
The X-Factor:
Implications for Internet Programming

Today and Tomorrow

Roy A. Boggs
Computer Information Systems, Florida Gulf Coast University

Ft. Myers, Florida, 33965, USA

Abstract

Internet programming is leaving the simple and sometime loose programming path of the HTML era. Newer structures
are more disciplined, browser and platform independent, and demand a new set of skills and programming knowledge.
Using a simple HTML table, the following pages present an overview of the transformations that will soon be used to
display this table and its contents. Structures, with X- names, from (X)HTML through XML, XSL(T) and XSL(FO),
are presented in programming examples. The result is a demonstration, based upon examples, of where the X-Factor is
taking Internet programming. Implications for practice and pedagogy are then summarized at the end of the paper.

Keywords: Internet Programming, Internet Development, XML, XHTML, XSL

 WHERE ARE WE GOING?

There is hardly a discipline that is changing and
advancing as fast as Internet design, development and
management. A multidirectional process moving back
and forth between disciplines and Internet structures
has brought this about. Everyone is affected or
influenced in some form by material available on the
Internet. At the same time, Internet development finds
itself faced with an ever-increasing myriad of new
structures, newer versions of browsers with increased
capabilities, more complex platforms, faster delivery
systems, and demands that everything respond equally
quickly and equally as well.

HTML alone won’t do it anymore. Even if current
versions of some browsers respond to weak code in a
favorable manner, this situation is not likely to
continue very much longer, this is especially true if a

set of web pages is to enjoy widespread use. The
Internet world is moving, or being pulled, into
assimilating a set of recommendations that is designed
to free Internet web pages from constrictions imposed
by browsers, scripts, and platforms.

These recommendations are developed and
shepherded by the World Wide Web Consortium:
W3C (http://www.w3.org/). All of the various pieces
of the current and the new can be found there. The
information is often overly technical. However, it is
possible to cull tendencies and directions. It is also at
times in this process useful to take one example and
follow the recent developments. This is what is done
in the following review – as sort of an answer to the
question: where are we going?

 The various programs and examples are intended for those with an interest in Internet programming and who have
some experience working in the Internet environment. They present points of reference and nothing more. Those with
only a passing interest in Internet development may read the text, leaving the examples for those who prefer reading
code. For this version, complete examples are given. Examples assume current browsers, or any plug-ins for older
browsers

FROM HERE TO THERE

The ultimate goal of the review below is to show the
direction the X-Factor is taking Internet programming.

The X-Factor includes those programming and data
structures beginning with the letter X: (X)HTML,

http://www.w3.org/

XML, XSL(T), XSL(FO), etc. However, it will be
seen in the examples that HTML code is not being
eliminated. Quite the opposite, it is being given a
disciplined hierarchical structure and then wrapped in
constructs that makes it language-, browser-, and
platform-independent.

The first key word in this process is ‘deprecation’.
Older tags, and some tags currently enjoying
widespread usage, are being discouraged and will
ultimately be discontinued. Three other important key
words are ‘well-formed’, ‘valid’ and ‘namespace’.
‘Well-formed’ indicates that a document’s structure
satisfies all of the rules that make it highly structured
and predictable. A document that is not ‘well-formed’
will not be displayed. ‘Valid’ indicates that it satisfies

all of the rules for a particular document, specifying
which elements and attributes are allowed or required
and in what format. Documents that are not ‘valid’
may not be displayed until corrections are made.
‘Namespace’ indicates a collection of related element
names. They are often distinctively marked (for
example: xsl:name, fo:name) to prevent collisions
between similar names in related documents.

The review begins with HTML, and then passes
through (X)HTML to XML and XSL. There are other
topics that might have been included, such as XPATH.
However, the main topic is XML. It is the main path.
First, from the beginning.

