
Kuofie and Wagner Fri, Nov 7, 2:45 - 3:15, Rio Vista B

Intention-Directed Modeling Technique

Matthew H. S. Kuofie

School of Information Technology, Illinois State University
Normal, IL 61790, USA

mhkuofie@msn.com
mkuofie@ilstu.edu

Matthew H. S. Kuofie is also affiliated with the

School of Information, The University of Michigan
Ann Arbor, MI 48109-1092, USA

mhkuofie@umich.edu

Christian C. Wagner
School of Engineering and Computer Science, Oakland University,

Rochester, MI 48309, USA
wagner@oakland.edu

Abstract

This paper addresses a new object oriented analysis and design technique; the technique, in-
tention-directed modeling (IDM), is based on capturing the abstract intentions of the problem
domain specialist who performs analysis and design for a software system. The abstract inten-
tions are represented as knowledge representation schema in what we term the Intentional
Class Model (ICM). The ICM has classes that are classified into specification class model
(SCM), platform class model (PCM), and engineering class model (ECM). The benefits that
accrue from the use of the IDM are high quality software, maintainable object-oriented analy-
sis requirement and design specifications, effort reduction in analysis and design, and reuse of
specification.

Keywords: knowledge representation, intentions, problem domain specialist, object oriented
analysis and design, requirements specification, design specification, software engineering

1. INTRODUCTION

Some software projects are never completed
on time, within budget or meet customers’
expectations—quality wise. One of the main
reasons software projects fail is that ana-
lysts and designers are almost certainly un-
familiar with the problem domain and will
have to make decisions about the details of
the software to be engineered. Features are
added that are not needed, and some
needed features are skipped (Rawsthorne
and Goodwin, 1999).

Typically, the analyst obtains requirements
from the customer who is a problem domain
expert of the software to be engineered. It
requires tedious effort on the part of an ana-
lyst to gather requirements from a cus-
tomer, a problem domain specialist of the
software to be developed. The reasons that
make analysis difficult include miscommuni-
cation, requirements change, incomplete
requirements, and time constraints (Kuofie,
1999; Pressman, 2001; Schach, 2002;
Sommerville, 1992). Miscommunication of-
ten occurs between the analyst and the do-
main expert. (Miscommunication could lead

Proc ISECON 2003, v20 (San Diego): §2423 (refereed) c© 2004 EDSIG, page 1

Kuofie and Wagner Fri, Nov 7, 2:45 - 3:15, Rio Vista B

to inaccurate, incomplete, and unclear re-
quirements.) This is because the analyst is
unfamiliar with the problem domain. The
domain expert often spends lots of time to
put his or her requirements across to the
analyst (Kuofie, 1999; Rawsthorne and
Goodwin, 1999). Changes in requirements
may become necessary due to technology
change. Incomplete requirements may also
be due to the analyst not asking the right
questions. Time constraints may also force
the analyst to rush to deliver.

Designers of software products use the soft-
ware requirements specifications docu-
mented by analysts to create design specifi-
cations (Kuofie, 1999; Rawsthorne and
Goodwin, 1999). Designers, too, are almost
certainly unfamiliar with the problem domain
(Rawsthorne and Goodwin 1999). Designers
sometimes misinterpret the software re-
quirements specifications (Kuofie, 1999;
Rawsthorne and Goodwin, 1999). Therefore,
it requires tedious effort on the part of the
designers to accurately design the expected
software. Unfortunately, the tedious efforts
do not lead to high quality software.

To reduce the problems, this paper describes
an intention-directed modeling (IDM) tech-
nique for analysis and design of a software
system to be developed; the technique is
based on object-oriented technology and is a
component of the Intentional Directed Soft-
ware Engineering Methodology (ID-SEM)
(Kuofie, 1999). Here the specialist (also re-
ferred in this paper as either domain expert
or domain specialist) is a problem domain
person who understands the specific prob-
lem that has to be solved by means of new
software. In addition, the domain expert is
expected to understand object-oriented
technology concepts. The domain expert,
instead of the typical software analyst and
designer, performs the analysis and the de-
sign. The domain expert can spend his or
her time to develop complete, accurate and
clear software requirements and design
specifications. This domain expert can vali-
date and update, if any, his or her intentions
in the specifications. Yes, the expert has
much better understanding of the problem
domain than the typical analyst and designer
(Kuofie, 1999; Schach, 2002; Rawsthorne
and Goodwin, 1999). The domain expert
will not have to spend lots of time to put his
or her intentions across to analysts and de-

signers. Therefore, it is reasonable to have
the domain expert do the analysis and de-
sign right the first time (Kuofie, 1999).

