
Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

Teaching the Complete Object-oriented
Development Cycle, Including OOA and OOD,

with UML and the UP

Robert B. Jackson
School of Accountancy and Information Systems

Brigham Young University
Provo, Utah, 84602, U.S.A.

rbj2@email.byu.edu

John W. Satzinger

Computer Information Systems
Southwest Missouri State University
Springfield, Missouri, 65804, U.S.A.

jws086f@smsu.edu

Abstract

Many information system programs currently teach a combination of structured techniques
and object-oriented techniques for system development. Very few programs teach complete
OOA and OOD concepts based on UML and tie it in with OOP. Consequently many students are
leaving the university with an inadequate set of OO skills. This paper describes a curriculum
for teaching a complete set of skills for doing object-oriented development. Included are ex-
planations for how to teach the unified process (UP), object-oriented analysis, and object-
oriented design in such a way that it directly supports teaching object-oriented programming.

Keywords: object-oriented analysis, object-oriented design, unified modeling language, uni-

fied process, object-oriented curriculum

1. INTRODUCTION

System development techniques, and tools,
continue to change and evolve. This fact
presents an ongoing challenge to informa-
tion systems programs to keep current with
new technology. Some new technologies
are passing fads and do not merit integra-
tion into a program. However, one funda-
mental change is occurring in systems de-
velopment that does merit integration into
information systems programs. That new
technology is the move to object-oriented
development.

Many information system programs currently
teach a combination of structured techniques
and object-oriented techniques. Most pro-
grams teach object-oriented programming
(OOP) using languages such as Java, Visual
Basic .NET, or C++. However, many pro-
grams are deficient in teaching the corre-
sponding object-oriented analysis and design
skills. Some schools teach only structured
techniques in the systems analysis and de-
sign class. Others teach some structured
and object-oriented analysis (OOA), but no
object-oriented design (OOD). Very few pro-

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 1

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

grams teach complete OOA and OOD con-
cepts based on UML and tie it in with OOP.
Consequently many students are graduating
and entering the work force with an incom-
plete set of OO skills.

One guideline that many information sys-
tems programs follow is the curriculum
model presented in IS 2002 (Gorgone et al,
2002). For system development, IS 2002
includes one programming course, one
analysis and design course, and one design
and implementation course that includes
database management. The programming
course now addresses objects and object
orientation as one part of the programming
recommendation. The analysis and design
course now acknowledges both the tradi-
tional structured approach and the newer
object-oriented approach. An additional
course covering design and implementation
with newer technologies is included to allow
covering development skills based on new
approaches. IS 2002, like many college IS
programs, tries to cover both traditional and
OO system development to provide a broad
exposure for students. However, informa-
tion systems educators interested in focus-
ing exclusively on OO development must
extend the IS 2002 minimum recommenda-
tions to achieve a truly in-depth OO pro-
gram.

In order for a student to become an effective
systems developer using object-oriented
techniques, he/she must first develop profi-
ciency in the techniques and models of each
component of OO development (OOA, OOD,
and OOP) and second he/she must also be
able to integrate the various techniques to-
gether into an integrated, complete, com-
prehensive development methodology such
as that provided by the unified process (UP).
As indicated above, many current IS pro-
grams have problems in both areas. Some
critical components of OO development are
not taught. And we do not integrate the
various aspects of OO development into an
integrated whole. We cannot expect stu-
dents to be well educated in OO techniques
until we remedy the holes in our programs.

However, as educators, we also know that a
simple exposure to OO concepts is not ade-
quate to develop a proficiency in our stu-
dents. As indicated in studies about student
proficiency, we believe that most programs

have a goal to teach not just techniques but
also higher level analytical and problem
solving skills. This implies that we need to
get students to a level three (Analytical) on
Bloom’s Learning Taxonomy scale (Bloom,
1956). One difficulty with teaching both
structured and object-oriented when the
number of courses is limited is that students
will not develop in-depth skills in either
paradigm.

One of the advantages of an integrated cur-
riculum is that there are multiple opportuni-
ties to reinforce the important skills across
several courses. As concepts from one
course are reviewed and used in other
courses, the entire set of skills is strength-
ened. Synergism begins to occur and stu-
dents begin to understand the overall
framework and to operate at a higher level.
It is difficult to reinforce skills in an inte-
grated set of courses if the curriculum is try-
ing to cover both traditional and OO ap-
proaches. That is why we believe it is time
to consider committing to OO development
exclusively.

This paper presents a method for teaching a
complete set of skills for doing object-
oriented development. Included are explana-
tions for how to teach the unified process
(UP), object-oriented analysis (OOA), and
object-oriented design (OOD) in such a way
that it directly supports the object-oriented
programming (OOP) concepts taught in pro-
gramming courses. An integrated approach
to teaching OO programming and OO analy-
sis and design is required. Therefore, we
propose a curriculum consisting of at least
four integrated courses for teaching OO.

2. A CURRICULUM FOR TEACHING OOA,

OOD, OOP

Our proposed curriculum is divided into two
tracks: (1) a programming track, and (2) a
modeling/methodology track. Each track
consists of multiple courses with later
courses building on the knowledge and skills
of the earlier courses. Integration also oc-
curs between the tracks to provide a totally
integrated program. Note that we assume in
the discussion below that a separate data-
base management course and other key
IS2002 MIS course are included in the de-
gree program.

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 2

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

We divide the program into tracks for sev-
eral reasons. The primary reason is that it
allows an information systems department
to begin implementing a more complete ob-
ject-oriented program in a more gradual
move. For example, in some universities it
may be easiest to move into a two semester
object-oriented programming sequence. At
another university, it might be more prudent
to first make changes in the systems analy-
sis and design courses to move to object-
oriented concepts.

