shneiderman in 1973. Through a small
set of visual structures students were able to design
programs that would (almost) work the first time they
were coded. Another example of an N-S structure
diagram is shown as figure 2. The general structures
depict sequence, iteration, and decision programming
structures. The sequence structure is certainly the
most common for it represents a single line of code
that is read and executed by the computer compiler
once, and then control moves to the next line. The
iteration structure is far more visual in that it allows
students to "see" what portions of their code are
repeated, the condition that eventually causes the loop
to terminate, and how the content of variables is
expected to change while the structure is iterating
(looping). Finally, the decision structure allows for the
clear and unambiguous visualization of the change in
control given an evaluatory condition that is either true
or false. Many software applications have been
written to support this method, and a surprising
number of them are in German.

In a manner similar to that of these structure charts, a
method has been developed to provide a similar visual
model of a website and the script that is used to create
it. Without prior planning, students have problems
with the website layout because it is hard for them to

make the transition from the desired visual output to
the written script. This can be related, at least in part,
to the fact that we are a highly driven visual society in
which it is much easier for people to work from
pictures and create a verbal representation of the
problem than it is to develop a visual image from a
verbal description. An increasing number of MIS
introductory courses (from: private communications
with conference colleagues) are requiring students to
write code to create web pages utilizing sounds,
colors, images, animations, etc. Because it is easier
for students to make the transition from pictures to
words, we have developed a tool to help graphically
depict the final outcome of the web page.

3. THE MARKUP LANGUAGE DIAGRAMMING
LANGUAGE

Following the basic concept of Nassi and
Shneiderman we have sought to develop a method by
which a website can be drawn out as many students
typically do before writing script. We have added to
the diagram by including symbols that represent
certain basic, commonly used hypertext tags. We
intend for it to simplify and shorten the learning
process of creating web pages by graphically
organizing the outline of the web page from which we
can easily convert the diagram into code. We have
created Markup Language Diagrams (MLDs) to be

logical, structured, visually understandable, and
universally recognizable. The symbols that have been
developed for the MLDs are easy to remember and
simple to draw, thus allowing website designers to
easily outline the information they want to present.

We have currently developed 13 symbols which
represent the most used aspects of a website. These
are:

Construct Graphical
Representation

Explanation

Rollover

Two squares, with one slightly covering the other symbolizing the effect
of a mouseover. The names of the pictures are recorded within the

squares.

Table

Intersecting vertical and horizontal lines represent a table. Each "box," an
intersection of column and row, represents an individual cell within the

table. Colspans and rowspans can be represented in the table. If the
outline of a table is in doubt, it may be heavily bolded to make it stand

out.

Textbox

A rectangle with an asterisk in the upper-left hand corner. The asterisk
indicated that the user adds text.

Radio Button Small circles aligned in either a vertical or horizontal format.

Pictures/Graphics

A rectangle with corners blackened. This symbol represents the placing
of a photograph into a photo album that is being held down by corner
tabs. The name of the image is recorded within the rectangle. In the

event the name and path is too long to appear in the symbol, an integer is
placed in the symbol and the corresponding image name and path

included as an addendum.

Paragraph of
Text

Represents the presence of a text paragraph and is followed by a number
to use as a reference since the text can be on a separate page.

Internal Link

Similar to that of the external link (see below), but has an extra arrow
pointing either up or down to point to the link location.

External Link

The image name (text, picture, etc) with an arrow underscoring it
pointing to the right represents the linking to another page.

Frames

Two rectangles, one nested within the other, symbolizing a picture frame.

Forms

A square with a diagonal line in the upper left and lower right hand
corners to represent a form (the beginning and end symbolized by the
diagonal lines). The internal content is represented by other symbols.

This symbol can become quite large to accommodate the other symbols.

Dropdown Menu

A horizontal rectangle placed above a vertical rectangle represents a drop
down selection box. In the horizontal box is placed the name of either the
default item or the title of the options listed in the vertical rectangle. Into

the vertical rectangle can be placed either the options or a number
showing the details in the addendum.

Command
Buttons

A triangle represents a command button. Inside is written the command
to be performed (ie submit, reset).

Checkboxes
A square with a check located inside it positioned in either a vertical or

horizontal line.

Figure 3 MLD symbols.

In addition to these symbols it is necessary to note some
of the design instructions as parameters used in other
tags. For example, one of the parameters of a table tag is
the table width, expressed as a percent of the window or
as a fixed number of pixels. MLD allows the placement
of parameters directly on the design where it is first
needed. In our example that appears as figure 4 we show
the width of the web page at the every top of the page as
a fixed 600 pixels. Since the Nassi-Shneiderman
diagrams helped to structure the programming code and
because designing code and web page design are similar,
it is apparent that web page design could also use a little
more structure. Hassell (1982) identified two major
disadvantages to the Nassi-Shneiderman diagrams: one
was their inability to be easily converted into a machine
sensible form and the second was the inability to easily
change any element of the diagram without the arduous
task of redrawing it. The second disadvantage was
eliminated with the advent of the applications that
provide for computer-generated N-S diagrams that are
easily adjusted. MLD’s are designed so as to avoid those
two disadvantages, especially the second one since there
is no computer tool to generate the diagram at present.
Markup Language Diagramming is designed to include
the major elements needed for the creation of a web page

4. AN EXAMPLE OF AN MLD

Using the symbols of figure 3, an MLD was designed to
describe the all the tags and give a description of their
usage and is available from the authors. The code
required to generate this web page is also available.
Examination of the code will show a strict adherence to
the indentation standard and thus, it is easy to identify
each aspect of the web page even without the presence of
comments. The need to comment the script is greatly
reduced, although definitely not eliminated, though for
purposes of illustration of the indentation format no
comments appear.

Students have been required to use this formatting
standard in all their scripting assignments and have
generally commented on the usefulness of indentation.
Those who have had problems with the indentation are
characteristically students who have learned to write
script on their own and use virtually no structure
whatsoever, and those who have taken an HTML class in
high school. Our secondary school colleagues have not
yet generally established the concept of structured code
in instruction.

5. CONCLUSION

The transition from web site design to the generation of
web script can be greatly improved through the
introduction of a new design method called the markup
language diagram. This formal model allows the student
to draw out the conceptual web pages much as would be
done without benefit of this method, but it includes the
use of simple symbols that allows for the generation of a
"road map" to the writing of the script. Further, while the

symbols are being placed into the web site design the
student is able to logically plan out the operation and
navigation of the page(s). The scripting details are
remanded to another sheet where they are enumerated
and described or listed. Further, the usage of indentation
as a forced discipline allows students to write script that
is more correct and gives them a way of identifying and
correcting their own coding errors. Students need to be
taught to write structured script from the first course in
order for a habit to develop, much like the writing of
structured code in any programming language. Those
students who have embraced structure in their script
writing produce better quality output, but that is a matter
for future discussion.

6. REFERENCES

Coffee, Peter, 2002,"Mad as Hell about 'Food Fight'

HTML." eWeek, April 1.
Hassell, Johnette and Victor Law, 1982, "Tutorial on

Structure Charts as an Algorithm Design Tool."
ACM 0-89791-067-2/82/002/0211.

Holzschlag, Molly, 2001, "XHTML in the Real World."
http://www.webreview.com/.

Nassi, I. And B. Shneiderman, 1973, "Flowchart
Techniques for Structured Programming."
SIGPLAN Notices, vol 12.