 Abstract intentions are presented using a
knowledge representation schema: classes
in the Intentional Class Model (ICM). Hence,
object-oriented concepts involving analysis
and design are applied (Booch et al., 1999;
Brumbaugh, 1994; Jezequel, 1996; Page-
Jones, 1995).

The ICM is an object model in the sense of
COM or CORBA. It includes the definition of
many classes with properties, methods, and
events that are used to represent, store, and
process the intentions of the domain special-
ist. As would be true for any class model,
the actual intentions of the domain specialist
are stored as instances of the ICM classes.
The ICM has three components: the specifi-
cation class model (SCM), the platform class
model (PCM), and the engineering class
model (ECM).

The rest of the paper is laid out as follows:
The ICM is described in Section 2. In Section
3, we describe the Specification Class Model.
Section 4 describes the Platform Class
Model. In Section 5, we describe the Engi-
neering Class Model. Section 6 describes
the benefits of the intention-directed model-
ing technique; Section 6 also concludes this
paper.

2. INTENTIONAL CLASS MODEL

Typically, the domain expert knows the fol-
lowing: objects, properties, methods,
events, business processes, and algorithms.

What the domain expert lacks is the soft-
ware. In reality, the domain expert lacks the
computer knowledge to generate the soft-
ware needed to solve the domain problem.
This paper does not provide all that the spe-
cialist’s needs; instead, it provides an inten-
tion-directed modeling technique, ICM, to
perform the analysis and design aspect of
engineering software.

Figure 1 shows the graphical representation
of the ICM.

The ICM is made up of three components:
the specification class model, the platform
class model, and the engineering class
model.

Proc ISECON 2003, v20 (San Diego): §2423 (refereed) c© 2004 EDSIG, page 2

Kuofie and Wagner Fri, Nov 7, 2:45 - 3:15, Rio Vista B

We will start by describing some of the as-
sumptions and constraints that we make
pertaining to the ICM; we clarify some of the
concepts by using the Microsoft Visual Basic
6 (VB6).

Three-tier Architecture
Generally, an application can be modeled,
designed, into an n-tier architecture. How-
ever, this paper deals with a three-tier archi-
tecture, which has presentation (P), manipu-
lation (M), and storage (S) features. The
ICM considers the SCM and PCM as having
three architectural layers: the presentation,
manipulation, and storage layers. The pres-
entation layer contains intentions that han-
dle visibility or user-interface issues. The
manipulation layer addresses computation
issues. The storage layer addresses persis-
tent storage issues.

Transfer
Given the three-tired architecture, issues
arise concerning the transfer of information
between layers. This transfer feature allows
for transfer of data from the presentation
layer to the manipulation layer and vice
versa (P M). Similarly, data can be
transferred from manipulation layer to stor-
age layer and vice versa (M S).

Manipulate
The manipulate feature involves transforma-
tion, summarization, and extraction of data
from the manipulation layer to the same
manipulation layer (M M).

A transformation can transform existing data
to a new data, for example, transforming
length and width data by multiplying them
to get an area. In addition, transformation
can be achieved by sorting or searching
data.

Summarization of statistical intention can be
computed for statistical values, such as
minimum, maximum, average, standard
deviation, and the total of a given collection

of data.

Extraction can be performed both in virtual
and real basis. In virtual extraction, a subset
data is not extracted from the original collec-
tion, but instead the subset is summarized
or transformed as it is identified to belong to
the subset. However, by real extraction, we
imply that a subset of collection of data is
actually extracted into a subset and the ex-
tracted subset is then summarized or trans-
formed.

We will turn to the description of each of the
ICM class models: the SCM, the PCM and the
ECM. As we describe each class model, we
will include the following aspect: (1) the
purpose, (2) the major classes,
(3) relationships within the class,
(4) relationships outside the class and
(5) sample entry of a class.

3. SPECIFICATION CLASS MODEL

We will discuss the specification class model
in this section. Figure 2 shows the specifica-
tion class model: the three layers and the
relationships.

Purpose
The specification class model provides ab-
stract classes that are used to represent ab-
stract intentions that serve as the specifica-
tion for a new software system. The special-
ist provides real specification intentions.