Another reason for the tracks is that the fac-
ulty members that teach one track are typi-
cally not the same ones that teach the other
track. In some instances the programming
instructors also do systems analysis and de-
sign with modeling, but in most cases not.
Thus, by focusing on separate tracks the
faculty in each area can emphasize the skills
they need to develop before trying to im-
plement the fully integrated program. How-
ever, it should be noted that a fully inte-
grated program will require cross education
so that instructors in the modeling area have
basic knowledge of OO programming and
vice-versa. Only then can a truly integrated
program be developed.

The programming track can be organized as
shown in the Table 1. Many two-course pro-
gramming sequences cover introductory
programming in the first course and more
advanced programming techniques in the
second course. However, there are dozens of
advance programming concepts that can
make the course seem like an endless col-
lection of unrelated concepts and tech-
niques: one week Applets, then object seri-
alization, then Swing components, and then
multi-threading. Many instructors teach the
advanced course by following an advanced
textbook. Unfortunately, these textbooks are
designed to cover all the unrelated concepts
behind the language. They are typically not
designed to cover information system devel-
opment techniques in an integrated way.

The second programming course is design to
teach not only advanced programming tech-
niques, but also introduce some basic pro-
gramming design patterns. In the Table 1,
the items shown with an asterisk are those
items that introduce the fundamentals of
design. It should be noted that those topics
are also the areas where the programming

track and the modeling/methodology track
can most easily be integrated.

Table 1: Two Course Programming
Sequence

Course Course Description /
Possible Topics

Program
ming 1

• Basic programming skills—
data types and structures,
control structures (se-
quence, loops, decision),
arrays.

• Basics of objects, meth-
ods, instantiation.

• Important to develop basic
programming skills. Do
not spend much time on
GUI tools.

Program
ming 2

• Advanced object-oriented
programming concepts—
Inheritance and overriding,
interfaces, GUI and Swing,
serialization and database
connectivity, exception
handling, …

• Object-oriented class li-
braries—String, Vector, It-
erator, Array, …

• *Multi-layer systems, layer
design patterns

• *Basic programming pat-
terns—Singleton, Factory,
Iterator, …

• *Testing and iterative de-
velopment

Integration starts during the second pro-
gramming course with the introduction of
basic multi-layer design pattern that sepa-
rates the user interface classes, problem
domain classes, and data access classes.
Then we focus on how an object-oriented
program actually works in practice. Stu-
dents use OO design models at this point, as
the design models are what students will
learn to implement when they write pro-
grams. Ideally, the students will have been
introduced to modeling concepts prior to or
concurrent with this course. An introduction
to the basics of design class diagrams and
possibly sequence diagrams is necessary. In
those instances where the two tracks are
integrated, the programming course can
move rapidly through concepts of design
based on the UML models. Students read
these models and write code based on them.

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 3

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

Systems analysis and design concepts and
techniques are covered in the model-
ing/methodology track. It includes two de-
velopment courses as shown in Table 2. The
first course is much like a traditional analysis
and design course in terms of objectives and
outcomes, except it is taught iteratively and
it covers UML modeling and the UP exclu-
sively. The second course includes a project
where students work in teams to complete a
system development project using OOA,
OOD, OOP and the UP and provides an ex-
cellent opportunity to integrate the model-
ing/methods track with the programming
track.

Table 2: Two Course Modeling/
Methodology Sequence

Course Course Description / Pos-
sible Topics

Model-
ing/
Methods
1

• The unified process (UP)
• Business case analysis,

project management,
communication

• Planning multiple itera-
tions

• Developing UML require-
ments models

o class diagram, use
case diagram, use
case descritions,
system sequence
diagrams, state-
charts, activity
diagrams

• User interface design, se-
curity/controls, conver-
sion, …

• Introduction to UML design
models

o design class dia-
gram, interaction
diagrams, detailed
statecharts

Model-
ing/
Methods
2

• Advanced design concepts
using UML design models

• *Design patterns—
Architectural design, pro-
gramming patterns, desk-
top patterns, enterprise
patterns, …

• *Group project planning
using the UP

• *System development
with multiple iterations
through construction

o OOA, OOD, OOP
for each iteration

The approach to integration depends on the
timing of the two semester programming
track and the two semester model-
ing/methodology track. In fact, the content
of the classes in the programming track will
change slightly based on the timing. The two
primary alternatives are shown in Table 3.
Other alternatives exist that can work. The
primary consideration is that during the last
semester a major project is included that
requires the students to integrate the entire
modeling/methods and programming track
concepts.

Alternative 1 covers four courses in three
semesters, with the second programming
course overlapping the first analysis and de-
sign course. This is a very effective ap-
proach because students understand basic
programming as they learn modeling skills.
Modeling skills can then be applied in the
latter part of the programming class to help
students program based on design models.
Other MIS courses including a database
management course must be included at
some point, with database fitting best in
semester 2.

Table 3: Two Alternatives for

Scheduling Courses
Semester 1 Semester 2 Semester

3
Alternative 1 – Three semester se-
quence
Program-
ming 1

Program-
ming 2
Modeling/
Methods 1

Modeling/
Methods 2

Alternative 2 – Two semester se-
quence
Program-
ming 1
Modeling/
Methods 1

Program-
ming 2
Modelling/
Methods 2

The second alternative allows students to
complete both tracks in one semester. Dur-
ing the first semester the two tracks are
kept separate and distinct. During the sec-
ond semester, especially during the last half
of the semester the two tracks can be very
closely integrated. A major project can be
required that includes concepts from both
tracks. This alternative differs from the first
in that the project becomes a component of
both tracks concurrently.