BASIC HTML

Employee Directory
Smith, James James@OurFirm.com
Jones, Jill Jill@OurFirm.com

The table above contains the caption ‘Employee
Directory’ along with two data instances of ‘name’
and ‘email’ for each of two employees. The caption
contains a larger and bolder font. A table is used here
as the example because tables represent basic units for
creating and displaying documents, and for managing

the display of objects. They may well displace frames,
especially since frames are regarded as special
structures in (X)HTML; and they may themselves
eventually become replaced by Cascading Style Sheets
(CSS) positioning elements and ‘*.inc’ files.

HTML stands for Hypertext Markup Language. A
basic HTML set of code for this table would be as
follows. The various <tags> structure show the data
are to be displayed.

<html>
<head>
 <style type="text/css">
 table, td {border-color: black;}
 caption {font-size: 16pt; font-weight: bold;}
 </style>
</head>
<body>
 <table border> <table border =1
 <caption>Employee Directory</caption> <caption> Employee Directory
 <tr> <tr>
 <td>Smith, James</td> <td>Smith, James
 <td>James@OurFirm.com</td> <td>James@OurFirm.com
 </tr>
 <tr> <tr>
 <td>Jones, Jill</td> <td>Jones, Jill
 <td>Jill@OurFirm.com</td> <td>Jill@OurFirm.com
 <tr>
 </table>
</body>
</html>

The code on the left can be executed on all current
browsers. It is ‘well-formed’. The hierarchical
structure is maintained. For the sake of the examples
below, a CSS <style> tag is included. The code on the

right will run on some browsers. It is not ‘well-
formed’. For example, closing tags are omitted. This
can be problematic for maintenance, especially when
debugging code. However, it is more problematic

when the amount of browser code needed to recover
from sloppy programming is considered. ‘Well-
formed’ documents can be executed safely using
current browsers and demand less browser code.

HTML also permits the use of scripting languages,
such as VBscript and JavaScript, and more freedom in
manipulating and displaying objects. The choice of a
scripting language is important. Some scripting

languages, which offering greater ease of use and
more opportunities for creating web pages, are
platform dependant. Scripting languages do not all
execute on the same platforms. Some tags, such as
<layer>, are also browser dependant. In some
environments, use of scripts often implies multiple
versions of the same web page. This quickly becomes
a costly and time-consuming endeavor.

(X)HTML-BASIC

(extensible)e Hypertext Markup Language
((X)HTML) represents a major step in resolving some
of these problems. It is considered an intermediate
step between HTML and XML, at least until more
browsers fully support XML. (X)HTML adds to
HTML code an XML declaration that, if ‘well-
formed’, ensures that it is not browser dependant and
supports W3C recommendations. By definition an
(X)HTML document is an XML document. Proper

validation includes such items as no empty tags <meta
… />, all tags in lowercase <td>, all tags properly
closed </td>, all defaults eliminated <table
border=”border”>, etc.

The code for the BASIC HTML table above has been
rewritten to (X)HTML standards. It is thus considered
to be (current) browser independent.

<?xml version="1.0" encoding="iso-8859-1"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
<title>
Basic XHTML Format
</title>
<!--
Date: 1/01/02
-->
<meta name="author" content="Roy A. Boggs" />
<meta name="keywords" content="XHTML" />
<meta name="description" content="Basic XHTML Format" />

<style type="text/css">
 table, td {border-color: black;}
 caption {font-size: 16pt; font-weight: bold;}
</style>
</head>

<body>
 <table border>
 <caption>Employee Directory</caption>
 <tr>
 <td>Smith, James</td>
 <td>James@OurFirm.com</td>
 </tr>
 <tr>
 <td>Jones, Jill</td>
 <td>Jill@OurFirm.com</td>
 <tr>
 </table>
</body>
</html>

This is an XML (eXtensible Markup Language)
document and must by definition be ‘well-formed’.
‘iso-8859-1’ encoding is simply used here to ensure a

larger character set. The DOCTYPE identifies the
document as an (X)HTML document that is strictly
‘well-formed’. The choices are ‘strict’, ‘transitional’

and ‘frames’. ‘Strict’ is preferable unless it is deemed
necessary to use a tag even though it will eventually
be deprecated or unless a <style> tag does not yet

function as expected. (X)HTML code can be validated
at: http://validator.w3.org. Styles can be validated at:
http://jigsaw.w3.org/css-validator.