Table 1: List of Major SCM classes

Major Classes
Table 1 is the list of major SCM classes. We

Presentation Manipulation Storage
SCMControl
SCMForm
SCMWebpage

SCMClass
SCMClassEv-
entSCMClass-
Method
SCMClassProp-
erty

SCMDatabase
SCMDatabase-
Table
SCMDatabase-
TableFields
SCMFile

SCM ECM

PCM Links To

Figure 1. Intentional Class Model

Links To

Figure 2. Specification Class Model

Transfer

Presenta- Storage

Manipu-

Manipula-Transfer

Proc ISECON 2003, v20 (San Diego): §2423 (refereed) c© 2004 EDSIG, page 3

Kuofie and Wagner Fri, Nov 7, 2:45 - 3:15, Rio Vista B

have named the classes with the prefix
“SCM” in order to identify the classes to the
SCM. The classes are classified based on the
P, M, and S layers.

An SCM class has neither method nor event.

The definition of SCMClass, is as follows:

Name: SCMClass class
Properties:
 Public Name As String
 Public Description As String
 Public ClassGroup As String

 Public Properties As New
 SCMClassProperties
 Public Methods As New SCMClassMeth-
ods
 Public Events As New SCMClassEvents

 Public SubClasses As New SCMClasses
 Public Parts As New SCMClasses
 Public SOMTranfers As New SCMTrans-
fers

 Public SOMFrms As New SCMForms
 Public SOMDbases As New SCMData-
bases
Methods:
Events:

The definition of the SCMClass is a knowl-
edge representation scheme of the abstract
intentions in a class that the domain expert
wants to see. The properties are primitive
abstract intentions. In fact, the properties
are the domain expert’s intentions of what
they should be to this class. For example,
the “Name” property is the domain expert’s
intention of what the name of this class, to
be generated in an application, should be.
Each property has public access type, prop-
erty name and its data type. For example,
one of the intentions of the SCMClass is “De-
scription.” The Description data type is
string; therefore, “Description” is the domain
specialist’s intention of what the description
of this Class manipulation should be.

There are some properties, which are in-
stances of other SCM classes. For example,
the SCMForm, the SCMClassProperty, the
SCMClassEvent and the SCMClassMethod are
properties of the SCMClass.

A class is associated with a corresponding

class collection for manipulating, such as
adding, objects of the class. For example,
SCMClasses is a class collection for manipu-
lating SCMClass instances. SOMTransfers
hold transfer intentions that the specialist
specifies to be used by the SCMClass’ object.

SCMClassEvent, a major SCM class, is de-
fined as:

Name: SCMClassEvent class
Properties:
 Public Name As String
 Public AccessType As String
 Public SOMArguments As New SCMAr-
guments
Methods:
Events:

SCMClassEvent has Name, AccessType, and
SOMArguments. The SOMArguments is an
instance of SCMArguments; it’s responsible
for manipulation of SCMArgument objects.

 Now, we turn to SCMClassProperty class,
which is defined as follows:

Name: SCMClassProperty class
Properties:
 Public Name As String
 Public Description As String
 Public DataType As String
 Public DataArity As String
 Public ObjectType As String
 Public IsMultiValued As Boolean
 Public MinDefined As Boolean
 Public MaxDefined As Boolean
 Public Minimum As Double
 Public Maximum As Double
 Public DefDefined As Boolean
 Public DefaultValue As Variant
Methods:
Events:

SCMClassProperty has “DataType” property
as string; therefore, it could be assigned
“integer,” or “string” intention. The “Mini-
mum” and “Maximum” specify the minimum
and maximum-- constraints-- respective
characters long that the domain expert in-
tends to allow for the property “Name.”