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 4

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

The remainder of this paper focuses mainly
on the modeling/methods track. In many
information system programs, teaching the
object-oriented Programming 1 course is
more mature and developed. The primary
need most IS instructors have is learning
how to teach UML and object-oriented mod-
eling so that it can be integrated into the
systems analysis and design courses. In the
next sections of this paper we present a
simple, yet effective way to teach OO model-
ing and the UP. Once that step has been ac-
complished, the next step of an integrated
OO program can be addressed by designing
a Programming 2 course that is based on
UML models and OO design patterns. We will
discuss this approach in more detail in a
later section of the paper.

3. UNDERSTANDING AND TEACHING
THE UP

The Unified Process (UP) is a comprehensive
OO system development methodology origi-
nally developed by Jacobson, Booch, and
Rumbaugh (1999A, 1999B, 1999C). The UP
draws on many of the best practices in soft-
ware development such as iteration and
model-driven development. It has become
widely accepted as a leading (if not defacto
standard) OO development methodology.
The terminology used by the UP is somewhat
new

UP Iterations and Phases
The UP is fundamentally an iterative ap-
proach to software development. As with
many other iterative approaches, the phi-
losophy is to specify, design, and build a
part of the system. Then with later itera-
tions to specify, design and build more of
the system so that it the solution evolves
and grows into a final total solution. How-
ever, there are also some differences be-
tween the UP and other iterative ap-
proaches. The UP is also a model-driven
design approach. Model building is an es-
sential ingredient in the specification and
design of the solution. So where some itera-
tive approaches are based on prototyping
techniques, e.g. build prototypes and build
the system based on the users feedback of
executing prototypes, the UP is somewhat
more formal. The advantages of building
models is well understood and usually pro-
vides a more robust and architecturally
sound solution.

The point of confusion with the UP is the use
of the term “phase.” Historically, the idea of
phases has came from the waterfall methods
so that most of us think of phases as a
group of activities of things like analysis or
design activities. In the UP, the term phase
means a “focus” or and “emphasis,” and a
phase is a grouping of iterations, not indi-
vidual activities. In the UP, there are four
system development life cycle (SDLC)
phases: inception, elaboration, construction,
and transition. So, for example, to say that
a project is in the elaboration phase means
that the current iteration, and probably the
next few iterations, are concentrating on
understanding the requirements. Lots of
model building is being done, as well as con-
struction of core pieces of the system. How-
ever, the requirements and design are still
fluid at this point. To say that the project is
in the construction phase means that the
primary focus of this iteration, and the
nearby iterations, is to flesh out the core
system with all of the functionality and tech-
nical robustness for an industry strength
system. During the construction phase, the
models tend to be more design oriented to
define all the technical issues such as excep-
tion handling. During the construction
phase, there should be very little new speci-
fication based on user requirements.

The sequence of the iterations and how they
are grouped as an emphasis or focus is
shown in Figure 1. The emphasis in each of
the four phases is the following: (Larman,
2002):

Inception – develop an approximate vision,
business case, scope, and rough estimates.
(It is, in essence, developing the business
case and feasibility analysis.)
Elaboration – refined vision, iterative im-
plementation of core architecture, resolution
of high risks, identification of most require-
ments and scope, and realistic estimates.
(The primary focus of these iterations is on
system specifications.)
Construction – iterative implementation of
the remaining lower risk and easier ele-
ments, and preparation for deployment.
(The primary focus of these iterations is on
quality, solid design, robustness, and com-
prehensive total solution.)
Transition – beta test, deployment. (These
iterations include all those activities neces-
sary to get it ready for deployment.)

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 5

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

Ince
ption Elaboration Construction Transition

iteration phase

development life cycle

Phases are NOT analysis, design, and implement; instead, each
Iteration involves a complete cycle of requirements, design,

implementation, and test disciplines
Figure 1. UP Phases and Iterations

UP Iterations and Disciplines
The output or deliverable of each iteration
will vary somewhat depending on where it
lies in the development cycle, i.e. which
phase. However, in most cases the deliver-
able should include a set of models as well
as executable system components. Since
each iteration does include a working system
or portion of a system, each iteration can be
treated as a mini-SDLC. In other words,
each iteration must have some require-
ments, some specification, some design,
some project management, and so forth. In
the UP, these are called disciplines. Disci-
plines include business modeling, require-
ments, design, implementation, test, de-
ployment, configuration & change manage-
ment, project management, and managing
the development environment. Figure 2
shows the four phases with multiple itera-
tions and the use of all disciplines (Larman,

2002). Note that all disciplines are involved
in varying degrees in all iterations and in all
of the phases.

The Elaboration Phase iterations focus more
on requirements, more on design, and less
on implementation and testing, but some
implementation and testing is completed in
each iteration. Later in construction, some
requirements modeling still occurs, but there
is much more focus on design, implementa-
tion, and testing. The UP model shown in
Figure 2 successfully portrays the sequential
concepts needed for project management
with the iterations required through the pro-
ject that involve business modeling, re-
quirements, design, implementation, and
test disciplines. One critical point about the
UP iterations, is that they should be fairly
short and focused. Iterations should range
in length from about 4 to 6 or 8 weeks.