BASIC XML

The first step is to provide data that are ‘well-formed’
and ‘valid’. There might be several steps to the
process. A small data base file containing the two
entries for the Employee Directory table serves as data
source. This example is from a Microsoft Access
database.

name email
Smith, James James@OurFirm.com
Jones, Jill Jill@OurFirm.com

The language used to pull the data from the database
given here is for simplicity VBscript running under
ASP conventions.

 Print #1, "<?xml version=1.0 encoding = iso-8859-1 ?>"
 Print #1, "<employee_directory>"
Do Until datEmployee.Recordset.EOF
 Print #1, "<employee>"
 Print #1, "<name>" & lrs.Name & "</name>"
 Print #1, "<email>" & lrs.Email & "</email>"
 Print #1, "</employee>"
 datEmployee.Recordset.MoveNext
Loop
 Print #1, "</employee_directory>"

The result is a stand-alone XML file that could just as
well have been entered by hand. It is important to note
once again that the XML file must not only be ‘well-
formed’ but also ‘valid’. That might mean here that
each employee must have a name, and perhaps it
might also mean that an email address could be
optional – or, the email address might be required. At
any rate, the structure must reflect definite rules to be
considered valid.

 xmlEmployees.xml

<? xml version="1.0" encoding = "iso-8859-1" ?>
<employee_directory>
 <employee>
 <name>Smith, James</name>
 <email>James@OurFirm.com</email>
 </employee>

 <employee>
 <name>Jones, Jill</name>
 <email>Jill@OurFirm.com</email>
 </employee>
</employee_directory>

The data now exist within descriptive tags. The tags
make visible the content of the data items. They do not
dictate how the data is to be displayed. Because the
xml-file has been produced from a database via a
programming language, the data it contains is
expected to be ‘well-formed’ and ‘valid’. Should the
data came from a less reliable source, ‘Schemas’ are
constructed to ensure proper data structures. To be
valid, XML data must reflect schema definitions. A
simple example might be as follows.

<xsd:schema
xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”>
<xsd:element name=”employee_directory” type=”employee”
/>
<xsd:complexType name=”employee”>
 <xsd:sequence>
 <xsd:element name=”name” type=”xsd:string” />
 <xsd:element name=”email” type=”xsd:string” />
 </xsd:sequence>
 </xsd:xomplexType>
</xsd:schema>

When simply run as an XML file
(‘xmlEmployee.xml”) without a schema reference, the
result is as follows. The use of tags with descriptive
names should be noted.

<?xml version="1.0" encoding="iso-8859-1" ?>
- <employee_directory>
- <employee>
 <name>Smith, James</name>
 <email>James@OurFirm.com</email>
 </employee>
- <employee>
 <name>Jones, Jill</name>
 <email>Jill@OurFirm.com</email>
 </employee>
 </employee_directory>

BASIC HTML AND XML FILES

It this point, the data can still be processed using a
formal language, such as JavaScript. The following
example demonstrates how this might work. The code
is not trivial (it contains recursion) and requires some
programming skill. The complete code is given for the

sake of clarity. The input file
(xmlDoc.load(“xmlEmployee.xml”)) retrieves the
XML file given above. ‘newHTML’ is a variable that
is built throughout the iterations to form the output.
The CSS <style> tag is included as in the examples

http://validator.w3.org/
http://jigsaw.w3.org/css-validator

above. It is here that tags for displaying data reside.
The recursive function used to process data the items
is ‘buildTree(varName)’. The data are bound by code,
(Node.parentNode.nodeName=="name"), where

“name” contains the value of the corresponding XML
tag. The result is the same Employee Directory table
given at the beginning of this review.