We will address SCMForm class, which is in
the presentation layer; the current definition
of SCMForm is as follows:

Proc ISECON 2003, v20 (San Diego): §2423 (refereed) c© 2004 EDSIG, page 4

Kuofie and Wagner Fri, Nov 7, 2:45 - 3:15, Rio Vista B

Name: SCMForm class
Properties:
Public Name As String ' Name
Public FType As String ' Type
Public Description As String ' Description
Public Top As Single ' Position Y
Public Left As Single ' Position X
Public Width As Single ' Extent X
Public Height As Single ' Extent Y
Public Caption As String ' Caption
Public MDIChild As Boolean ' MDI Flag

Public SOMControls As New SCMControls
 ' controls on form
Public UsesClasses As Classes ' classes
used

Public SOMTranfers As New SCMTransfers
 ' transfers used
Methods: (none)
Events: (none)

The “Height” property is the domain expert’s
intention of what the height of this form in-
terface should be. The “Width” is, similarly,
the intentional width of the form to be built
in the application. However, the “SOMCon-
trols” property is itself an instance of an-
other class, the SCMControls class. An
SOMControls object holds a collection of
control objects, such as menus, command
buttons, and list boxes. The “SOMTransfer”
property of the SCMForm class is an object
of the SCMTransfer class. It holds the
“Transfer” intentions of the objects of ma-
nipulation classes that can be accessed in
the SCMForm.

Name: SCMControl class
Properties:
 Public Name As String
 Public Ctype As String ' control type
 Public Caption As String
 Public Left As Single
 Public Top As Single
 Public Width As Single
 Public Height As Single
 Public Index As Single
Methods:
Events:

SCMControl intentions are controls that are
displayed on a form to enable intentions to
be made possible in an application. The
“Name” property is an intention that the ex-
pert has to specify.

The definition of SCMDatabase, which is in
the storage layer, is as follows:

Name: SCMDatabase class
Properties:
Public Name As String ' Database name
Public Description As String
Public SOMTables As New SCMDatabaseTables
Public SOMViews As New SCMDatabaseViews
Public SOMQueries As New SCMDatabaseQue-
ries
Public SOMTriggers As New SCMDatabaseTrig-
gers
Public SOMProcs As New SCMDatabaseProce-
dures
Public SOMUsers As New SCMUsers
Methods:

Events:

The properties inherent in the SCMDatabase
object are the kinds you would expect to see
in any database design. The properties of
this SCMDatabase are Name, Description,
Users and SCMDatabaseTables. It seems
logically right to describe SCMDatabaseTable
class; it’s defined as follows:

Name: DatabaseTable class
Properties:
 Public Name As String 'table name
 Public Description As String
 Public SOMDBTFields As New Database-
TableFields
Methods:
Events:

This SCMDatabaseTable has Name, Descrip-
tion and SCMDatabaseTableFields as current
intentions. The Name intention is of string
data type.

SCMDatabaseTableField is defined as fol-
lows:

SCMDatabaseTableField has Name and De-
scription as two of its properties. The data
type of “Size” is integer. We describe one
other SCM class, the SCMPlatform class,

Name: SCMDatabaseTableField class
Properties:
 Public Name As String
 Public Description As String
 Public Size As Integer ' length of field
 Public DataType As String
 Public Required As String
 Public IsRequired As Boolean
Methods:
Events:

Proc ISECON 2003, v20 (San Diego): §2423 (refereed) c© 2004 EDSIG, page 5

Kuofie and Wagner Fri, Nov 7, 2:45 - 3:15, Rio Vista B

which is defined as follows:

Name: SCMPlatform class
Properties:
 Public Name As String ' new system
name
 Public Description As String
 Public ApplicationType As String
 ‘Exe,dll,ocx
 Public ProgrammingLanguage As String
 'VB6,C++
 Public HardWare As String '
PC,Mainframe,
 Public OperatingSystem As String
 Public DatabaseSystemType As String
Methods:
Events:

SCMPlatform is a very unique SCM class; it
is not in any of the three layers P, M or S.
SCMPlatform indicates abstract platform in-
tentions, such as programming language,
operating system and hardware platform.
The problem domain specialist has to pro-
vide the intentions as requirements specifi-
cation.

Let us march on to the relations within the
SCM.

Table 2: Within SCM relations

Within SCM relations
There are 1- n, where n ≥ 1, relationship
(Grossman, 1990). We define a 1-n relation-
ship as one SCM class referencing, as prop-
erties or intentions, n other SCM classes. For
example, Table 2 shows that the SCMData-
baseTable has a 1- 1 relationship to SCMDa-
tabaseTableField; the SCMDatabaseTable
definition shows that the SCMDatabase-
TableField instance, SOMDBTField, is the
property of SCMDatabaseTable, and
SCMDatabaseTableField is a class within
SCM.

We call this type of relationship a within re-

lationship since the classes occur within the
same ICM class model, the SCM in this case.
Table 2 lists some of the within relation-
ships.