Ite ra t io n s — e a c h a m in i p ro je c t in c lu d in g w o rk in m o s t d is c ip lin e s a n d e n d in g
w ith a s ta b le e x e c u ta b le

U P D is c ip lin e s

B u s in e s s M o d e lin g

R e q u ire m e n ts

D e s ig n

Im p le m e n ta tio n

T e s t

D e p lo y m e n t

C o n fig u ra tio n &
C h a n g e M a n a g e m e n t

P ro je c t M a n a g e m e n t

E n v iro n m e n t

In c e p -
tio n E la b o ra tio n C o n s tru c tio n

T ra n s i
t io n

Figure 2. UP Phases, Iterations, and Disciplines

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 6

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

Integrating OOA, OOD, and OOP into the
UP

The next sections in this paper describe
OOA, OOD, and OOP. However, remember
that the concepts of OOA, OOD, and OOP
are no longer SDLC phases. We can still
use the terms of analysis, design and pro-
gramming, but they now refer to disciplines
or activities within a single iteration. Since
the UP is also a model building methodology,
it is important that the students understand
the models and understand how to use
them. Those activities and models within
the UP that focus on understanding and
modeling the user requirements will still be
called analysis. Other UP disciplines focus
on designing the architecture and algorithms
of the new system. Those activities and
models we will call design. Other UP disci-
plines are oriented to programming and
testing.

One benefit of object-oriented development,
however, is that the OO models used for
design are simply extensions of the models
used in analysis. In other words, there is
not the structural chasm between analysis
and design that exists in the traditional
structured approach. In some ways, OO
development is more difficult to learn, pri-
marily because there are many different
models that are used to specify and design a
system. However, once the models are un-
derstood, development is a smooth process
that easily flows from analysis to design to
programming. The objective of teaching OO
development should be to bring students to
a level or expertise that they understand
and appreciate the gracefulness of these
transitions.

One of the biggest problems with the way
that most books present UML and OO devel-
opment, as well as many instructors, is that
they try to teach all of the sophistication of
each model all at once. This normally over-
whelms students. Not only are there many
models to learn, but each has its own com-
plexities and sophistication that is almost
impossible to understand the first time
through. One of the benefits of separating
OOA from OOD is that very simple versions
of the UML models can be used (and taught)
for OOA. Then during the teaching of OOD,
more of the complexities of the models can
be added. Notice in the following sections

how the models begin with the most simple
and expand into more complexity as we
move through a development iteration.

4. UNDERSTANDING AND TEACHING
OOA WITH UML REQUIREMENTS

MODELS

We use the term analysis in the traditional
way. Analysis activities are those activities
which determine the user’s requirements
and document them with narratives and
models. Sometimes we refer to these activi-
ties as requirements definition. The basic
objective of requirements definition is “un-
derstanding” – understanding the users’
needs, understanding how the business
processes are carried out, and understand-
ing how the system will be used to support
those business processes. In object-
oriented development, system developers
use a set of techniques, tools, and models to
discover, understand and specify the re-
quirements for a new system.

There are five interrelated models that can
be used to define system requirements.
Three of these models, the use case dia-
gram, use case detail documents, and the
system sequence diagram are used to de-
scribe the processes for the new system.
Two models, the domain class diagram and
statechart diagrams are used to describe the
requirements relating to the data storage
and structural portion of the system.

To illustrate how these models work to-
gether to specify the system requirements,
let’s use a common system that has been
used in many previous examples, a video
rental store. Assuming that we have all
rented videos before, we will minimize the
case description.

Based on the UP, the first iteration is the
inception phase. The objective of the incep-
tion phase, and iteration, is do establish the
business case and the project feasibility. We
may do a little modeling, but usually only
partial models with the use case diagram
and possibly the domain class diagram are
built. The details are not included. From
inception, then we move to the first iteration
in the elaboration phase.

One of the benefits of the UP, both for the
development of real systems for teaching

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 7

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

UML is that the iteration approach allows us
to limit the scope of the new system. For
teaching purposes it is almost always neces-
sary to limit the scope while students are
learning. In the UP, it fits nicely to indicate
that we will focus only on a few core use
cases for the first iteration. Typically devel-
opers try to identify the “core” processes
and develop those use cases through analy-
sis, design and programming.

Use Case Diagram
The objective of use case modeling is to
identify and define the business functions
that require system support. The entire UP
development process is based upon finding
the use cases. This approach is called a
use-case driven approach, and you will see
that it drives the entire process (Jacobsen,
1992). We start the development of a use
case diagram by identifying those people (or
other systems) that will use the system.
Those users are called actors. To ensure
that we have the right level of abstraction,
we will define actors only as those people (or
things) that have direct contact with the
automated system boundary. We empha-
size that point by saying actors must have
“hands.” Next identify those core business
functions done by each actor. A use case is a
response that is done within the system in
response to a request or input by a system
user.

Figure 3 shows the actors and the use cases
that we will include in the first iteration. We
recognize that the video store system will
need more use cases, but for the first itera-
tion this will suffice. As you can see from
the figure, we have decided that we need to
have use cases to check out and return vid-
eos. We also need use cases to add movies
to inventory. Finally we also need to add
customers to our customer file. In later it-
erations we may expand the current use
cases to be broader, such as removing mov-
ies and changing customers, but we keep it
simple for the first iteration.

We emphasize that the actors in the diagram
are those that are actually working with the
system. Hence the checkout clerk is using
the system to check out the movies for a
customer. Since the end customer does not
actually have contact with the automated
system, it is not identified as an actor.

Figure 3. Use case diagram for Elabora-
tion Phase first iteration.

Use Case Detail Model
We identify this as separate from the use
case diagram to emphasize that the use case
model is only a high-level scoping model. It
does not provide enough details to accu-
rately describe the steps in the business
processes and the required system re-
sponses. The use case detail model looks
inside the oval of a use case to describe
what is happening within the confines of a
use case. One way to describe the internal
steps is with a simple narrative description.
Another way is to use another UML diagram
called an activity diagram.

An activity diagram is a type of workflow
diagram that is used to describe the se-
quence of steps that make up the use case.
An activity diagram is made up of ovals, rep-
resenting activities, and connecting lines,
representing the flow from activity to activ-
ity. Vertical boxes, called swimlanes, are
used to identify which actor does which ac-
tivity.