<head>
<title>Roy A. Boggs: xml Javascript</title>

<style>
 table, td {border-color: black;}
 caption {font-size: 16 pt; font-weight: bold;}
</style>

<script language="JavaScript">
 var xmlDoc = new ActiveXObject("microsoft.xmldom")
 xmlDoc.async=false
 xmlDoc.load("xmlEmployee.xml")
 root=xmlDoc.documentElement
 newHTML=""

function start()
{
 newHTML+=("<table border>")
 newHTML+=("<caption>")
 newHTML+=("Employee Directory")
 newHTML+=("</caption>")
 buildTree(root)
 newHTML+=("</table>")
 content.innerHTML=newHTML
}

function buildTree(passedNode)
{
 var children = passedNode.childNodes.length

 for (var j=0; j<children; j++)
 {
 Node=passedNode.childNodes.item(j)

 if (!Node.hasChildNodes())
 {
 if (Node.parentNode.nodeName=="name")
 {
 newHTML+=("<tr><td>" + Node.text + "</td>")
 }
 if (Node.parentNode.nodeName=="email")
 {
 newHTML+=("<td>" + Node.text + "</td></tr>")
 }
 }
 buildTree(Node)
 }
}
</script>
</head>
<body onload="start()">

</body>
</html>

Here again, while the XML document is language and
platform independent, the scripting process is
language dependant and it is also platform dependant.
As stated above, it takes programming skill to work

with such structures. The answer is to side-step formal
code and to apply XSL(T) templates. The coding is
straightforward and independence is built-in.

XSL(T) AND XML FILES

The Extensible Stylesheet Language for
Transformation (XSLT) transforms and renders XML
documents into web pages. The possibilities for using
XSLT are extensive and often complex. A possible
XSLT file is as follows. It is named
‘xmlXslEmployee.xsl’. The CSS <style> tag is
enclosed as [CDATA …] to prevent it from being
processed as part of the XSL namespace.

The line of code: <xsl:apply-templates
select="employee_directory/employee"/> functions as
a call to the code: <xsl:apply-templates
select="employee"/>. <xsl:value-of select="name"/>
pulls the value of the item, here ‘name’. The resulting
code is much more straightforward and simpler to
apply.

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
 <html>
 <head>
 <title> Employee Directory</title>
<style>
 <![CDATA[
 table, td {border-color; black;}
 caption {font-size: 16pt; font-weight: bold;};
]]>
</style>
 </head>
 <body>
 <table border="1">
 <caption>Employee Directory</caption>
 <tr>
 <th>Name</th>
 <th>Email Address</th>
 </tr>
<xsl:apply-templates select="employee_directory/employee"/>
 </table>
 </body>
 </html>
</xsl:template>

<xsl:template match="employee">
<xsl:apply-templates select="employee"/>

 <tr>
 <td><xsl:value-of select="name"/></td>
 <td><xsl:value-of select="email"/></td>
 </tr>

</xsl:template>
</xsl:stylesheet>

An XML file is then used to process the file: xmlEmployee.xml:

<?xml version="1.0" encoding="iso-8859-1"?>
<?xml-stylesheet href="xmlXslEmployee.xsl" type="text/xsl"?>

<employee_directory>
 <employee>
 <name>James Smith</name>
 <email>james@OurFirm.com</email>
 </employee>
 <employee>
 <name>Smith, Jill</name>
 <email>Jill@OurFirm.com</email>
 </employee>
</employee_directory>

The addition of an XML processing instruction to the
XML file above (<?xml-stylesheet
href="xmlXslEmployee.xsl" type="text/xsl"?>)
identifies the location of the XSLT file and is
sufficient to produce the desired output with limited

code via a process that will in effect be independent of
current browsers, scripts, and platforms. (This is not
always the case as some current browsers do yet fully
support XSLT without downloading and installing
relative modules.)