Outside SCM relations
An SCM class is linked to some classes in the
PCM classes. The type of linkage is referred
to as outside relationship. However, we will
defer this discussion until we describe the
PCM.

Sample Entry of SCM
The domain expert can specify the require-
ment or the design intention for a class
property as an instance of SCMClassProp-
erty, SOMClassProperty, as follows:

Name: SOMClassProperty object
Properties:
 Name="FirstName”‘<-
specialist'sintention
 Description = "first name"‘<- designer's
 ‘intention
 DataType="String" '<- specialist's ‘
 ‘intention
 DataArity="Single" '<-specialist’s
 ‘intention
 ObjectType = "" '<- ID-SET defined
 IsMultiValued =FALSE'<- ID-SET de-
fined
 MinDefined = True '<- ID-SET defined
 MaxDefined = True '<- ID-SET defined
 Minimum = 1 '<- specialist's intention
 Maximum = 25 '<- specialist's intention
 DefDefined = True '<- ID-SET defined
 DefaultValue = 0 '<- ID-SET defined
Methods:
Events:

The specialist provides intentions; for exam-
ple, Maximum first name length as 25 char-
acters long. The intentions that the specialist
does not provide are set to default value by
the Intention-Directed Software Engineering
tool (ID-SET, a CASE tool) (Kuofie, 1999).
For example, ID-SET supplied the intended
intention for MaxDefined as True.

4. PLATFORM CLASS MODEL

We will discuss the platform class model in
this section.

Figure 3 shows the platform class model: the
three layers and the relationships.

SCM class
Name

Has parts relation to other
SCM classes

SCM Class SCMClassProperty
SCMClassMethod
SCMClassEvent
SCMTransfer
SCMForm
SCMDatabase

SCMData-
baseTable

DatabaseTableField

Proc ISECON 2003, v20 (San Diego): §2423 (refereed) c© 2004 EDSIG, page 6

Kuofie and Wagner Fri, Nov 7, 2:45 - 3:15, Rio Vista B

Purpose

The PCM is the link between the abstract
intentions of the domain expert and the ac-
tual implementation of these intentions in a
particular language for a particular hardware
platform. As such, it mirrors the information
contained within the classes of the SCM. In
addition, PCM include methods for the gen-
eration of actual code in the platform for
which the PCM was created. So, where the
SCM had only properties for the classes it
contained (no specific generation being
done), the PCM provides properties to mirror
many of those from the SCM plus the meth-
ods needed to generate actual code, docu-
mentation, help files, training guides, and
the like; we are interested in the system
documentation—requirements specification.

Of special interest in generation of code for
the three-tiered architecture is the imple-
mentation of algorithms. Algorithms defined
abstractly in the SCM are defined more spe-
cifically here in the PCM. But even in the
PCM, the algorithms are still abstract until
instances are created and the generators are
called to create actual lines of code for the
application. The differences between these
three levels of algorithm specification are
shown by the following three statements:

1. General (SCM): Case of X:
2. VB specific (PCM): Select Case X
3. Appspecific(generated):

Select Case UserCode

Major Classes

As was true for the SCM, the PCM classes
can be placed into three layers: the presen-
tation, the manipulation and the storage
layers. The major classes are listed in Table
3.

The PCM classes in Table 3 are named using
the prefix VB to associate them to VB6 as
the choice of programming language.

Table 3: List of Major PCM Classes

Now, we define some of the major classes.
The VBClass is defined as follows:

Name: VBClass class
Properties:
Public Project As VBProject
Public Name As String
Public Description As String
Public Instancing As String
Public AccessType As String
Public SOMClass As SCMclass
Public SOMForm As SCMForm
Public vbClsProps
 As New VBClassProperties
Public vbClsMeths
 As New VBClassMethods
Public vbClsEvents As New VBClassEvents

Methods:
Public Function CopyObject() As VBClass
Public Sub GenCode()
Private Sub GenerateMtoPTransfer(…)
Private Sub GenerateMtoSTransfer(…)
Private Sub GeneratePtoMTransfer(…)
Private Sub GenerateStoMTransfer(…)
Private Sub GenerateMtoMTransform(…)
Events:

The VBClass class of the PCM has the Gen-
Code() method. This method generates an
actual class in a new software application.
(The properties of this class are specified by
the specialists in SOMClass, which is an in-
stance of SCMClass.) Of special note are the
many sub-parts of the GenCode method that
generate a wide variety of transfers within
and between the three layers of P, M, and S.
Also note the MtoMTransform that is the
PCM access to generate the algorithms in
the SCM.