Figure 4 is an example of an activity dia-
gram for the Add new movies use case.
Remember during analysis we are focusing
on understanding the requirements of the
new system. Essentially we are defining the
steps in the business processes that interact
with the system. Therefore this activity dia-
gram only has two swimlanes, one for the

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 8

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

actor and one for the system. At this point
we do not try to describe what is going on
inside the system, just that it needs to do
something to respond to the actor.

Figure 4. Activity diagram for Add New

Movie use case.

One benefit of this approach is that the stu-
dent is learning to focus on the business
needs and the user activities. It also
teaches about activity diagrams in a very
simple context. At this point we expect the
students to understand a use case diagram
and a simple activity diagram. Students
should also see the very close relationship
between the two.

Problem Domain Class Diagram
Conceptual data modeling is a complex sub-
ject that usually takes several weeks in a
database class. As appropriate, we build on
the learning obtained in other classes. An
important point to make for requirements is
that the focus is on those real world things
about which the system needs to maintain
information. The term “problem domain” is
used to describe those items associated with
the business need or problem. We empha-
size that for analysis the class diagram fo-
cuses only on the problem domain. Later on
the design class diagrams will include other
system objects and will become more com-
plex. Students generally understand that
the development of the class diagram is a

requirements activity. It identifies the in-
formation requirements of the new system.

Figure 5 is an example of the domain class
diagram for the video store. One popular
technique to building the domain model is by
using a “noun search” algorithm. The detail
use case narratives can be searched to find
those nouns that reflect objects that require
class definitions.

In many information system programs, a
database class is also offered and often
taken concurrently. Hence in many cases
students will already have been exposed to
conceptual data modeling. Again, we em-
phasize that for this first iteration both the
number of classes identified and the attrib-
utes within each class is kept simple. Later
iterations will add complexity. However,
even in its simplicity, there are numerous
concepts that need to be understood. It is
appropriate to teach such concepts as rela-
tionships, cardinality, inheritance, and even
association classes.

Figure 5. Domain class diagram for

video rental store.

The class notation used is the simpler UML
notation, which does not include the method
compartment. We can discuss and illustrate
method names in examples, but we do not
require students to learn or understand de-
tails of methods. Obviously method specifi-
cation is a design activity and not a system
requirement.

From here the next point is what kind of de-
tail information needs to be captured about
the real world things that are included in the
domain model. One type of detailed infor-
mation is the properties or attributes that
carry information about the objects. An-
other piece of information concerns the rela-
tionships of objects to other objects. Both of

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 9

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

these pieces of information are maintained
in the domain class diagram. Another type
of information may be the different status
conditions of the objects. In the real world
the real objects have different status condi-
tions. The system may need to track those
status conditions. This leads us to the final
UML requirements model, the statechart
diagram.

System Sequence Diagram
Typically at this point we will ask the stu-
dents, “What about the input and output
data? Where does it happen and what is it?”
If you have the students go back and review
the use case diagram and the activity dia-
grams, generally they identify the locations
of inputs and outputs as the flow between
the actor and the system on the activity dia-
gram. So the activity diagram helps us
identify the points that data must be entered
and viewed, but it does not describe it. UML
has another diagram that enables us to de-
scribe this flow of information, called a sys-
tem sequence diagram.

Figure 6. System Sequence Diagram for
the Add new movies use case.

A system sequence diagram is simplified
version of the more complex sequence dia-
gram. However, at this point we keep the
diagram simple and only present the basic
concepts that are needed for requirements
specification. Figure 6 is the system se-
quence diagram for the use case Add new
movies. Notice that structurally it is very
similar to the activity diagram. There are
two components, the clerk and the system.

Each has a lifeline, represented by the verti-
cal dashed line, which is similar to the swim-
lane. The arrows show the movement of
data. An arrow, along with its descriptor, is
called a message. The message name de-
scribes the action requested by the actor,
and the parameters describe the data that is
being passed. Return messages are shown
as dashed lines with only the data being re-
turned as the message descriptor. The se-
quence of messages flows from top to bot-
tom down the lifelines of actor and system.

At this point we have accomplished two
goals. We have taught the students how to
define user requirements based on business
processes. We have also introduced and
taught simple versions of four UML models.
Students should not only have a good feel
for doing requirements definition, but they
should begin to see the elegance of using a
set of interrelated models to do specifica-
tions.

Statechart Diagram

Many developers consider statechart dia-
grams to be an optional model for business
systems. Statechart diagrams inherently are
rather complex. They are a critical compo-
nent for the definition of complex real-time
systems. However, for many business data-
base type systems, they are not as critical.
Especially while the students are just begin-
ning to grasp the ideas of OO modeling, we
keep the examples and use of statecharts
simple. As indicated earlier, for business
systems just use statecharts to help track
the various status conditions of the more
complex objects.

Figure 7 is an example of a statechart for a
movie copy. For this simple object class,
we only track two conditions, Ready for
checkout, and Checked out. A simple state-
chart can be used to show the relationship
between these status conditions.

Note in the figure the ovals represent the
states. The arrows are the transition be-
tween states. The states describe the vari-
ous status conditions, and the transitions
capture information about the events or
messages that cause the object to change
from one state to another.

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 10

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

Figure 7. Statechart for Physical Movie
Class.

OOA Conclusion
At this point we have a set of five models
that captures the system requirements.
Students should see how these five models
work together to provide an integrated, mul-
tiple-view description of the requirements as
identified by the users. A review of the five
models and some comprehensive homework
examples will help them get the big picture.
As indicated earlier, it is a good idea to keep
the difficulty of each model simple. Since
students are learning five new models, it is
just as important that they see the intercon-
nections between the models as it is to learn
the models. The complexity of each model
can be added later as they become more
proficient and more skilled. Also, it is impor-
tant to always emphasize that requirements
models are not completed in detail before
design and implementation begins. They are
always dealing with a subset of requirements
for one iteration. That is another reason why
simple examples understood in detail are
better than one large example that repre-
sents the entire system.