XSL(FO) AND XML FILES

A final and important step is an ability to render XML
documents with extensive formatting: to a display, to a
printer, or to a *.pdf file. The formatting objects for
these processes are presented as Extensible Stylesheet

Language Formatting Objects (XSL-FO). The
following example expands on the XSLT code above
and the XML remains the xmlEmployee.xml file.

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format">

<xsl:template match="/">
 <fo:root>
 <fo:layout-master-set>
 <fo:simple-page-master master-name="sampleTable" margin="2.5cm 1.5cm" >
 <fo:region-body />
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-name="sampleTable">
 <fo:flow flow-name="xsl-region-body">
 <fo:block>
 <fo:block font-weight="bold" font-size="16pt" >Employee Directory </fo:block>
 <xsl:apply-templates select="employee_directory"/>
 </fo:block>
 </fo:flow>
 </fo:page-sequence>

 </fo:root>
</xsl:template>

<xsl:template match="employee">
 <fo:block>
 <fo:table width="300pt">
 <fo:table-column column-width="20pt" column-number="1"/>
 <fo:table-column column-width="20pt" column-number="2"/>
 <fo:table-body>
 <fo:table-row font-size="14pt">
 <fo:table-cell border="0.5pt solid black" padding="4pt" >
 <fo:block> <xsl:value-of select="name"/></fo:block>
 </fo:table-cell>

 <fo:table-cell border="0.5pt solid black" padding="4pt">
 <fo:block> <xsl:value-of select="email"/> </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-body>
 </fo:table>
 </fo:block>
</xsl:template>

</xsl:stylesheet>

The expected namespace is ‘fo’ and it encapsulates an
extensive and sophisticated page-markup language.
Current browsers do not yet fully support XSL-FO.
However, these exist several freeware sources that will

convert these documents. The desired table below is
the same as that for the more complex, dependent
processes above.

Employee Directory

Smith, James James@OurFirm.com

Jones, Jill Jill@OurFirm.com

SOAP

The final step is to create a means of shipping XML
documents freely across platforms. Simple Object
Access Protocol (SOAP) is a ‘protocol for exchanging
information in a decentralized, distributed
environment’. It is designed to permit XML formatted

files to be exchanged independent of the sending or
receiving platform. This step wraps the XML file in a
SOAP envelope for shipping. The assumption, of
course, is that the corresponding XSL(T/FO) file
resides at the destination.

SOME IMPLICATIONS

What does one learn from this?

The first, and one of the most important lessons here is
that HTML is not going away quickly. The initial step
to Internet programming is still HTML. The second
step is still a solid knowledge of the latest version of
CSS. Basic Internet coding, such as the use of tables,
continues with HTML structures, but all descriptive,
and positioning elements are reserved for Cascading
Style Sheets.

However, programming now comes in the form of
XML structures. Implications suggest that from the
beginning one should learn to create ‘strict’ (X)HTML
documents. This means that CSS should be a part of
initial programming efforts, and that the resulting code
must be ‘well-formed’ and the document ‘valid’. All
CSS and (X)HTML documents then need to be
validated. This is a must and a necessary step to
ensure browser functionality.

The next steps lead from (X)HTML/CSS to XML and
to XSL(T/FO). The learning progression is almost
build-in. XML by itself will render web pages and the
schemata will display data in various formats. Soon,
(X)HTML and CSS may not be needed in an
applications environment. (However, one can assume
that quick coding in (X)HTML and CSS will be
around for a while.)

XSL(T/FO) render web pages and *.rtf files
respectfully. They represent a necessary final step in
the learning process.

What is missing is the ability to easily access
databases, using XSL, Xquery or XQL, to pull and
format the data with the proper tags into an XML file.
Until this happens scripting remains a necessary tool.
So there is indeed more to come. The bottom line is
still – as before – users must first know and
understand their data and their data structures.
Otherwise, the X-factor, however designed, may
produce unintended consequences.

	Abstract