The definition of the VBDatabase is defined
as follows:

Presenta-
tion

Manipulation Storage

VBControl
VBForm
VBFormMDI

VBClass
VBClassEvent
VBClass-
Method
VBClassProp-
erty VBMod-
ule

VBDatabase
VBDatabase-
Table
VBDatabase-
TableFields
VBFile

Figure 3 Platform Class Model

Transfer

Presenta- Storage

Manipu-
l t

Manipula-Transfer

Proc ISECON 2003, v20 (San Diego): §2423 (refereed) c© 2004 EDSIG, page 7

Kuofie and Wagner Fri, Nov 7, 2:45 - 3:15, Rio Vista B

Name: VBDatabase class
Properties:
Public IsDAO as Boolean
Public DAOVersion as String
Public IsADO as Boolean
Public ADOVersion as String
Public SOMDatabase As SCMDatabase
Methods:
Public Function CopyObject() As VBData-
base
Public Sub GenCode()
Public Sub GenDatabase()
Events:

This VBDatabase class has a GenCode
method which references the SCMDatabase
instance (SOMDatabase) and generates ac-
tual DDL to define an SQL relational data-
base and sets up project definitions to in-
clude appropriate Microsoft DLLs (dynamic
link libraries), and the like.

Name: VBModule class
Properties:
 Public Project As VBProject
 Public Name As String
 Public Description As String

 'link IOMProcess to VBModule
 Public Processes As New SCMProcesses

 Public vbDecs As New VBDeclarations
 Public VBSubs As New VBSubroutines
 Public VBFuncs As New VBFunctions

 'link IOM Databases to VBModule
 Public IOMDBbases As SCMDatabases
Methods:
 Public Function CopyObject() As
VBModule
 Public Sub GenCode()
Events:

The VBModule has GenCode that is used to
generate file, Module that contains subrou-
tines and functions; the VBModule falls in
the manipulation layer.

Within PCM relations

The following is a list of some of the PCM
classes that have properties that are in-
stances of other PCM classes.

PCM
Class
Name

Related to other PCM classes

VBClass VBClassProperties
VBClassMethods
VBClassEvents

VBForm VBControl
VBDeclaration
VBFunction
VBMenu
VBSubroutine

The VBClass has a 1-3 within relationship to
VBProperties, VBMethods, and VBClassEv-
ents.

Outside PCM Relations

A definition of a PCM class, in most cases,
includes some SCM classes as properties.
For example, the VBClass has SCMClass and
SCMForm as properties. This type of rela-
tionship is called the outside relationship.

It must have been realized that after strip-
ping off “SCM” and “VB” from the SCM and
the VB class names, we are left with some
partial names that do match. For example, if
we strip off “SCM” and “VB” from SCMClass
and VBClass, we get “Class” in each case.
However, some of the VB classes do not
have corresponding named classes in the
SCM and vice versa. For example, VBMod-
ule, VBMenu and VBFormMDI, do not have
their identical named counterparts,
SCMModule, SCMMenu and SCMFormMDI
because we consider that these intentions
"Module," "menu," and "FormMDI" do not
generally occur in programming languages.
(MDI denotes multiple document interface).
However, “Module,” “Menu” and “formMDI”
occur in VB6. Similarly, SCMDatabaseTable
and SCMDatabseTableField do not have
matching counterparts in VB classes.

In Section 3, we deferred description of the
outside SCM relationship until after the de-
scription of the PCM; it is appropriate to do
that now. The definitions of VBForm and
VBClass references SCMForm; therefore,
SCMForm has an outside relationship to
those VBForm and VBClass.

Sample Entry of PCM

We assume that the specialist specified that
the programming language for the software
system as VB6. Then the VBClass is used;

Proc ISECON 2003, v20 (San Diego): §2423 (refereed) c© 2004 EDSIG, page 8

Kuofie and Wagner Fri, Nov 7, 2:45 - 3:15, Rio Vista B

therefore the GenCode() method will refer-
ence SOMClass to generate code.

5. ENGINEERING CLASS MODEL

We will discuss the engineering class model
in this section.

Purpose
The ECM addresses intentions that the spe-
cialist can specify as the engineering proc-
esses for engineering software.