5. UNDERSTANDING AND TEACHING
OOD WITH UML DESIGN MODELS

A problem with many systems analysis and
design courses is that they teach only the
UML models and not the processes of devel-
opment. This is especially true with object-
oriented design. Very few programs actually
teach how to do object-oriented design.
However, thinking back through what we
have learned in the preceding section, it
should be clear that it is very difficult, if not
impossible, for students to understand how
to write object-oriented programs utilizing

only the analysis models. Many information
systems programs have two or three pro-
gramming classes and a fairly rigorous sys-
tems analysis course. Since little instruction
is provided on how to do design, many new
developers simply jump into OO program-
ming after a brief effort at defining user re-
quirements. But there are many benefits to
doing more formal OO design.

Introduction
The purpose of system design is to bridge
that gap between the requirements models
and the program code and database. One
benefit is that going through the steps of
systems design adds further clarification in
understanding the user requirements. Those
that do modeling, both at the requirements
level and at the design level, know that the
modeling activity itself raises questions
about the new systems. Questions always
come up during the construction of a model
that are never thought about if the model
was not created. In addition, teaching de-
sign also gives the students more practice
with the models, thus raising their level of
proficiency with the models.

Another benefit of teaching object-oriented
design is that understanding good design
principles is a necessary skill for systems
developers. Good design principles can be
applied at the architectural level. Develop-
ing and reviewing design diagrams enable
developers to identify common design issues
and apply standard “best practice” solutions.
This is the basis of all the work that has
been done in the development of OO system
design patterns.

Interestingly enough, taking time for design
also saves time. Many developers think that
they are making faster progress if they jump
right into code without spending time to de-
sign. However, the design process can often
be done very quickly. It does not take long
to lay out some diagrams. Areas of optimi-
zation, or shortcuts, or reuse can frequently
be found that will expedite the coding. Most
often, however, taking time for design will
shorten the programming time due to fewer
mistakes and fewer components that need
to be redone. Taking the time to design and
coordinate the designs of various subsys-
tems and developer teams always saves
time. System testing can also be done more

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 11

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

effectively by using the design as a blueprint
to develop the test plan.

The Design Models
Since the purpose of object-oriented design
is to bridge the gap between the analysis
models and the code, it is helpful to start
teaching design by reviewing the elements
of an object-oriented system. In other
words, the students need to have some ex-
perience writing object-oriented programs
and understand classes, instantiating ob-
jects, methods, and method signatures.
Given that to write an object oriented pro-
gram, a developer needs to have thought
about the necessary classes, the methods in
those classes, and how the objects invoke
methods of classes to carry out some sys-
tem activity.

Given that a student understands the com-
ponents of an object-oriented program, it is
a straightforward step to identify the inputs
to writing code. The inputs should be (1) a
set of classes, (2) a description of the object
interactions between objects that must occur
to execute a given function, and (3) possibly
some pseudocode or algorithm specifications
for the methods.

The first input, i.e. a set of classes, is de-
scribed using a design class diagram. In-
cluded in the design class diagram are both
the attributes and the method signatures for
those classes. The second input, i.e. the
interactions, is described using interaction
diagrams, either detailed sequence diagrams
or collaboration diagrams. The interaction
diagrams are organized around the use
cases, just as the system sequence dia-
grams are. They are more detailed than
system sequence diagrams. The system
swimlane is replace by all of the individual
objects that interact to carry out a use case
or scenario. The messages, which are con-
sidered interactions, in reality invoke the
methods of the participating objects. The
third input, i.e. pseudocode, is described
either just with simple pseudocode scripts or
as action expressions in a statechart. The
use of a statechart is still optional, even dur-
ing design, but in some cases can add addi-
tional insight into the design.

Since the design models, especially the de-
sign class diagram, are different than the
analysis models, we first illustrate each
model with its important components. After
showing the models, we explain the process
of doing design.

The Design Class Diagram: The following
figure is an example of the video system
Design Class Diagram. Notice that it is very
similar to the domain model developed dur-
ing business modeling discipline activities.
Note that the diagram is an extension of the
problem domain class diagram developed
during analysis. There are four major addi-
tions we will discuss.

First, the attributes have been defined more
precisely by the addition of type information.
Visibility information can also be added.
Default visibility for attributes is invisible or
private, meaning values cannot be seen by
outside objects.

Second, method signatures have been
added. Method signatures will include visi-
bility, method name, parameter types, and
return types. The DCD usually does not in-
clude constructor methods, accessor meth-
ods, or mutator methods unless there is
some specific uniqueness that should be
identified.

Third, navigation arrows are added. Naviga-
tion arrows indicate visibility from one class
to another, meaning an object of one class is
aware of and can send a message to an ob-
ject of the other class. The actual imple-
mentation of this navigation in a program-
ming language is with a variable that refer-
ences another object. It should be noted
that navigation is not the same as the asso-
ciation relationships in the domain model.
Frequently, though, we can identify naviga-
tion requirements from the relationships.

Finally, we have added another class called
the UseCaseController class. This new class
acts as a controller class in that it is the fo-
cal point between the problem domain
classes and the outside environment. In
fact, the addition of the UseCaseController
class is an illustration of the application of a
design pattern called the controller pattern
or a façade pattern.

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 12

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

Figure 8. Video System Design Class Diagram

Detailed Interaction Diagrams: An in-

teraction diagram documents the collabora-
tive work done by several software objects
to execute a singe use case (or even only a
portion of a use case called a scenario). An
interaction diagram for a use case will iden-
tify all of the objects that must “interact” or
“collaborate” together to execute the system
functions necessary for that use case or sce-
nario. In UML the interactions are identified
as “messages” between the collaborating
objects. When the UML model is translated
to program code, these messages indicate
that a method is invoked by an object.
Thus the identification of all of the interact-
ing objects and their respective messages is
equivalent to identifying which methods will
be invoked by which objects during the exe-

cution of the use case. Obviously, the
process of developing interaction diagrams is
the foundation of OO system design.

There are two types of Interaction Diagrams
that are used for system design, (1) Se-
quence Diagrams and (2) Collaboration Dia-
grams. Both types of diagrams present in-
formation that is essentially the same, but
from different views. A sequence diagram
includes a “life line” for each object with the
order of the messages indicated via a top-
to-bottom, left-to-right reading. A collabo-
ration diagram is more of a summary or
overview of the collaborating objects with
the order of the messages indicated by mes-
sage numbers.

Figure 9. Sequence Diagram

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 13

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

Figure 9 presents an example of a sequence
diagram and a collaboration diagram for the
use case Checkout movies. In a sequence
diagram, each object has a life line (dashed
vertical line connected to the bottom of the
object). The UseCaseController object also
has activation lifelines, illustrated by a long,
narrow vertical rectangle on the lifeline. An
activation lifeline indicates that the object is
executing during that period. Each message
has a source object and a destination object.
The order of the messages is read top to
bottom. In a collaboration diagram, each
pair of communicating objects is connected
by a link that serves as the communication
mechanism between the objects. Again
each message has a source object and a
destination object. The order of the mes-
sages is indicated with sequence numbers.

The message syntax is quite similar to
method syntax in a programming language.
In fact, the destination object for each mes-
sage is required to have a method to handle
the arrival of that message. The develop-
ment of the messages on the interaction
diagrams is the same process as defining the
methods in the objects. Comparing the
DCD in Figure 8 and the messages in Figure
9, you will note that there is a message
addMovie (movieID, copyNo, datePurchased)
 in the sequence diagram going to the
MovieTitle object, and there is a correspond-
ing method addMovie (movieID, copyNo,
datePurchased) in the MovieTitle class in the
DCD.

The Design Process
The design class diagram discussed above
provides the core structure for the new sys-
tem. However, we recognize that an object-
oriented system has many more classes
than those that appear in the problem do-
main class diagram. Figure 8 only illustrated
those classes that are derived from, or
closely related to, the problem domain
classes. Other classes, such as graphical
user interface classes, database access
classes, and possibly other utility type
classes might also be required in a new sys-
tem. Consequently, one of the first princi-
ples, and design patterns to teach is the
multilayer design pattern.

Multi-Layer Design Pattern: An important
design pattern is the N-Layer architecture

that separates the user interface (UI) or
view layer, the problem domain classes, and
the data access classes and other technical
services. This architecture is often referred
to as three-tier design or as three-layer de-
sign. The term tier can imply a physical
separation on separate processors, so many
prefer the term layer implying a separate
software component independent of location.
We will use the term layer.

Figure 10 illustrates the components of a
three-layer design. In Figure 1, we showed
the various iterations of the UP. In the first
iteration of the Elaboration Phase, we will
select a few core use cases and develop a
three layer design for those use cases. In
other words, there will be view layer classes,
domain layer classes, and data access layer
classes, but only for those few selected use
cases. All three layers are developed as part
of a single UP iteration. In this case, the
first UP iteration will produce the classes in
these three layers.

Within a UP iteration, we will do some micro-
level iterations, or design passes. By that
we mean that in the first pass, we design
the domain layer. In the second pass the
view layer is designed, and in the third pass
the data access layer is design. Not only is
this multiple pass, micro-level iteration a
good way to do design, it is also an excellent
way to teach design to new students.

Micro-level Iteration 1: We will ex-

plain the method of system design by pre-
senting a simple design case. The first step
is to select a use case to design. For this
example, we will continue to work on a use
case of low complexity namely Add new
movie. The objective of this design is to
determine the objects that must collaborate
together to execute this use case within the
system.

Recall that one UP iteration might include
just a few of the core use cases for the sys-
tem, and after we complete the require-
ments modeling for those use cases (the
OOA part) we will begin immediately with
the design (OOD) and construction (OOP).

Our next step is to develop a detailed se-
quence diagram for this use case. Inputs to
this process are the domain model and the
system sequence diagram, both developed

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 14

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

Figure 10. Multi-layer Architecture

during business modeling and requirements
definition tasks. As we look at the domain
model, it appears that the domain classes
that might be impacted are the MovieTitle
and MovieCopy classes. We begin a se-
quence diagram by placing the Clerk actor
(from the use case), and MovieTitle and
MovieCopy objects on the diagram. At this
point, we will also add a new object, one
that is used to represent the system as a
whole. This additional object will be called
UseCaseController. It will serve as a kind of
switchboard to distribute messages that
come from external points, called a control-
ler.

The next step is to add the messages that
were identified on the system sequence dia-
gram (SSD) for this use case. The mes-
sages from the SSD are part of the user re-
quirements and denote those tasks and data
entry points that are initiated by the actor.
The purpose of this preliminary iteration is
to design the interacting objects and mes-
sages from the domain model. The results
of this first iteration were shown in Figure 9.

Micro-level Iteration 2: The purpose of
the second micro-level iteration is to add the
other objects that are required from the
view layer and the data access layer. These

other classes are true design artifacts in that
they are created by the designer to make
the system work. The view layer classes are
derived from the user interface screen lay-
outs that are developed with the user. The
system designer, takes those screen layouts,
and possibly prototypes, and converts those
to GUI classes with buttons, textboxes,
graphics, and so forth.