Major Classes
All the ECM classes, except the ECMProcess,
do not have methods or events.

The ECMAnalysis and the ECMDesign classes
are defined as follows:

Name: ECMAnalysis class and ECM-
Design class
Properties:
Public CheckCompleteness As Boolean
 ' Do completeness checks
Public CheckManipulationUsage As Boo-
lean
'All classes and modules used somewhere

Public CheckPresentationUsage As Boolean
 'all forms and WebPages used ‘some-
where

Public CheckStorageUsage As Boolean
' all databases and files used somewhere

Public CheckTransferUsage As Boolean
 ' all transfer used
Public CheckTransformUsage As Boolean
 ' all transforms ‘used’

Methods:
Events:

The ECMDesign class has the same proper-
ties as the ECMAnalysis because analysis
and design are implemented concurrently
during specification phase of the software
life cycle indicated in (Kuofie, 1999). The
specialist specifies intentions. The intentions
can include having to check if the require-
ments for a new application are complete, to
check if all classes for the new application
are used for manipulations, to check if all
forms for the new application are used for
presentation purposes, and to check if all
database tables are used in the new applica-
tion

Name: ECMCoding class
Properties:
Public UseNamingStandard As Boolean
Public UseCommentingStandard As Boo-
lean
Public UseCodingStandard AS Boolean
Methods:
Events:

The ECMCoding class specifies intentions for
coding of new application. The intentions
include conformance to naming, comment-
ing, and coding standards.

The ECMDocumantation class is defined as
follows:

Name: ECMDocumentation class
Properties:
 Public GenerateUserManual As Boolean
' User Manual
 Public GenerateSystemManual As Boo-
lean ' system document
 Public GenerateTrainingGuide As Boo-
lean
 Public GenerateHTMLHelp As Boolean
Methods:
Events:

The documentation phase spells out the type
of documentation to generate. A system
manual is one such document; the specialist
specifies this intention “GenerateSystem-
Manual” as a Boolean –True or False -- data
type.

The ECMTesting is defined as follows:

Name: ECMTesting class
Properties:
 Public GenerateUnitTest As Boolean
 Public RunUnitTestsAtStartup As Boolean
 Public LogResultOfUnitTestsAtStartUp As
 Boolean
Methods:
Events:

ECMTesting has properties or intentions,
such as generating unit test, GenerateUnit-
Test. The GenerateUnitTest has “Boolean”
data type, which enable the specialist to in-
dicate true or false as the intention.

Next, the ECMProcess is defined as follows:

Proc ISECON 2003, v20 (San Diego): §2423 (refereed) c© 2004 EDSIG, page 9

Kuofie and Wagner Fri, Nov 7, 2:45 - 3:15, Rio Vista B

Name: ECMProcess class
Properties:
Public EOMAnalyses As New ECMAnalyses
Public EOMDesigns As New ECMDesigns
Public EOMDeliveries As New ECMDeliver-
ies
Public EOMDocumentations As New
ECMDocumentations
Public EOMCodings As New ECMCodings
Public EOMTestings As New ECMTestings
Public Platform as String
Public Language as String
Methods:
Public Function AddECMAnalysis() As
 ECMAnalysis
Public Function AddECMDesign() As
 ECMDesign
Events:

The ECMProcess class properties are in-
stances of the other ECM classes, such as
ECMCoding, and ECMTesting. The ECMProc-
ess has a method that sets VB as the default
programming language of the program to be
generated.

Within ECM relations

The ECMProcess has within relationship to all
the other ECM classes. The other ECM
classes do not have within relationships.

Outside ECM relations

The ECMProcess is the only ECM class di-
rectly related to VBProject, which is used as
a driver to generate a VB6 application.

Sample Entry of ECM

As a sample entry, the domain specialist can
specify the requirement or the design inten-
tion for testing as an instance of ECM-
Testing, EOMTesting, as follows:

Name: EOMTesting object
Properties:
 GenerateUnitTest = True
 RunUnitTestsAtStartup = True
 LogResultOfUnitTestsAtStartUp = True
Methods:
Events:

In the sample entry above, the specialist
specifies that unit tests are to be automati-
cally generated. In addition, the unit tests
should be run at Startup of the application

and the result the unit tests should be
logged.