The data layer classes are derived also de-
sign artifacts. The design of these classes is
dependent on the data structures, including
whether a flat file system or a relational da-
tabase system is being used. If a relational
database system is being used, then all the
connectivity, SQL statements and result set
processing is done in the data layer classes.
An example of the final sequence diagram
for the Add new movie use case is shown in
Figure 11. Many message parameters have
been omitted to enhance readability.

Information about the messages for this
more complete sequence diagram will enable
the designer to define the methods for
classes in the view layer, the domain layer,
and the data access layer. Note how this
activity is truly design work, and that it di-
rectly supports programming. From a com-
plete sequence diagram, and the corre-
sponding design class diagrams, a pro-
grammer should be able to go right to code.

We have not discussed the inclusion of de-
sign patterns (Buschman, 1996, Gamma,
1995). In a curriculum that teaches devel-
opment using models, and one that is use
case driven, it is logical to include discus-
sions of good design principles and design
patterns. For example, earlier we men-
tioned one useful design pattern, called the
controller pattern, which is used to reduce
coupling between the classes of the view
layer and the domain layer. Another impor-
tant principle is that classes in the view layer
have visibility to the domain layer, but the
domain layer should not “know about” the
particular classes in the view layer. There
are many principles, such as coupling, cohe-
sion, visibility, protected variations, creator,
information expert, and so forth, which can
be taught during discussion of creating good

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 15

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

Figure 11. Final sequence diagram for Add new movie.

object-oriented design. Those topics usually
are not discussed during either analysis or
programming courses

6. UNDERSTANDING AND TEACHING
OOP BASED ON OOD

Now that we have discussed the design
models developed using the UP, it should be
clearer why it is important to integrate the
modeling/methods track with the program-
ming track. In order to write programs that
are meaningful problem solutions, the stu-
dents must be taught how to read and inter-
pret these design models just as a tradi-
tional structured programmer has always
been taught how to read flowcharts, psue-
docode, file layout specifications, report lay-
out specifications, and structure charts. Just
as structured courses show design documen-
tation for each programming project, OOP
courses must show design documentation.
Each use case and scenario is documented
by a design class diagram showing all prob-
lem domain classes required for the use
case, a sequence diagram showing all inter-
actions between the objects in the system,
and some additional user interface design
models showing the layout and components
of each form used in the use case. That is
how the student first learns the basics of

typical design patterns. Programming stu-
dents are not expected to create the design
models. They are only expected to under-
stand and implement the models. The focus
stays on programming and testing, but it is
all based on clear business system examples
and architectures. In this manner, OO pro-
gramming courses become much more than
simply teaching a collection of advanced
techniques that are typically not part of an
integrated business system example.

There are several clear benefits to this ap-
proach. First, students are explicitly taught
to implement code based on a documented
design. The UML design models will there-
fore appear to be useful to students, and
students will be more likely to be interested
in learning the OOA and OOD processes that
are followed to create the models. Second,
the students will be exposed to design pat-
terns that reflect good OO design solutions.
As they implement the design, they will
learn the underlying design pattern. Finally,
the student will be learning UML in more
than one iteration. They use the models and
then go back and work with the models
again in the Modeling/Methods 1 course. It
takes more than one attempt at learning
UML and the OO approach for most of us to
really understand it.

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 16

Jackson and Satzinger Fri, Nov 7, 3:15 - 3:45, Rio Vista A

7. REFERENCES

Bloom, B.S. (Ed.) (1956) Taxonomy of edu-
cational objectives: The classification of
educational goals: Handbook I, cognitive
domain. New York ; Toronto: Longmans,
Green.

Booch, G., Rumbaugh, J. and Jacobson, I.
(1999A). The Unified Modeling Language
User Guide. Upper Saddle River, NJ: Ad-
dison-Wesley.

Buschman, F., Meunier, R., Rohnert, H.,

Sommerlad, P., Stal, M. (1996), Pattern-
Oriented Software Architecture: A Sys-
tem of Patterns. John Wiley and Sons.

Davis, G. B., J. T. Gorgone, J. D. Couger,

D.L. Feinstein, and H.E. Longenecker, Jr.
(1997). IS ‘97 Model Curriculum and
Guidelines for Undergraduate Degree
Programs in Information Systems, ACM,
New York, NY and AITP (formerly DPMA),
Park Ridge , IL.

Gamma, E., Helm, R., Johnson, R. and Vlis-

sides, J. (1995). Design Patterns. Read-
ing, MA: Addison-Wesley.

Gorgone, J. T., G. B. Davis, J. S. Valacich,

H. Heikki, D. L Feinstein, H. E. Longe-
necker, Jr. (2002). Model Curriculum and
Guidelines for Undergraduate Degree
Programs in Information Systems, ACM,
AIS, and AITP.

Jacobson, I., Booch, G. and Rumbaugh, L.

(1999B). The Unified Software Develop-
ment Process. Upper Saddle River, NJ:
Addison-Wesley.

Jacobson, Christerson, Jonsson, Overgaard

(1992). Object-Oriented Software Engi-
neering: A Use Case Driven Approach.
Reading, MA: Addison-Wesley.

Larman, Craig (2002). Applying UML and

Patterns: An Introduction to Object-
Oriented Analysis and Design and the
Unified Process (2nd Ed). Upper Saddle
River, NJ: Prentice Hall PTR.

Martin, J. (1990). Object-Oriented Analysis

and Design. Englewood Cliffs, NJ: Pren-
tice Hall.

Rumbaugh, J., Jacobson, I., Booch, G.

(1999C), The Unified Modeling Language
Reference Manual. Upper Saddle River,
NJ: Addison-Wesley.

Proc ISECON 2003, v20 (San Diego): §2432 (handout) c© 2003 EDSIG, page 17