The instances of the SCM, ECM, and PCM are
stored in SOM, EOM, and POM respectively.
The SOM, POM and EOM fall under one um-
brella called intentional object model (IOM);
the IOM therefore contains all the analysis
and design specifications that the specialist
specifies. The details of IOM will be de-
scribed in a future article.

6. BENEFITS AND CONCLUSIONS

In this paper we introduced an intention-
directed modeling technique called the ICM.
The ICM classes follow object-oriented
analysis and design approach. The ICM
stresses on the three-tiered architecture:
presentation, manipulation and storage
layer. In addition the ICM has three compo-
nents: the SCM, the PCM, and the ECM. The
SCM and the PCM exhibit the three-tier ar-
chitecture. The three-tiered architecture en-
sures that specialists conform to the same
process in analysis and design of software
system. The same classes are used. There-
fore, variation in analysis and design is
minimized, and the ICM based specification
is easier to maintained by specialists than
some other object oriented based tech-
niques.

SCM, PCM, ECM classes provide the means
for having the specialist pay particular atten-
tion to the requirement specification and the
design specification of the three parts—
presentation, manipulation and storage-- of
an application. Therefore, requirements
specification and design specification can be
complete, unambiguous and completed in a
timely manner than most current object ori-
ented modeling techniques can do.

We indicated that some of the intentions can
have default values, which some objected
oriented models do not offer.

The actual intentions entered by the special-
ist can be classified into different groups for
an application to be built. Classes for ma-
nipulation and transformation can be speci-
fied during the analysis and design.

Overall, the use of the ICM reduces effort in
analysis and design.

A limitation of the intention-directed model-

Proc ISECON 2003, v20 (San Diego): §2423 (refereed) c© 2004 EDSIG, page 10

Kuofie and Wagner Fri, Nov 7, 2:45 - 3:15, Rio Vista B

ing is that the PCM classes are is dependent
on programming languages, hardware plat-
form, and operating systems. At this point in
time the PCM classes that we have is for the
VB6. Further work has to be put in develop-
ing definitions for PCM classes in other pro-
gramming languages, such as C++ and J++.

7. REFERENCES

Blaha, M. and Premerlani, W. (1998). Ob-
ject-Oriented Modeling and Design for
Database Applications. Prentice Hall, Up-
per Saddle River, N.

Booch G. et al. (1999). The Unified Model-
ing Language User Guide. Addison-
Wesley, Reading, MA.

Brumbauh, D. (1994). Object-Oriented De-
velopment: Building CASE Tools With
C++. John Wiley, New York, NY.

Grossman, J.W. (1990). Discrete Mathemat-
ics: An Introduction to Concepts, Meth-
ods, and Application. Macmillan Publish-
ing Co., New York, NY.

Jezequel, J. (1996). Object-Oriented Soft-
ware Engineering with Eiffel. Addison-
Wesley, Reading, MA.

Kuofie, M. H. S. (1999). An Intention Di-
rected Software Engineering Methodol-
ogy, Ph.D. Thesis. Oakland University.

Lee, R. C. and W. M. Tepfenhart (1997).
UML and C++: A Praactical Approach to
Object-Oriented Development. Prentice
Hall, Upper Saddle River, New Jersey, NJ.

Page-Jones, M., (1995). What Every Pro-
grammer Should Know About Object-
Oriented Design. Dorset House Publish-
ing, New York.

Papurt, D. M. (1995). Inside the Object
Model: the sensible Use of C++. Sigs
Books, NY.

Pressman, R.S., (2001). Software Engineer-
ing: A Practitioner’s Approach, 5th Edi-
tion, McGraw-Hill Inc., New York, NY.

Rawsthorne, D. and G. Phil (1999). “Ef-
fective Analysis for Object-Oriented
Development.” Journal of C++ Re-
port, February, http://www.adtmag
.com/joop/crarticle.asp

Schach, S. R. (2002). Classical and Object-
Oriented Software Engineering, 5th Edi-
tion. McGraw-Hill Inc., Chicago, IL.

Sherry, L. (1998). “Intentional Objects in
Business and Manufacturing.” PC AI (Arti-
ficial Intelligence journal for Personal
Computing), Vol. 12, No. 2, March/April.

Sommerville, I. (1992). Software Engineer-
ing. 4th Edition. Addison-Wesley, Read-
ing, MA.

Proc ISECON 2003, v20 (San Diego): §2423 (refereed) c© 2004 EDSIG, page 11

